The Church-Turing Thesis

Huan Long

Shanghai Jiao Tong University

Acknowledgements

Part of the slides comes from a similar course given by Prof.
Yijia Chen.

http://basics.sjtu.edu.cn/~chen/

Textbook

Introduction to the theory of computation
Michael Sipser, MIT

Third edition, 2012

http://basics.sjtu.edu.cn/~chen/

Outline

Turing Machines

Variants of Turing Machines
Multitape Turing machines
Nondeterministic Turing Machines
Enumerators

The Definition of Algorithm

Turing Machines

Turing Machines

Alan Turing in 1936 proposed Turing machines M:

» M uses an infinite tape as its unlimited memory, with a
tape head reading and writing symbols and moving around
on the tape.

The tape initially contains only the input sting and is blank
everywhere else.

> |f M needs to store information, it may write this
information on the tape. To read the information that it has
written, M can move its head back over it.

» M continues computing until it decides to produce an
output. The outputs accept and reject are obtained by
entering designated accepting and rejecting states.

> If M doesn’t enter an accepting or a rejecting state, it will
go on forever, never halting.

Schematic of a Turing machine

control

The difference between finite automata and Turing
machines

1. A Turing machine can both write on the tape and read from
it.

2. The read-write head can move both to the left and to the
right.

3. The tape is infinite.

4. The special states for rejecting and accepting take effect
immediately.

B = {w#w | w € {0,1}*}

M on input string w:

1.

Zig-zag across the tape to corresponding positions on
either side of the # symbol to check whether these
positions contain the same symbol. If they do not, or if no
is found, reject. Cross off symbols as they are checked
to keep track of which symbols correspond.

When all symbols to the left of the # have been crossed
off, check for any remaining symboils to the right of the #.
If any symbols remain, reject; otherwise, accept.

B = {w#w | w € {0,1}*} (contd)

x11000#x11000u ...

xx1000#x11000uw ...

v

X X XXXXHEXXXXXXU ...

accept

Formal definition of a Turing machine

Definition
A Turing machine is a 7-tuple, (Q, %, T, 6, qo, qaccept), Where
Q, %, T are all finite and

1. @ is a set of states,

Y is the input alphabet not containing the blank symbol L,
T is the tape alphabet, where LI e T"and ¥ C T,

d:Q xTI' —» Q@ xT x{L,R} is the transition function,

qo € Q is the start state,

qaccept € @ is the accept state, and

Treject € Q s the reject state, where grgject # Gaccept-

N o o bk owDd

Computation by M

> |Initially, M receives its input w = wyws ... w, € ¥* on the
leftmost n squares of the tape, and the rest of the tape is
blank (i.e., filled LJ).

» The head starts on the leftmost square of the tape.

» As > does not contain LI, so the first blank appearing on
the tape marks the end of the input.

» Once M has started, the computation proceeds according
to the rules described by the transition function.

» If M ever tries to move its head to the left off the left-hand
end of the tape, the head stays in the same place for that
move, even though the transition function indicates L.

» The computation continues until it enters either the accept
or reject states, at which point it halts. If neither occurs, M
goes on forever.

Configurations

A configuration of a Turing machine consists of
» the current state,
» the current tape contents, and
» the current head location.

by u ¢ v we mean the configuration where
> the current state is g,
» the current tape contents is uv, and
» the current head location is the first symbol of v,
» the tape contains only blanks following the last symbol of v.

Configurations (cont’d)

a7

[t]of1]afofafa]e]t]u]ufufk...

A Turing machine with configuration 1011 ¢; 01111

Formal definition of computation
Leta,b,ceI',u,v € I'*, and g;, q; € Q.
1. if 8(qi, b) = (g5, c¢, L) then

ua ¢; bv yields u g; acv.

2. it 6(gi,b) = (gj,¢, R) then

ua g; bv yields wac g; v.

Special cases occur when the head is at one of the ends of the
configuration:

1. For the left-hand end, the configuration g; bv yields ¢; cv if
the transition is left moving (because we prevent the
machine from going off the left-hand end of the tape), and
it yields c g; v for the right-moving transition.

2. For the right-hand end, the configuration ua ¢; is equivalent
to ua ¢; L because we assume that blanks follow the part
of the tape represented in the configuration.

Special configurations

» The start configuration of M on input w is the configuration
qow.

» In an accepting configuration, the state of the configuration
IS Gaccept-

» In a rejecting configuration, the state of the configuration is

dreject-

» Accepting and rejecting configurations are
halting configurations and do not yield further
configurations.

Formal definition of computation (cont’d)

M accepts w if there are sequence of configurations
C1,Cs,...,C) such that

1. (4 the start configuration of M on w.
2. Each C; yields C;41, and
3. C} is an accepting configuration.

The collection of strings that M accepts is the language of M,
or the language recognized by M, denoted L(M).

Definition
A language is Turing-recognizable, if some Turing machine
recognizes it.

On an input, the machine M may accept, reject, or loop. By
loop we mean that the machine simply does not halt.

If M always halt, then it is a decider. A decider that recognizes
some language is said to decide that language.

Definition
A language is Turing-decidable or simply decidable if some
Turing machine decides it.

A= {0

n >0}

On input string w:

1.

Sweep left to right across the tape, crossing off every other
0.

If in stage 1, the tape contained a single 0, accept.

if in stage 1 the tape contained more than a single 0 and
the number of 0s was odd, reject.

Return the head to the left-hand end of the tape.
Go to stage 1.

A={0* | n> 0} (contd)
> Q= {q1,42,93, 44, 45, Gaccept, Greject } » Where qi is the start
state.
» ¥ ={0}andI' = {0, z,}.
» The transition function ¢:

B = {w#w |w € {0,1}*}
> Q= {q1,..,0s Gaccept; Greject }» Where q; is the start state.
> ¥ ={0,1,#},and T = {0, 1, #, =, U}.
» The transition function ¢:

C={atc|i,j,k>1andix j=k}

On input string w:

1.

Scan the input from left to right to determine whether it is a
member of a™b ¢t and reject if it is not.

Return the head to the left-hand end of the tape.

Cross off an a and scan to the right until a b occurs. Shuttle
between the b’s and the ¢’s, crossing off one of each until
all b’s are gone. if all ¢’s have been crossed off and some
b’'s remain, reject.

Restore the crossed off b’s and repeat stage 3 if there is
another a to cross off. If all a’s have been crossed off,
determine whether all ¢’s also have been crossed off. If
yes, accept; otherwise, reject.

E = {#a1# - #x, | each z; € {0,1}* and z; # «; for each i # j}
On input string w:

1.

Place a mark on top of the leftmost tape symbol. If that
symbol was a blank, accept. If that symbol was a #,
continue with the next stage. Otherwise, reject.

. Scan right to the next # and place a second mark on top if

it. If no # is encountered before a blank symbol, only x;
was present, so accept.

By zig-zagging, compare the two strings to the right of the
marked #s. If they are equal, reject.

Move the rightmost of the two marks to the two marks to
the next # symbols to the right. If no # is encountered
before a blank symbol, move the leftmost mark to the next
to its right and the rightmost mark to the # after that.
This time, if no # is available for the rightmost mark, all the
strings have been compared, so accept.

Go to stage 3.

Variants of Turing Machines

Multitape Turing Machines

A multitape Turing Machine M has several tapes:
1. Each tape has its own head for reading and writing.

2. The input is initially on tape 1,with all the other tapes being
blank.

3. The transition function is

§:QxTF = QxT*x {L,R,S}*

where k is the number of tapes.

means that if M is in state ¢; and head 1 through % are
reading symbols a; through a;, the machine goes to state
g5, writes symbols b; through b, and directs each head to
move left or right, or to stay put, as specified.

Theorem
Every multitape Turing machine has an equivalent single-tape
Turing machine.

Proof (1)

We simulate an M with k tapes by a single-tape S.
» S uses # to separate the contents of the different tapes.

» S keeps track of the locations of the heads by writing a
tape symbol with a dot above it to mark the place where
the head on that tape would be.

| [o]t]of1]o]u]...

M e

Proof (2)

Oninput w = wy - - - wy:

1.

first S puts its tape into the format that represents all &
tapes of M:

Hwwg - - - Wy FUFLE - - #E.
To determine the symbols under the virtual heads, S scans
its tape from the first #, which marks the left-hand end, to
the (k + 1)st #, which marks the right-hand end,

Then S makes a second pass to update the tapes
according to the way that M’s transition function dictates.

If S moves one of the virtual heads to the right onto a #,
i.e., M has moved the corresponding head onto the
previously unread blank portion of that tape. So S writes L
on this tape cell and shifts the tape contents, from this cell
until the rightmost #, one unit to the right.

Go back to 2.

Corollary

A language is Turing-recognizable if and only if some multitape
Turing machine recognizes it.

Nondeterministic Turing Machines

1. The transition function for a nondeterministic Turing
machine has the form

d: QxI'=P(QxTI x{L,R}).

2. The computation of a nondeterministic Turing machine is a
tree whose branches correspond to different possibilities
for the machine.

3. If some branch of the computation leads to the accept
state, the machine accept its input.

Theorem
Every nondeterministic Turing machine has an equivalent
deterministic Turing machine.

Proof (1)

We simulate a nondeterministic N by a deterministic D.

1. D try all possible branches of N’s nondeterministic
computation.

2. If D ever finds the accept state on one of these branches, it
accepts.

3. Otherwise, D’s simulation will not terminate.

nﬂﬂ ... Input tape

|X|X|#|O|1|X|u| ... simulation tape

D

O
[t]2]3]3]2][3]1]2]1]1]3]u]... addresstape

Proof (2)

1.

2.

Initially, tape 1 contains the input w, and tape 2 and 3 are
empty.

Copy tape 1 to tape 2 and initialize the string on tape 3 to
be ¢.

Use tape 2 to simulate N with input w on one branch of its
nondeterministic computation. Before each step of IV,
consult the next symbol on tape 3 to determine which
choice to make among those allowed by N’s transition
function. If no more symbols remain on tape 3 or if this
nondeterministic choice is invalid, abort this branch by
going to stage 4. Also go to stage 4 if a rejecting
configuration is encountered. If an accepting configuration
is encountered, accept the input.

Replace the string on tape 3 with the next string in the
string ordering. Simulate the next branch of N’s
computation by going to stage 2.

Corollary
A language is Turing-recognizable if and only if some
nondeterministic Turing machine recognizes it.

Corollary
A language is decidable if and only if some nondeterministic
Turing machine decides it.

Enumerators

1. An enumerator is a Turing machine with an attached
printer.

2. The Turing machine can use that printer as an output
device to print strings.

3. Every time the Turing machine wants to add a string to the
list, it sends the string to the printer.

Schematic of an enumerator

aa
baba
abba

Y

control printer

A
lo[1]o]o|u]... worktape

Theorem
A language is Turing-recognizable if and only if some
enumerator enumerates it.

Proof (1)

Let E be an enumerator that enumerates a language A. The
desired M on input w:

1. Run E. Every time that E outputs a string, compare it with
w.

2. if w ever appears in the output of E, then accept.

Proof (2)

If M recognizes a language A, we can construct the following

enumerator F for A. Let sq, s9, s3, ..., be a list of all possible
strings in 3*.

1. Repeat the following for: =1,2,3,...

2. Run M for i steps on each input, s1, so, ..., ;.

3. If any computation accept, print out the

corresponding s;.

The Definition of Algorithm

Polynomials and their roots

A polynomial is a sum of terms, where each term is a product of
certain variables and a constant, i.e., coefficient. For example,

G'JU'ZIJ'J?-y-zcotz:6;1;3y22
is a term with coefficient 6, and
623y2% + 3zy? — 23 — 10

is a polynomial with four terms, over the variable z, y, and z.

A root of a polynomial is an assignment of values to its
variables so that the value of the polynomial is 0. The root

(x =5,y =3,z =0) is an integral root because all the variables
are assigned integer values. Some polynomials have an
integral root and some do not.

Hilbet’s Problems

Hilbert’s tenth problem was to devise an algorithm that test
whether a polynomial has an integral root. He did not use the
term algorithm but rather
a process according to which it can be determined by
a finite number of operations.

Church-Turing Thesis

In 1936 to formalize the definition of an algorithm:
1. Alonzo Church proposed A-calculus;
2. Alan Turing proposed Turing machines,
which were shown to be equivalent.
So we have the Church-Turing Thesis:

Intuitive notion of algorithms

Turing machine algorithms.

Hilbert’'s Tenth Problem

D = {p | p is a polynomial with integer coefficients
and with an integral root}.

Theorem (Yuri Matijasevi¢, Martin Davis, Hilary Putnam,
and Julia Robinson, 1970)

D is not decidable.

A simple variant

Dy ={p| p is a polynomial on a single variable = with
integer coefficients and with an integral root}.

Lemma

Both D and D, are Turing-recognizable.

Proof.

On input p(z)
evaluate p with x set successively to the values
0,1,—-1,2,-2,3,-3,.... If at any point the polynomial
evaluates to 0, then accept.

A simple variant (con’d)

Lemma
Let
p(z) = crz”™ + o™ b e+ cup

with c; # 0 and p(xzo) = 0. Define

Cmax = maX{|Ci|}z’€[n+1}'
Then)
xo < Cmax N (77/ +)
|c1]
Corollary
D is decidable.

	Turing Machines
	Variants of Turing Machines
	Multitape Turing machines
	Nondeterministic Turing Machines
	Enumerators

	The Definition of Algorithm

