
Decidability 1/43

Decidability

Huan Long

Shanghai Jiao Tong University

Decidability 2/43

Acknowledgements

Part of the slides comes from a similar course given by Prof.
Yijia Chen.

http://basics.sjtu.edu.cn/˜chen/

Textbook
Introduction to the theory of computation
Michael Sipser, MIT
Third edition, 2012

http://basics.sjtu.edu.cn/~chen/

Decidability 3/43

Outline

Decidable Languages
Decidable problems concerning regular languages
Decidable problems concerning context-free languages

Undecidability
The diagonalization method
An undecidable language
A Turing-Unrecognizable Language

Decidability 4/43

Decidable Languages

Decidability 5/43

Decidable problems concerning regular languages

ADFA = {〈B,w〉 | B is a DFA that accepts input string w}.

That is, for every w ∈ Σ∗ and DFA B

w ∈ L(B) ⇐⇒ 〈B,w〉 ∈ ADFA.

Theorem
ADFA is a decidable language.

Decidability 6/43

Proof (1)

M on 〈B,w〉:
1. Simulate B on input w.
2. If the simulation ends in an accepting state, then accept. If

it ends in a nonaccepting state, then reject.

Decidability 7/43

Proof (2)

Some implementation details :
I The representation of B is a list of Q,Σ, δ, q0 and F .
I When M receives its input, M first determines whether it

properly represents a DFA B and a string w. If not, M
rejects.

I Then M carries out the simulation directly.
1. It keeps track of B’s current state and position in w by

writing this information down on its tape.
2. Initially, B’s current state is q0 and current input position is

the leftmost symbol of w.
3. The states and position are updated according to the

specified transition function δ.
4. When M finishes processing the last symbol of w, M

accepts the input if B is in an accepting state; M rejects the
input if B is in a nonaccepting state.

Decidability 8/43

ANFA = {〈B,w〉 | B is an NFA that accepts input string w}.

That is, for every w ∈ Σ∗ and DFA B

w ∈ L(B) ⇐⇒ 〈B,w〉 ∈ ANFA.

Theorem
ANFA is a decidable language.

Decidability 9/43

Proof (1)

The simplest proof is to simulate an NFA using
nondeterministic Turing machine, as we used the
(deterministic) Turing machine M to simulate a DFA.

Instead we design a (deterministic) Turing machine N which
uses M as a subroutine.

Decidability 10/43

Proof (2)

N on 〈B,w〉:
1. Convert NFA B to an equivalent DFA C using the subset

construction.
2. Run TM M from the previous Theorem on input 〈C,w〉.
3. If M accepts, then accept; otherwise reject.

Decidability 11/43

AREX = {〈R,w〉 | R is is a regular expression that generates w}.

Theorem
AREX is a decidable language.

Decidability 12/43

Proof

P on 〈R,w〉:
1. Convert R to an equivalent NFA A.
2. Run TM N from the previous Theorem on input 〈A,w〉.
3. If N accepts, then accept; otherwise reject.

Decidability 13/43

Testing the emptiness

EDFA = {〈A〉 | A is is a DFA and L(A) = ∅}.

Theorem
EDFA is a decidable language.

Decidability 14/43

Proof

A DFA accepts some string if and only if reaching an accept
state from the start state by traveling along the arrows of the
DFA is possible.

T on 〈A〉:
1. Mark the start state of A.
2. Repeat until no new states get marked:

Mark any state that has a transition coming into it from any
state that is already marked.

3. If no accept state is marked, then accept; otherwise, reject.

Decidability 15/43

Testing equality

EQDFA = {〈A,B〉 | A and B are DFAs and L(A) = L(B)}.

Theorem
EQDFA is a decidable language.

Decidability 16/43

Proof (1)

From A and B we construct a DFA C such that

L(C) =
(
L(A) ∩ L(B)

)
∪
(
L(A) ∩ L(B)

)
,

i.e., the symmetric difference between L(A) and L(B).
Then

L(A) = L(B) ⇐⇒ L(C) = ∅.

Decidability 17/43

Proof (2)

F on 〈A,B〉:
1. Construct DFA C from A and B.
2. Run TM T from the previous Theorem on input 〈C〉.
3. If T accepts, then accept; otherwise reject.

Decidability 18/43

Decidable problems concerning context-free
languages

ACFG = {〈G,w〉 | G is a CFG that generate w}.

Theorem
ACFG is a decidable language.

Decidability 19/43

Proof (1)

For CFG G and string w, we want to determine whether G
generates w.

One idea is to use G to go through all derivations to determine
whether any is a derivation of w. Then if G does not generate
w, this algorithm would never halt. It gives a Turing machine
that is a recognizer, but not a decider.

Decidability 20/43

Recall

Definition
A context-free grammar is in Chomsky normal form if every rule
is of the form

A→ BC and A→ a

where a is any terminal and A,B and C are any variables,
except that B and C may be not the start variable. In addition,
we permit the rule S → ε, where S is the start variable.

Theorem
Any context-free language is generated by a context-free
grammar in Chomsky normal form.

Theorem
Let G be CFG in Chomsky normal form, and G generates w
with w 6= ε. Then any derivation of w has 2|w| − 1 steps.

Decidability 21/43

Proof

S on 〈G,w〉
1. Convert G to an equivalent grammar in Chomsky normal

form.
2. List all derivations with 2|w| − 1 steps; except if |w| = 0,

then instead check whether there is a rule S → ε.
3. If any of these derivations generates w, then accept;

otherwise reject.

Decidability 22/43

Testing the emptiness

ECFG = {〈G〉 | G is a CFG and L(G) = ∅}.

Theorem
ECFG is a decidable language.

Decidability 23/43

Proof (1)

To determine whether L(G) = ∅, the algorithm might try going
through all possible w’s, one by one. But there are infinitely
many w’s to try, so this method could end up running forever.

Instead, the algorithm solves a more general problem:
determine for each variable whether that variable is capable of
generating a string of terminals.
I First, the algorithm marks all the terminal symbols in the

grammar.
I It scans all the rules of the grammar. If it finds a rule that

permits some variable to be replaced by some string of
symbols, all of which are already marked, then it marks this
variable.

Decidability 24/43

Proof (2)

R on 〈G〉:
1. Mark all terminal symbols in G.
2. Repeat until no new variables get marked:

Mark any variable A where G contains a rule A→ U1 · · ·Uk

and all Ui’s have already been marked.
3. If the start variable is not marked, then accept; otherwise,

reject.

Decidability 25/43

Testing equality

EQCFG = {〈G,H〉 | G and H are CFGs and L(G) = L(H)}.

Theorem
EQCFG is not decidable.

Decidability 26/43

Theorem
Every context-free language is decidable.

Recall using Chomsky normal form, we have shown

Theorem
ACFG = {〈G,w〉 | G is a CFG that generate w} is a decidable
language.

Decidability 27/43

Relationship among classes of languages
4.2 UNDECIDABILITY 201

FIGURE 4.10

The relationship among classes of languages

4.2
UNDECIDABILITY

In this section, we prove one of the most philosophically important theorems of
the theory of computation: There is a specific problem that is algorithmically
unsolvable. Computers appear to be so powerful that you may believe that all
problems will eventually yield to them. The theorem presented here demon-
strates that computers are limited in a fundamental way.

What sorts of problems are unsolvable by computer? Are they esoteric,
dwelling only in the minds of theoreticians? No! Even some ordinary prob-
lems that people want to solve turn out to be computationally unsolvable.

In one type of unsolvable problem, you are given a computer program and
a precise specification of what that program is supposed to do (e.g., sort a list
of numbers). You need to verify that the program performs as specified (i.e.,
that it is correct). Because both the program and the specification are mathe-
matically precise objects, you hope to automate the process of verification by
feeding these objects into a suitably programmed computer. However, you will
be disappointed. The general problem of software verification is not solvable by
computer.

In this section and in Chapter 5, you will encounter several computationally
unsolvable problems. We aim to help you develop a feeling for the types of
problems that are unsolvable and to learn techniques for proving unsolvability.

Now we turn to our first theorem that establishes the undecidability of a spe-
cific language: the problem of determining whether a Turing machine accepts a

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

Decidability 28/43

Undecidability

Decidability 29/43

Testing membership

ATM = {〈M,w〉 |M is a TM and M accepts w}.

Theorem
ATM is not decidable.

Decidability 30/43

Theorem
ATM is Turing-recognizable.

Proof.
U on 〈M,w〉:

1. Simulate M on w.
2. If M enters its accept state, then accept; if it enters its

reject state, reject.

U is a universal Turing machine first proposed by Alan Turing in
1936. This machine is called universal because it is capable of
simulating any other Turing machine from the description of that
machine.

Decidability 31/43

The diagonalization method

Decidability 32/43

Functions

Definition
Let f : A→ B be a function.

1. f is one-to-one if f(a) 6= f(a′) whenever a 6= a′.
2. f is onto if for every b ∈ B there is an a ∈ A with f(a) = b.

A and B are the same size if there is a one-to-one, onto
function d : A→ B.
A function that is both one-to-one and onto is a
correspondence.

injective one-to-one
surjective onto

bijective one-to-one and onto

Decidability 33/43

Cantor’s Theorem

Definition
A is countable if it is either finite or has the same size as N.

Theorem
R is not countable.

Decidability 34/43

Corollary
Some languages are not Turing-recognizable.

Decidability 35/43

Proof

We fix an alphabet Σ.
1. Σ∗ is countable.
2. The set of all TMs is countable, as every M can be

identified with a string 〈M〉.
3. The set of all languages over Σ is uncountable.

Decidability 36/43

An undecidable language

ATM = {〈M,w〉 |M is a TM and M accepts w}.

Theorem
ATM is undecidable.

Decidability 37/43

Proof (1)

Assume H is a decider for ATM. That is

H(〈M,w〉) =

{
accept if M accepts w
reject if M does not accept.

Decidability 38/43

Proof (2)

D on 〈M〉, where M is a TM:
1. Run H on input 〈M, 〈M〉〉.
2. Output the opposite of what H outputs. That is, if H

accepts, then reject; and if H rejects, then accept.

D(〈M〉) =

{
accept if M does not accept 〈M〉
reject if M accepts 〈M〉.

Then

D(〈D〉) =

{
accept if D does not accept 〈D〉
reject if D accepts 〈D〉.

Decidability 39/43

Proof (3)

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 accept accept
M2 accept accept accept accept
M3 · · ·
M4 accept accept

...
...

Entry i, j is accept if Mi accepts 〈Mj〉.

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 accept reject accept reject
M2 accept accept accept accept
M3 reject reject reject reject · · ·
M4 accept accept reject reject

...
...

Entry i, j is the value of H on input 〈Mi, 〈Mj〉〉.

Decidability 40/43

Proof (4)

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · · 〈D〉
M1 accept reject accept reject accept
M2 accept accept accept accept accept
M3 reject reject reject reject · · · reject
M4 accept accept reject reject accept

...
...

D reject reject accept accept ?
...

...

If D is in the figure, then a contradiction occurs at ‘?’

Decidability 41/43

co-Turing-recognizable

Definition
A language is co-Turing-recognizable if it is the complement of
a Turing-recognizable lanugage.

Theorem
A language is decidable if and only if it is Turing recognizable
and co-Turing-recognizable.

Decidability 42/43

Proof

If A is decidable, then both A and A are Turing-recognizable:
Any decidable language is Turing-recognizable, and the
complement of a decidable language also is decidable.

Assume both A and A are Turing recognizable by M1 and M2

respectively.

The TM M on input w:
1. Run M1 and M2 on input w in parallel.
2. If M1 accepts, then accept; and if M2 accepts, then reject.

Clearly, M decides A.

Decidability 43/43

Corollary
ATM is not Turing-recognizable.

Proof.
ATM is Turing-recognizable but not decidable.

	Decidable Languages
	Decidable problems concerning regular languages
	Decidable problems concerning context-free languages

	Undecidability
	The diagonalization method
	An undecidable language
	A Turing-Unrecognizable Language

