Decidability

Huan Long

Shanghai Jiao Tong University

Acknowledgements

Part of the slides comes from a similar course given by Prof.
Yijia Chen.

http://basics.sjtu.edu.cn/~chen/

Textbook

Introduction to the theory of computation
Michael Sipser, MIT

Third edition, 2012

http://basics.sjtu.edu.cn/~chen/

Outline

Decidable Languages
Decidable problems concerning regular languages
Decidable problems concerning context-free languages

Undecidability
The diagonalization method
An undecidable language
A Turing-Unrecognizable Language

Decidable Languages

Decidable problems concerning regular languages

Apra = {(B,w) | B is a DFA that accepts input string w}.
That is, for every w € ¥* and DFA B

w e L(B) <~ <B,w> € Apra.

Theorem
Apra s a decidable language.

Proof (1)

M on (B,w):
1. Simulate B on input w.

2. If the simulation ends in an accepting state, then accept. If
it ends in a nonaccepting state, then reject.

Proof (2)

Some implementation details :
» The representation of B is a list of Q, X, d, g and F.

» When M receives its input, M first determines whether it
properly represents a DFA B and a string w. If not, M
rejects.

» Then M carries out the simulation directly.

1. It keeps track of B’s current state and position in w by
writing this information down on its tape.

2. Initially, B’s current state is gg and current input position is
the leftmost symbol of w.

3. The states and position are updated according to the
specified transition function 4.

4. When M finishes processing the last symbol of w, M
accepts the input if B is in an accepting state; M rejects the
input if B is in a nonaccepting state.

Anea = {(B,w) | B is an NFA that accepts input string w}.
That is, for every w € ¥* and DFA B

w e L(B) — (B,w> € ANFa-

Theorem
Anga is a decidable language.

Proof (1)

The simplest proof is to simulate an NFA using
nondeterministic Turing machine, as we used the
(deterministic) Turing machine M to simulate a DFA.

Instead we design a (deterministic) Turing machine N which
uses M as a subroutine.

Proof (2)

N on (B,w):
1. Convert NFA B to an equivalent DFA C using the subset
construction.
2. Run TM M from the previous Theorem on input (C, w).
3. If M accepts, then accept; otherwise reject.

Agpex = {(R,w) | R is is a regular expression that generates w}.

Theorem
ARex s a decidable language.

Proof

Pon (R,w):
1. Convert R to an equivalent NFA A.
2. Run TM N from the previous Theorem on input (A, w).
3. If N accepts, then accept; otherwise reject.

Testing the emptiness

Eppa = {(A) | Aisisa DFA and L(A) = 0}.

Theorem
Epga Is a decidable language.

Proof

A DFA accepts some string if and only if reaching an accept
state from the start state by traveling along the arrows of the
DFA is possible.

T on (A):
1. Mark the start state of A.

2. Repeat until no new states get marked:
Mark any state that has a transition coming into it from any
state that is already marked.

3. If no accept state is marked, then accept; otherwise, reject.

Testing equality

EQpea = {(A,B) | Aand B are DFAs and L(A) = L(B)}.

Theorem
EQpra is a decidable language.

Proof (1)

From A and B we construct a DFA C such that

L(C) = (L(A) N L(B)) U (L(A) N L(B)),

i.e., the symmetric difference between L(A) and L(B).
Then

L(A) = L(B) < L(C) = 0.

Proof (2)

Fon (A, B):
1. Construct DFA C from A and B.
2. Run TM T from the previous Theorem on input (C).
3. If T accepts, then accept; otherwise reject.

Decidable problems concerning context-free
languages

Acrg = {(G,w) | G is a CFG that generate w}.

Theorem
Acrg Is a decidable language.

Proof (1)

For CFG G and string w, we want to determine whether G
generates w.

One idea is to use G to go through all derivations to determine
whether any is a derivation of w. Then if G does not generate
w, this algorithm would never halt. It gives a Turing machine
that is a recognizer, but not a decider.

Recall

Definition
A context-free grammar is in Chomsky normal form if every rule
is of the form

A—BC and A—a

where «a is any terminal and A, B and C' are any variables,
except that B and C' may be not the start variable. In addition,
we permit the rule S — ¢, where S is the start variable.

Theorem
Any context-free language is generated by a context-free
grammar in Chomsky normal form.

Theorem
Let G be CFG in Chomsky normal form, and G generates w
with w # e. Then any derivation of w has 2|w| — 1 steps.

Proof

Son (G, w)
1. Convert G to an equivalent grammar in Chomsky normal
form.
2. List all derivations with 2|w| — 1 steps; except if |w| =0,
then instead check whether there is a rule S — e.

3. If any of these derivations generates w, then accept;
otherwise reject.

Testing the emptiness

Ecrg = {(G) | G isa CFG and L(G)

Theorem
Eckg is a decidable language.

0}.

Proof (1)

To determine whether L(G) = 0, the algorithm might try going
through all possible w’s, one by one. But there are infinitely
many w’s to try, so this method could end up running forever.

Instead, the algorithm solves a more general problem:
determine for each variable whether that variable is capable of
generating a string of terminals.

» First, the algorithm marks all the terminal symbols in the
grammar.

» It scans all the rules of the grammar. If it finds a rule that
permits some variable to be replaced by some string of
symbols, all of which are already marked, then it marks this
variable.

Proof (2)

Ron (G):
1. Mark all terminal symbols in G.

2. Repeat until no new variables get marked:
Mark any variable A where G containsarule A — Uy --- Uy
and all U;’s have already been marked.

3. If the start variable is not marked, then accept; otherwise,
reject.

Testing equality

EQcrg = {(G,H) | Gand H are CFGs and L(G) = L(H)}.

Theorem
EQckg is not decidable.

Theorem
Every context-free language is decidable.

Recall using Chomsky normal form, we have shown

Theorem

Acrg = {(G,w) | G is a CFG that generate w} is a decidable
language.

Relationship among classes of languages

Turing-recognizable

decidable

context-free

regular

Undecidability

Testing membership

A = {(M,w) | M isaTM and M accepts w}.

Theorem
ATy is not decidable.

Theorem
Ay is Turing-recognizable.

Proof.
U on (M,w):

1. Simulate M on w.

2. If M enters its accept state, then accept; if it enters its
reject state, reject.

O

U is a universal Turing machine first proposed by Alan Turing in
1936. This machine is called universal because it is capable of

simulating any other Turing machine from the description of that
machine.

The diagonalization method

Functions

Definition
Let f: A — B be a function.

1. fis one-to-oneif f(a) # f(a’) whenever a # d'.

2. fisontoif for every b € B thereis an a € A with f(a) = b.
A and B are the same size if there is a one-to-one, onto
functiond : A — B.

A function that is both one-to-one and onto is a
correspondence.

injective one-to-one
surjective onto
bijective one-to-one and onto

Cantor’s Theorem

Definition
A is countabile if it is either finite or has the same size as N.

Theorem
R is not countable.

Corollary
Some languages are not Turing-recognizable.

Proof

We fix an alphabet X.
1. ¥* is countable.

2. The set of all TMs is countable, as every M can be
identified with a string (M).

3. The set of all languages over ¥ is uncountable.

An undecidable language

A = {(M,w) | M isaTM and M accepts w}.

Theorem
ATy is undecidable.

Proof (1)

Assume H is a decider for Aty. That is

accept if M accepts w
reject if M does not accept.

A w) = {

Proof (2)

D on (M), where M is a TM:
1. Run H on input (M, (M)).

2. Output the opposite of what H outputs. That is, if H
accepts, then reject; and if H rejects, then accept.

[accept if M does not accept (M)
D((M)) = { reject if M accepts (M).

Then

| accept if D does not accept (D)
D((D) = { reject if D accepts (D).

Proof (3)

(My) (Ms) (Ms) (My)

M; accept accept
M, accept accept accept accept
Ms

M, accept accept

Entry i, j is accept if M; accepts (M;).
(My) (M) (M) (My)

My, accept reject accept reject
M, accept accept accept accept
Ms reject reject reject reject
M, accept accept reject reject

Entry i, j is the value of H on input (M;, (M;)).

Proof (4)

(My) (My) (M) (My) - (D)
M, accept reject accept reject accept
M, accept accept accept accept accept
Ms reject reject reject reject --- reject
M, accept accept reject reject accept
D reject reject accept accept ?

If D is in the figure, then a contradiction occurs at *?’

co-Turing-recognizable

Definition
A language is co-Turing-recognizable if it is the complement of
a Turing-recognizable lanugage.

Theorem
A language is decidable if and only if it is Turing recognizable

and co-Turing-recognizable.

Proof

If A is decidable, then both A and A are Turing-recognizable:
Any decidable language is Turing-recognizable, and the
complement of a decidable language also is decidable.

Assume both A and A are Turing recognizable by M; and M-
respectively.

The TM M on input w:

1. Run M; and M- on input w in parallel.

2. If M, accepts, then accept; and if My accepts, then reject.
Clearly, M decides A.

Corollary
Arm is not Turing-recognizable.

Proof.
At is Turing-recognizable but not decidable.

	Decidable Languages
	Decidable problems concerning regular languages
	Decidable problems concerning context-free languages

	Undecidability
	The diagonalization method
	An undecidable language
	A Turing-Unrecognizable Language

