
Reducibility 1/37

Reducibility

Huan Long

Shanghai Jiao Tong University

Reducibility 2/37

Acknowledgements

Part of the slides comes from a similar course given by Prof.
Yijia Chen.

http://basics.sjtu.edu.cn/˜chen/

Textbook
Introduction to the theory of computation
Michael Sipser, MIT
Third edition, 2012

http://basics.sjtu.edu.cn/~chen/

Reducibility 3/37

Outline

Undecidable Problems for Language Theory

Reductions via computation histories

Mapping Reducibility

Reducibility 4/37

Undecidable Problems for Language Theory

Reducibility 5/37

HALTTM = {〈M,w〉 |M is a TM and M halts on input w}.

Theorem
HALTTM is undecidable.

Reducibility 6/37

Proof

Assume R decides HALTTM. We will exhibit a TM S which
decides ATM.

S on input 〈M,w〉:
1. Run R on 〈M,w〉.
2. If R rejects, then reject.
3. If R accepts, simulate M on w until it halts.
4. If M has accepted, then accept; If M has rejected, reject.

Reducibility 7/37

Testing emptiness

ETM = {〈M〉 |M is a TM and L(M) = ∅}.

Theorem
ETM is undecidable.

Reducibility 8/37

Proof (1)

For every TM M and string w we construct an M1:

M1 on input x:
1. if x 6= w, then reject.
2. if x = w, run M on w and accept if M does.

Then

M accepts w ⇐⇒ L(M1) 6= ∅.

Reducibility 9/37

Proof (2)

Assume R decides ETM. Then the following TM S decides ATM.

S on input 〈M,w〉:
1. Use the description of M and w to construct the TM M1.
2. Run R on input 〈M1〉.
3. If R accepts, then reject; if R rejects, then accept.

Reducibility 10/37

Testing regularity

REGULARTM = {〈M〉 |M is a TM and L(M) is a regular language}.

Theorem
REGULARTM is undecidable.

Reducibility 11/37

Proof (1)

For every TM M and string w we construct an M2:

M2 on input x:
1. If x has the form 0n1n, then accept.
2. Otherwise, run M on w and accept if M does.

Then
M accepts w ⇐⇒ L(M2) is regular.

Reducibility 12/37

Proof (2)

Assume R decides REGULARTM. Then the following S
decides ATM.

S on input 〈M,w〉:
1. Use the description of M and w to construct the TM M2.
2. Run R on input 〈M2〉.
3. If R accepts, then accept; if R rejects, then reject.

Reducibility 13/37

Testing equality

EQTM = {〈M1,M2〉 |M1 and M2 are TMs and L(M1) = L(M2)}.

Theorem
EQTM is undecidable.

Reducibility 14/37

Proof

Assume R decides EQTM. Then we can decide ETM as follows.

S on input 〈M〉:
1. Run R on input 〈M,M1〉, where M1 is a TM that rejects all

inputs.
2. If R accepts, then accept; if R rejects, then reject.

Reducibility 15/37

Reductions via computation histories

Reducibility 16/37

Computation histories

Definition
Let M be a TM and w an input string. An
accepting computation history for M on w is a sequence of
configurations.

C1, . . . , C`,

Where C1 is the start configuration of M on w, C` is an
accepting configuration of M , and each Ci legally follows from
Ci−1 according to the rules of M .

A rejecting computation history for M on w is defined similarly,
except that C` is a rejecting configuration.

Reducibility 17/37

Linear bounded automata

Definition
A linear bounded automaton (LBA) is a TM wherein the tape
head isn’t permitted to move off the portion of the tape
containing the input.

If the machine tries to move its head off either end of the input,
the head stays where it is.

Reducibility 18/37

ALBA = {〈M,w〉 |M is an LBA that accepts w}.

Theorem
ALBA is decidable.

Reducibility 19/37

Lemma
Let M be an LBA with q states and g symbols in the tape
alphabet. There are exactly qngn distinct configurations of M
for a tape length n.

Reducibility 20/37

Proof

L on input 〈M,w〉:
1. Simulate M on w for qngn steps or until it halts.
2. if M has halted, accept if it has accepted and reject if it has

rejected. if it has not halted, reject.

If M on w has not halted within qngn steps, it must be repeating
a configuration and therefore looping.

Reducibility 21/37

Testing emptiness

ELBA = {〈M〉 |M is an LBA and L(M) = ∅}.

Theorem
ELBA is undecidable.

Reducibility 22/37

An LBA recognizing computation histories

Let M be a TM and w an input string.

On input x, the LBA B works as follows:
1. breaks up x according to the delimiters into strings

C1, . . . , C`;
2. determines whether Ci’s satisfy

2.1 C1 is the start configuration for M on w,
2.2 each Ci+1 legally follows from Ci,
2.3 C` is an accepting configuration.

Then
M accepts w ⇐⇒ L(B) 6= ∅.

Reducibility 23/37

Proof

Assume R decides ELBA. Then the following S decides ATM.

S on input 〈M,w〉:
1. Construct LBA B from M and w.
2. Run R on input 〈B〉.
3. If R rejects, then accept; if R accepts, then reject.

Reducibility 24/37

ALLCFG = {〈G〉 | G is an CFG and L(G) = Σ∗}.

Theorem
ALLCFG is undecidable.

Reducibility 25/37

Proof (1)

Let M be a TM and w a string. We will construct a CFG G such
that

M accepts w ⇐⇒ L(G) 6= Σ∗

⇐⇒ G doesn’t generate
the accepting computation history for M on w.

Reducibility 26/37

Proof (2)

An accepting computation history for M on w appears as

#C1#C2# · · ·#C`#,

Where Ci is the configuration of M on the ith step of the
computation on w.

Then, G generates all strings
1. that do not start with C1,
2. that do not end with an accepting configuration, or
3. in which Ci does not properly yield Ci+1 under the rule of

M .

Reducibility 27/37

Proof (3)

We construct a PDA D and then convert it to G.
1. D starts by nondeterministically branching to guess which

of the three conditions to check.
2. The first and the second are straightforward.
3. The third branch accepts if some Ci does not properly yield

Ci+1.
3.1 It scans the input and nondeterministically decides that it

has come to Cj .
3.2 It pushes Ci onto the stack until it reads #.
3.3 Then D pops the stack to compare with Ci+1: they are

almost the same except that around the head position,
where the difference is dictated by the transition function of
M .

3.4 D accepts if there is a mismatch or an improper update.

Reducibility 28/37

Proof (4)

A minor problem: when D pops Ci off the stack, it is in reverse
order.

We write the accepting computation history as

−→︸ ︷︷ ︸
C1

−→︸ ︷︷ ︸
CR

2

−→︸ ︷︷ ︸
C3

−→︸ ︷︷ ︸
CR

4

· · ·# −→︸ ︷︷ ︸
C`

#

Reducibility 29/37

Mapping Reducibility

Reducibility 30/37

Computable functions

Definition
A function f : Σ∗ → Σ∗ is a computable function if some Turing
machine M , on every input w, halts with f(w) on its tape.

Reducibility 31/37

Formal definition of mapping reducibility

Definition
Language A is mapping reducible to language B, written
A ≤m B, if there is a computable function f : Σ∗ → Σ∗, where
for every w ∈ Σ∗

w ∈ A ⇐⇒ f(w) ∈ B.

The function f is called the reduction from A to B.

Reducibility 32/37

Theorem
If A ≤m B and B is decidable, then A is decidable.

Corollary
If A ≤m B and A is undecidable, then B is undecidable.

Reducibility 33/37

ATM ≤m HALTTM

F on input 〈M,w〉
1. Construct the following machine M ′(x)

1.1 Run M on x.
1.2 If M accepts, then accept.
1.3 If M rejects, then enter a loop.

2. Output 〈M ′, w〉.

Reducibility 34/37

Theorem
If A ≤m B and B is Turing-recognizable, then A is
Turing-recognizable.

Corollary
If A ≤m B and A is not Turing-recognizable, then B is not
Turing-recognizable.

Reducibility 35/37

Theorem
EQTM is neither Turing-recognizable nor
co-Turing-recognizable.

Reducibility 36/37

Proof (1)

To show EQTM is not Turing-recognizable, we prove
ATM ≤m EQTM:

F on input 〈M,w〉:
1. Construct the following two machines M1 and M2.

1.1 M1 rejects any input.
1.2 M2 accepts an input if M accepts w.

2. Output 〈M1,M2〉.

Reducibility 37/37

Proof (2)

To show EQTM is not Turing-recognizable, we prove
ATM ≤m EQTM:

G on input 〈M,w〉:
1. Construct the following two machines M1 and M2.

1.1 M1 accepts any input.
1.2 M2 accepts an input if M accepts w.

2. Output 〈M1,M2〉.

	Undecidable Problems for Language Theory
	Reductions via computation histories
	Mapping Reducibility

