NP-Completeness

Huan Long

Shanghai Jiao Tong University

Acknowledgements

Part of the slides comes from a similar course given by Prof.
Yijia Chen.

http://basics.sjtu.edu.cn/~chen/

Textbook

Introduction to the theory of computation
Michael Sipser, MIT

Third edition, 2012

http://basics.sjtu.edu.cn/~chen/

Outline

The NP-Completeness

Additional NP-complete problems

The NP-Completeness

In 1970s, Stephen Cook and Leonid Levin discovered certain
problems in NP whose individual complexity is related to that of
the entire class.

If a polynomial time algorithm exists for any of these problems,
all problems in NP would be polynomial time solvable.

These problems are called NP-complete

Satisfiability Problem

v

Boolean variables are assigned to TRUE(1) or FALSE(O0).
Boolean operations are AND, OR, and NOT.

A Boolean formula is an expression involving Boolean
variables and operations.

A Boolean formula is satisfiable if some assignment makes
the formula evaluate to 1.

The satisfiability problem is to test whether a Boolean
formula is satisfiable, i.e.,

SAT = {{¢) | ¢ is a satisfiable Boolean formula}.

Theorem
SATeP if and only if P=NP.

Definition

A function f : ¥* — ¥* is a polynomial time computable
function if some polynomial time Turing machine exists that
halts with just f(w) on its tape, when started on any input w.

Definition

Let A, B C ¥*. Then A is polynomial time mapping reducible,
or simply polynomial time reducible, to B, written A <p B, ifa
polynomial time computable function f : ¥* — ¥* exists, where
for every w

weA < f(w)eB.

The function f is called the polynomial time reduction of A to B.

Theorem
IfA<p BandB eP, then A €P.

3SAT

A literal is a Boolean variable or a negated Boolean
variable.

A clause is several literals connected with Vvs.

A Boolean formula is in conjunctive normal from, called a
cnf-formula, if it comprises several clauses connected with
AS.

A Boolean formula is a 3cnf-formula if all the clauses have
three literals.

Let

3SAT = {(¢) | ¢ is a satisfiable 3cnf-formula}.

Theorem
3SAT is polynomial time reducible to CLIQUE.

Proof (1)

Let ¢ be a formula with % clauses such as

Y= ((11 V by V (,11) A (CIQ V by V (22) AR ((lk Vb V Ck)-

The reduction generates a string (G, k).

1. The nodes in G are organized into k groups of three nodes
t1,...,t,. Each triple corresponds to one of the clauses,
and each node in a triple corresponds to a literal in the
associated clauses.

2. The edge of G connect all but two types of pairs of nodes
in G.

> No edge is present between nodes in the same triple.

» No edge is present between two nodes with contradictory
labels, e.g., zo and 73.

Proof (2)

(x1 Va1 Va) AN(@IVT2VT2) A A(TT V2 V).

(’Q:

Definition
A language B is NP-complete if it satisfies two conditions:
1. Bisin NP, and

2. every A in NP is polynomial time reducible to B.

Theorem
If B is NP-complete and B €P, then P=NP.

Theorem

If B is NP-complete and B <p C for some C' in NP, then C' is
NP-complete.

Theorem
SAT is NP-complete.

Proof (1)

SAT is in NP, since a nondeterministic polynomial time Turing
machine can

1. guess an assignment to a given formula ¢,
2. accept if the assignment satisfies .

Proof (2)

Let N be an NTM that decides a language A in time n* for
some k € N. We show A <, SAT.

A tableau for N on w is an n* x n* table whose rows are the
configurations of the branch of the computation of N on input w.

qo |wq wg‘ . ‘wn‘ u ‘ . ‘ U | # | start configuration

®* |

second configuration

®* | H

window

nk]

| nkth configuration

nk

Proof (3)

» We assume that each configuration starts and ends with a
symbol. Therefore, the first and last columns of a
tableau are all #s.

» The first row of the tableau is the starting configuration of
N on w, and each row follows the previous one according
to N’s transition function.

> A tableau is accepting if any row of the tableau is an
accepting configuration.

» Every accepting tableau for N on w corresponds to an
accepting computation branch of N on w. Thus the
problem of determining whether NV accepts w is equivalent
to the problem of determining whether an accepting
tableau for IV on w exits.

Proof (4)

On input w, the reduction produces a formula .

1. Let @ and T be the state set and tape alphabet of N. We
set

C=QUT U{#}.

2. For each i, j € [n*] and for each s € C, we have a variable
Li j.s-
3. Each of the (n*)? entries of a tableau is called a cell.

4. If z; ; . takes on the value 1, it means that the cell in row i
and column j contains an s.

We represent the contents of the cells with the variable of .

Proof (5)

We design ¢ so that a satisfying assignment to the variables
does correspond to an accepting tableau for N for w:

©eell /\ Pstart /A Pmove /\ Paccept-

Proof (6)

NE A {(\/ xi,j,s) A (/\ (x]s\/x]t))]
i,jE[n¥] seC steC

s#t

Proof (7)

Pstart = X114 N T1,2,90/\
T1 301 N Tl a0, N - N TLnt2.0, N
L1,n+3,U VAN $17nk_1’u A ZELnk’#.

Proof (8)

Paccept = \/ Li,j,qaccept*
i,j€[nk]

Proof (9)

Finally, formula ¢pmove guarantees that each row of the tableau
corresponds to a configuration that legally follows the preceding
row’s configuration according to N’s rules.

It does so by ensuring that each 2 window of cells is legal.

We say that a 2 x 3 windows is legal if that window does not
violate the actions specified by N’s transition function.

Proof (10)

Assume that:
» When in state ¢; with the head reading an a, N writes a b,
stays in state ¢;, and moves right.

» When in state ¢; with the head reading a b, N
nondeterministically either

1. writes a ¢, enters ¢z, and moves to the left, or
2. writes an a, enters ¢, and moves to the right.

a|qi|b a|qi|Db a|al|q
@ (b) ©
g2 |ajc al|alqg alal|b
i #|b|a a|b|a ® b|b|b
e
@ #|b|a © a|b|g c|b|b

Legal moves

Proof (11)

Assume that
» When in state ¢; with the head reading an a, N writes a b,
stays in state ¢;, and moves right.

» When in state ¢; with the head reading a b, N
nondeterministically either

1. writes a ¢, enters ¢», and moves to the left, or

2. writes an a, enters ¢», and moves to the right.

@ (b) ©

lllegal moves

Proof (12)

If the top row of the tableau is the start configuration and every
window in the tableau is legal, each row of the tableau is a
configuration that legally follows the preceding one.

Pmove = /\ the (7, j)-window is legal.
1<i,j<nk

We replace “the (i, j)-window is legal ” by
Voo @ijta ATigas N Tijiiaes

ay,...ag
is a legal window
ATig1,—1,a0 N Titl,j,as N Titl,j+1,a6)-

Corollary
3SAT is NP-complete.

Proof (1)

3SATEeNP is clear.
To show hat every problem in NP can be reduced to 3SAT, we
modify the previous reduction to SAT,recall

where

Peell

Pstart

Pmove

Paccept

Yeell A\ start /\ Pmove /\ Paccepts

A (V ﬂfz‘,j,s) AN A @Tijs VTige)
i,j€[nk] seC at;tc
S
T4 N T12,90 N T13010 N T1dwr N oo N T2,
AZLpr3u N A T k1,0 A Ty pk 4
A Voo (@ijorar - ATit1isiae)

1<4 ‘<nk' at,...ag
=0 is a legal window

Paccept = V L4,5,qaccept
1,j€[n*]

Proof (2)

The formula is almost in conjunctive normal form, except

Pmove = /\ \/ (xi,jflm A $i+1,j+1,a6)

1<7j,j<nk. al,...a(')-
- is a legal window

Recall the distributive laws:

((LL] V... CL1,71,1) A\ ((1211 V...V @2,77,2> = \/ a1 N\ ag;.
i€n1],j€[n2]
Therefore V (@ij—1,a1 --- NTit1,j+1,a¢) IS €QUiValent to

isa Igglgéln\;lv?ndow
an cnf-formula of size at most

C1°=0(1),

Where recall C = Q UT U {#}.

Proof (3)

Now we need to convert the formula in cnf to one with three
literals per clause:

1. In each clause that currently has one or two literals, we
replicate one of the literals until the total number is three.

2. If a clause contains ¢ > 3 clauses
(a1 VagV...Vay),
We replace it with the ¢ — 2 clauses

(al\/ag\/zl)/\(71\/613\/zg)/\(5\/@3\/23)/\.../\(@,3\/@3,1\/ag)

Additional NP-complete problems

Corollary
CLIQUE is NP-complete.

Vertex cover

If G is an undirected graph, a vertex cover of G is a subset of

the nodes where every edge of GG touches one of those nodes.

VERTEX-COVER = {(G,k) | G is an undirected graph that
has a k-node vertex cover}.

Theorem
VERTEX-COVER is NP-complete.

p=(r1VarVa) AN(TI VT2 VT2 A(T1V x2V 22).

The Hamiltonian path problem

The Hamiltonian path problem, i.e., HAMPATH, asks whether
the input graph contains a path from s to ¢ that goes through
every node exactly once.

Theorem
HAMPATH is NP-complete.

Proof (1)

We show 3SAT<p HAMPATH.
Let

QDZ(CLl\/b1\/Cl)/\<a2\/bg\/02)/\.../\(CLk\/bk\/Ck).

We represent each variable x; with a diamond-shaped
structure, and each clause as a single node.

Proof (2)

Oa
O e
O

Proof (3)

The horizontal nodes in a diamond structure

Proof (4)

Z;

The additional edges when clause c; contains z;

Proof (5)

Z;

The additional edges when clause c; contains z;

Proof (6)

zig-zag 7ag7ig

> If x; is assigned TRUE, the path zig-zags through the
corresponding diamond.

» If z; is assigned FALSE, the path zag-zigs.

Proof (7)

The above situation cannot occur.

The undirected Hamiltonian path problem

UHAMPATH, asks whether the undirected graph contains a
path from s to ¢ that goes through every node exactly once.

Theorem
UHAMPATH is NP-complete.

Proof

We show HAMPATH <p UHAMPATH. Let G be a directed
graph with nodes s and t¢.

1. Let u be a node in G with s £ u # t. We replace it by a
path of length 3

uln - ,umld - 7j/out.

2. sandtin G are replaced by s°'! = s’ and t" = ¢'.
3. If there is an edge from u to v in G, then in G’ add an edge

It is easy to conclude

(G, s,t) € HAMPATH < (G',s',t") € UHAMPATH.

The subset-sum problem

Recall

SUBSET-SUM = {(S,t) | S ={z1,...,zx}, and for some

{y1,-- -,y € S, we have) yi_t}_
i€[l)

Theorem
SUBSET-SUM is NP-complete.

Proof (1)

We show 3SAT<pSUBSET-SUM. Let ¢ be a Boolean formula
with variables =4, ..., z, and clauses ci, . .., c.
1. S consists of the numbers y1, z1, . .., y¢, 2, and
g1, hy s Gk, N
2. For each z;, we have two numbers y; and z;, where y; for
the positive and z; for the negative literals.

3. The decimal representation of these numbers is in two
parts.

» The left-hand part comprises a 1 followed by ¢ — i 0s.

» The right-hand part contains one digit for each clause,
where the digit of y; in column ¢; is 1 if clause ¢; contains
literal x;, and the digit of z; in column ¢; is 1 if clause ¢;
contains literal z;.

4. Thetargett=1...13...3.
N =~

£ times k times

Proof (2)

ck

c2

(==}

SO = -

1 2 3 4
100 0
1

0

00 0

0
0

hn

Z1

Y2

22

Y3
23
Zl

5
h1
92
ho

9k
hy

'/\(ZL’g\/..

)/\

(,9:(561\/1’72\/ZL‘3)/\($2\/(L’3\/..

	The NP-Completeness
	Additional NP-complete problems

