NP-Completeness

Huan Long

Shanghai Jiao Tong University

Acknowledgements

Part of the slides comes from a similar course given by Prof. Yijia Chen.
http://basics.sjtu.edu.cn/~chen/

Textbook
Introduction to the theory of computation
Michael Sipser, MIT
Third edition, 2012

Outline

The NP-Completeness

Additional NP-complete problems

The NP-Completeness

In 1970s, Stephen Cook and Leonid Levin discovered certain problems in NP whose individual complexity is related to that of the entire class.

If a polynomial time algorithm exists for any of these problems, all problems in NP would be polynomial time solvable.

These problems are called NP-complete

Satisfiability Problem

- Boolean variables are assigned to TRUE(1) or FALSE(0).
- Boolean operations are AND, OR, and NOT.
- A Boolean formula is an expression involving Boolean variables and operations.
- A Boolean formula is satisfiable if some assignment makes the formula evaluate to 1.
- The satisfiability problem is to test whether a Boolean formula is satisfiable, i.e.,

$$
\text { SAT }=\{\langle\varphi\rangle \mid \varphi \text { is a satisfiable Boolean formula }\} .
$$

Theorem
$S A T \in P$ if and only if $P=N P$.

Definition

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is a polynomial time computable function if some polynomial time Turing machine exists that halts with just $f(w)$ on its tape, when started on any input w.

Definition

Let $A, B \subseteq \Sigma^{*}$. Then A is polynomial time mapping reducible, or simply polynomial time reducible, to B, written $A \leq_{P} B$, if a polynomial time computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ exists, where for every w

$$
w \in A \Leftrightarrow f(w) \in B .
$$

The function f is called the polynomial time reduction of A to B.

Theorem
If $A \leq_{P} B$ and $B \in P$, then $A \in P$.

3SAT

- A literal is a Boolean variable or a negated Boolean variable.
- A clause is several literals connected with $\vee s$.
- A Boolean formula is in conjunctive normal from, called a cnf-formula, if it comprises several clauses connected with \wedge s.
- A Boolean formula is a 3cnf-formula if all the clauses have three literals.
- Let

$$
\text { 3SAT }=\{\langle\varphi\rangle \mid \varphi \text { is a satisfiable 3cnf-formula }\} .
$$

Theorem 3SAT is polynomial time reducible to CLIQUE.

Proof (1)

Let φ be a formula with k clauses such as

$$
\varphi=\left(a_{1} \vee b_{1} \vee c_{1}\right) \wedge\left(a_{2} \vee b_{2} \vee c_{2}\right) \wedge \cdots\left(a_{k} \vee b_{k} \vee c_{k}\right)
$$

The reduction generates a string $\langle G, k\rangle$.

1. The nodes in G are organized into k groups of three nodes t_{1}, \ldots, t_{k}. Each triple corresponds to one of the clauses, and each node in a triple corresponds to a literal in the associated clauses.
2. The edge of G connect all but two types of pairs of nodes in G.

- No edge is present between nodes in the same triple.
- No edge is present between two nodes with contradictory labels, e.g., x_{2} and $\overline{x_{2}}$.

Proof (2)

Definition
A language B is NP-complete if it satisfies two conditions:

1. B is in NP, and
2. every A in NP is polynomial time reducible to B.

Theorem
If B is $N P$-complete and $B \in P$, then $P=N P$.

Theorem
If B is NP-complete and $B \leq_{P} C$ for some C in NP, then C is NP-complete.

Theorem
SAT is NP-complete.

SAT is in NP, since a nondeterministic polynomial time Turing machine can

1. guess an assignment to a given formula φ,
2. accept if the assignment satisfies φ.

Proof (2)

Let N be an NTM that decides a language A in time n^{k} for some $k \in \mathbb{N}$. We show $A \leq_{p}$ SAT.
A tableau for N on w is an $n^{k} \times n^{k}$ table whose rows are the configurations of the branch of the computation of N on input w.

- We assume that each configuration starts and ends with a \# symbol. Therefore, the first and last columns of a tableau are all \#s.
- The first row of the tableau is the starting configuration of N on w, and each row follows the previous one according to N 's transition function.
- A tableau is accepting if any row of the tableau is an accepting configuration.
- Every accepting tableau for N on w corresponds to an accepting computation branch of N on w. Thus the problem of determining whether N accepts w is equivalent to the problem of determining whether an accepting tableau for N on w exits.

Proof (4)

On input w, the reduction produces a formula φ.

1. Let Q and Γ be the state set and tape alphabet of N. We set

$$
C=Q \cup \Gamma \cup\{\#\} .
$$

2. For each $i, j \in\left[n^{k}\right]$ and for each $s \in C$, we have a variable $x_{i, j, s}$.
3. Each of the $\left(n^{k}\right)^{2}$ entries of a tableau is called a cell.
4. If $x_{i, j, s}$ takes on the value 1 , it means that the cell in row i and column j contains an s.
We represent the contents of the cells with the variable of φ.

Proof (5)

We design φ so that a satisfying assignment to the variables does correspond to an accepting tableau for N for w :

$$
\varphi_{\text {cell }} \wedge \varphi_{\text {start }} \wedge \varphi_{\text {move }} \wedge \varphi_{\text {accept }}
$$

Proof (6)

$$
\varphi_{\text {cell }}=\bigwedge_{i, j \in\left[n^{k}\right]}\left[\left(\bigvee_{s \in C} x_{i, j, s}\right) \wedge\left(\bigwedge_{\substack{s, t \in C \\ s \neq t}}\left(\overline{x_{i, j, s}} \vee \overline{x_{i, j, t}}\right)\right] .\right.
$$

Proof (7)

$$
\begin{aligned}
\varphi_{\text {start }}= & x_{1,1, \#} \wedge x_{1,2, q_{0}} \wedge \\
& x_{1,3, w_{1}} \wedge x_{1,4, w_{1}} \wedge \ldots \wedge x_{1, n+2, w_{n}} \wedge \\
& x_{1, n+3, \sqcup} \wedge \ldots \wedge x_{1, n^{k}-1, \sqcup} \wedge x_{1, n^{k}, \#}
\end{aligned}
$$

Proof (8)

$$
\varphi_{\text {accept }}=\bigvee_{i, j \in\left[n^{k}\right]} x_{i, j, q_{\text {accept }}}
$$

Proof (9)

Finally, formula $\varphi_{\text {move }}$ guarantees that each row of the tableau corresponds to a configuration that legally follows the preceding row's configuration according to N 's rules.
It does so by ensuring that each 2 window of cells is legal.
We say that a 2×3 windows is legal if that window does not violate the actions specified by \bar{N} 's transition function.

Proof (10)

Assume that:

- When in state q_{1} with the head reading an a, N writes a b, stays in state q_{1}, and moves right.
- When in state q_{1} with the head reading a b, N nondeterministically either

1. writes a c, enters q_{2}, and moves to the left, or
2. writes an a, enters q_{2}, and moves to the right.

(a) | a | q_{1} | b |
| :---: | :---: | :---: |
| q_{2} | a | c |

(b)

a	q_{1}	b
a	a	q_{2}

(c)

a	a	q_{1}
a	a	b

(d)

$\#$	b	a
$\#$	b	a

(e)

a	b	a
a	b	q_{2}

(f)

b	b	b
c	b	b

Legal moves

Proof (11)

Assume that

- When in state q_{1} with the head reading an a, N writes a b, stays in state q_{1}, and moves right.
- When in state q_{1} with the head reading a b, N nondeterministically either

1. writes a c, enters q_{2}, and moves to the left, or
2. writes an a, enters q_{2}, and moves to the right.
(a)

a	b	a
a	a	a

(b)

a	q_{1}	b
q_{2}	a	a

(c)

b	q_{1}	b
q_{2}	b	q_{2}

Illegal moves

Proof (12)

If the top row of the tableau is the start configuration and every window in the tableau is legal, each row of the tableau is a configuration that legally follows the preceding one.

$$
\varphi_{\text {move }}=\bigwedge_{1 \leq i, j<n^{k}} \text { the }(i, j) \text {-window is legal. }
$$

We replace "the (i, j)-window is legal " by

$$
\bigvee_{1, \ldots a_{6}} \quad\left(x_{i, j-1, a_{1}} \wedge x_{i, j, a_{2}} \wedge x_{i, j+1, a_{3}}\right.
$$

is a legal window

$$
\left.\wedge x_{i+1, j-1, a_{4}} \wedge x_{i+1, j, a_{5}} \wedge x_{i+1, j+1, a_{6}}\right)
$$

Corollary 3SAT is NP-complete.

Proof (1)

$3 S A T \in N P$ is clear.
To show hat every problem in NP can be reduced to 3SAT, we modify the previous reduction to SAT,recall

$$
\varphi_{\text {cell }} \wedge \varphi_{\text {start }} \wedge \varphi_{\text {move }} \wedge \varphi_{\text {accept }}
$$

where

$$
\begin{aligned}
& \varphi_{\text {cell }}=\bigwedge_{i, j \in\left[n^{k}\right]}\left[\left(\bigvee_{s \in C} x_{i, j, s}\right) \wedge\left(\bigwedge_{\substack{s, t \in C \\
s \neq t}}\left(\overline{x_{i, j, s}} \vee \overline{x_{i, j, t}}\right)\right)\right] \\
& \varphi_{\text {start }}=x_{1,1, \#} \wedge x_{1,2, q_{0}} \wedge x_{1,3, w_{1}} \wedge x_{1,4, w_{1}} \wedge \ldots \wedge x_{1, n+2, w_{n}} \\
& \wedge x_{1, n+3, \sqcup} \wedge \ldots \wedge x_{1, n^{k}-1, \sqcup} \wedge x_{1, n^{k}, \#} \\
& \varphi_{\text {move }}=\bigwedge_{1 \leq i, j<n^{k}} \bigvee_{\text {is a legal window }}^{a_{1}, a_{6}}{ }^{\text {wind }}\left(x_{i, j-1, a_{1}} \ldots \wedge x_{i+1, j+1, a_{6}}\right) \\
& \varphi_{\text {accept }}=\varphi_{\text {accept }}=\bigvee_{i, j \in\left[n^{k}\right]} x_{i, j, q_{\text {accept }}}
\end{aligned}
$$

Proof (2)

The formula is almost in conjunctive normal form, except

$$
\varphi_{\text {move }}=\bigwedge_{1 \leq i, j<n^{k}} \bigvee_{\substack{a_{1}, \ldots a_{6} \\ \text { is a legal window }}}\left(x_{\left.\left.i, j-1, a_{1} \ldots \wedge x_{i+1, j+1, a_{6}}\right)\right)}\right.
$$

Recall the distributive laws:

$$
\left(a_{1,1} \vee \ldots a_{1, n_{1}}\right) \wedge\left(a_{2,1} \vee \ldots \vee a_{2, n_{2}}\right)=\bigvee_{i \in\left[n_{1}\right], j \in\left[n_{2}\right]} a_{1, i} \wedge a_{2, j} .
$$

Therefore

$$
\left(x_{i, j-1, a_{1}} \ldots \wedge x_{i+1, j+1, a_{6}}\right) \text { is equivalent to }
$$ is a legal window

an cnf-formula of size at most

$$
|C|^{6}=\mathcal{O}(1)
$$

Where recall $C=Q \cup \Gamma \cup\{\#\}$.

Proof (3)

Now we need to convert the formula in cnf to one with three literals per clause:

1. In each clause that currently has one or two literals, we replicate one of the literals until the total number is three.
2. If a clause contains $\ell>3$ clauses

$$
\left(a_{1} \vee a_{2} \vee \ldots \vee a_{\ell}\right)
$$

We replace it with the $\ell-2$ clauses

$$
\left(a_{1} \vee a_{2} \vee z_{1}\right) \wedge\left(\overline{z_{1}} \vee a_{3} \vee z_{2}\right) \wedge\left(\overline{z_{2}} \vee a_{3} \vee z_{3}\right) \wedge \ldots \wedge\left(\overline{z_{\ell-3}} \vee a_{\ell-1} \vee a_{\ell}\right)
$$

Additional NP-complete problems

Corollary
CLIQUE is NP-complete.

Vertex cover

If G is an undirected graph, a vertex cover of G is a subset of the nodes where every edge of G touches one of those nodes.
$\begin{array}{ll}\text { VERTEX-COVER }=\{\langle G, k\rangle \mid \quad & G \text { is an undirected graph that } \\ \text { has a } k \text {-node vertex cover }\} .\end{array}$

Theorem VERTEX-COVER is NP-complete.

$$
\varphi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right) .
$$

The Hamiltonian path problem

The Hamiltonian path problem, i.e., HAMPATH, asks whether the input graph contains a path from s to t that goes through every node exactly once.
Theorem
HAMPATH is NP-complete.

Proof (1)

We show 3 SAT \leq_{P} HAMPATH.
Let

$$
\varphi=\left(a_{1} \vee b_{1} \vee c_{1}\right) \wedge\left(a_{2} \vee b_{2} \vee c_{2}\right) \wedge \ldots \wedge\left(a_{k} \vee b_{k} \vee c_{k}\right)
$$

We represent each variable x_{i} with a diamond-shaped structure, and each clause as a single node.
c_{j}

Proof (2)

\square NP-Completeness
9ac

Proof (3)

The horizontal nodes in a diamond structure

Proof (4)

The additional edges when clause c_{j} contains x_{i}

Proof (5)

The additional edges when clause c_{j} contains $\overline{x_{i}}$

Proof (6)

- If x_{i} is assigned TRUE, the path zig-zags through the corresponding diamond.
- If x_{i} is assigned FALSE, the path zag-zigs.

Proof (7)

The above situation cannot occur.

The undirected Hamiltonian path problem

UHAMPATH, asks whether the undirected graph contains a path from s to t that goes through every node exactly once.

Theorem
UHAMPATH is NP-complete.

Proof

We show HAMPATH \leq_{P} UHAMPATH. Let G be a directed graph with nodes s and t.

1. Let u be a node in G with $s \neq u \neq t$. We replace it by a path of length 3

$$
u^{\text {in }}-u^{\mathrm{mid}}-u^{\mathrm{out}}
$$

2. s and t in G are replaced by $s^{\text {out }}=s^{\prime}$ and $t^{\text {in }}=t^{\prime}$.
3. If there is an edge from u to v in G, then in G^{\prime} add an edge

$$
u^{\text {out }}-v^{\text {in }}
$$

It is easy to conclude

$$
\langle G, s, t\rangle \in \mathrm{HAMPATH} \Leftrightarrow\left\langle G^{\prime}, s^{\prime}, t^{\prime}\right\rangle \in \text { UHAMPATH. }
$$

The subset-sum problem

Recall

SUBSET-SUM $=\left\{\langle S, t\rangle \mid \quad S=\left\{x_{1}, \ldots, x_{k}\right\}\right.$, and for some

$$
\left.\left\{y_{1}, \ldots, y_{\ell}\right\} \subset S \text {, we have } \sum_{i \in[\ell]} y_{i}=t\right\}
$$

Theorem SUBSET-SUM is NP-complete.

Proof (1)

We show 3 SAT \leq_{P} SUBSET-SUM. Let φ be a Boolean formula with variables x_{1}, \ldots, x_{ℓ} and clauses c_{1}, \ldots, c_{k}.

1. S consists of the numbers $y_{1}, z_{1}, \ldots, y_{\ell}, z_{\ell}$ and $g_{1}, h_{1}, \ldots, g_{k}, h_{k}$.
2. For each x_{i}, we have two numbers y_{i} and z_{i}, where y_{i} for the positive and z_{i} for the negative literals.
3. The decimal representation of these numbers is in two parts.

- The left-hand part comprises a 1 followed by $\ell-i$ ss.
- The right-hand part contains one digit for each clause, where the digit of y_{i} in column c_{j} is 1 if clause c_{j} contains literal x_{i}, and the digit of z_{i} in column c_{j} is 1 if clause c_{j} contains literal $\overline{x_{i}}$.

4. The target $t=\underbrace{1 \ldots 1}_{\ell \text { times }} \underbrace{3 \ldots 3}_{k \text { times }}$.

Proof (2)

$$
\begin{array}{c|cccccc|cccc}
y_{1} & 1 & 2 & 3 & 4 & \cdots & l & c_{1} & c_{2} & \cdots & c_{k} \\
y_{1} & 1 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
z_{1} & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
y_{2} & & 1 & 0 & 0 & \cdots & 0 & 0 & 1 & \cdots & 0 \\
z_{2} & & 1 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
y_{3} & & & 1 & 0 & \cdots & 0 & 1 & 1 & \cdots & 0 \\
z_{3} & & & 1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 1 \\
\vdots & & & & & \ddots & \vdots & \vdots & & \vdots & \vdots \\
y_{l} & & & & & & 1 & 0 & 0 & \cdots & 0 \\
z_{l} & & & & & 1 & 0 & 0 & \cdots & 0 \\
\hline g_{1} & & & & & & 1 & 0 & \cdots & 0 \\
h_{1} & & & & & 1 & 0 & \cdots & 0 \\
g_{2} & & & & & & 1 & \cdots & 0 \\
h_{2} & & & & & & 1 & \cdots & 0 \\
\vdots & & & & & & & & \ddots & \vdots \\
g_{k} & & & & & & & & & 1 \\
h_{k} & & & & & & & & & 1 \\
\hline \hline t & 1 & 1 & 1 & 1 & \cdots & 1 & 3 & 3 & \cdots & 3 \\
\hline
\end{array}
$$

