NP-Completeness

Huan Long

Shanghai Jiao Tong University

▲ □ ▶ NP-Completeness ▲ 볼 ▶ ▲ 볼 ▶ ■ 볼 · ♡ ९ ♡ 1/51

Part of the slides comes from a similar course given by Prof. Yijia Chen.

```
http://basics.sjtu.edu.cn/~chen/
```

Textbook Introduction to the theory of computation Michael Sipser, MIT Third edition, 2012

Outline

The NP-Completeness

Additional NP-complete problems

The NP-Completeness

In 1970s, Stephen Cook and Leonid Levin discovered certain problems in NP whose individual complexity is related to that of the entire class.

If a polynomial time algorithm exists for any of these problems, all problems in NP would be polynomial time solvable.

These problems are called NP-complete

Satisfiability Problem

- Boolean variables are assigned to TRUE(1) or FALSE(0).
- Boolean operations are AND, OR, and NOT.
- A <u>Boolean formula</u> is an expression involving Boolean variables and operations.
- A Boolean formula is <u>satisfiable</u> if some assignment makes the formula evaluate to 1.
- The satisfiability problem is to test whether a Boolean formula is satisfiable, i.e.,

SAT = { $\langle \varphi \rangle \mid \varphi$ is a satisfiable Boolean formula}.

Theorem $SAT \in P$ if and only if P=NP.

Definition

A function $f: \Sigma^* \to \Sigma^*$ is a polynomial time computable <u>function</u> if some polynomial time Turing machine exists that halts with just f(w) on its tape, when started on any input w.

Definition

Let $A, B \subseteq \Sigma^*$. Then A is polynomial time mapping reducible, or simply polynomial time reducible, to B, written $A \leq_P B$, if a polynomial time computable function $f : \Sigma^* \to \Sigma^*$ exists, where for every w

$$w \in A \Leftrightarrow f(w) \in B.$$

The function f is called the polynomial time reduction of A to B.

Theorem If $A \leq_P B$ and $B \in P$, then $A \in P$.

3SAT

- A <u>literal</u> is a Boolean variable or a negated Boolean variable.
- A <u>clause</u> is several literals connected with \lor s.
- A Boolean formula is in <u>conjunctive normal from</u>, called a <u>cnf-formula</u>, if it comprises several clauses connected with \lands.
- A Boolean formula is a <u>3cnf-formula</u> if all the clauses have three literals.

Let

 $3SAT = \{\langle \varphi \rangle \mid \varphi \text{ is a satisfiable 3cnf-formula} \}.$

Theorem 3SAT is polynomial time reducible to CLIQUE.

Proof (1)

Let φ be a formula with k clauses such as

 $\varphi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \cdots (a_k \lor b_k \lor c_k).$

The reduction generates a string $\langle G, k \rangle$.

- 1. The nodes in *G* are organized into *k* groups of three nodes t_1, \ldots, t_k . Each triple corresponds to one of the clauses, and each node in a triple corresponds to a literal in the associated clauses.
- 2. The edge of *G* connect all but two types of pairs of nodes in *G*.
 - No edge is present between nodes in the same triple.
 - ► No edge is present between two nodes with contradictory labels, e.g., x₂ and x₂.

Proof (2)

 $\varphi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land \dots \land (\overline{x_1} \lor x_2 \lor x_2).$

< □ ▶ _{NP-Completeness} < 茎 ▶ < 茎 ▶ Ξ ∽ Q ○ 13/51

Definition

A language *B* is NP-complete if it satisfies two conditions:

1. B is in NP, and

2. every A in NP is polynomial time reducible to B.

Theorem If *B* is NP-complete and $B \in P$, then P=NP.

Theorem If *B* is NP-complete and $B \leq_P C$ for some *C* in NP, then *C* is NP-complete. Theorem *SAT is NP-complete.*

▲ □ ▶ NP-Completeness ▲ 볼 ▶ ▲ 볼 ▶ ■ 볼 · ♡ ٩. ○ 16/51

Proof (1)

SAT is in NP, since a nondeterministic polynomial time Turing machine can

- 1. guess an assignment to a given formula φ ,
- 2. accept if the assignment satisfies φ .

Proof (2)

Let N be an NTM that decides a language A in time n^k for some $k \in \mathbb{N}$. We show $A \leq_p SAT$.

A <u>tableau</u> for N on w is an $n^k \times n^k$ table whose rows are the configurations of the branch of the computation of N on input w.

Proof (3)

- We assume that each configuration starts and ends with a # symbol. Therefore, the first and last columns of a tableau are all #s.
- The first row of the tableau is the starting configuration of N on w, and each row follows the previous one according to N's transition function.
- A tableau is accepting if any row of the tableau is an accepting configuration.
- Every accepting tableau for N on w corresponds to an accepting computation branch of N on w. Thus the problem of determining whether N accepts w is equivalent to the problem of determining whether an accepting tableau for N on w exits.

Proof (4)

On input w, the reduction produces a formula φ .

1. Let Q and Γ be the state set and tape alphabet of N. We set

$$C = Q \cup \Gamma \cup \{\#\}.$$

- 2. For each $i, j \in [n^k]$ and for each $s \in C$, we have a variable $x_{i,j,s}$.
- 3. Each of the $(n^k)^2$ entries of a tableau is called a <u>cell</u>.
- 4. If $x_{i,j,s}$ takes on the value 1, it means that the cell in row i and column j contains an s.

We represent the contents of the cells with the variable of φ .

We design φ so that a satisfying assignment to the variables does correspond to an accepting tableau for N for w:

 $\varphi_{\mathsf{cell}} \land \varphi_{\mathsf{start}} \land \varphi_{\mathsf{move}} \land \varphi_{\mathsf{accept}}.$

Proof (6)

$$\varphi_{\mathsf{cell}} = \bigwedge_{i,j \in [n^k]} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \neq t}} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}}) \right) \right]$$

< □ ▶ _{NP-Completeness} < 茎 ▶ < 茎 ▶ Ξ ∽ Q ○ 22/51

٠

Proof (7)

$$\begin{array}{lll} \varphi_{\mathsf{start}} &=& x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \\ && x_{1,3,w_1} \wedge x_{1,4,w_1} \wedge \ldots \wedge x_{1,n+2,w_n} \wedge \\ && x_{1,n+3,\sqcup} \wedge \ldots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#}. \end{array}$$

< □ ▶ _{NP-Completeness} < 茎 ▶ < 茎 ▶ Ξ ∽ Q ○ 23/51

Proof (8)

$$\varphi_{\mathsf{accept}} = \bigvee_{i,j \in [n^k]} x_{i,j,q_{\mathsf{accept}}}.$$

< □ ▶ _{NP-Completeness} < 茎 ▶ < 茎 ▶ Ξ ∽ Q ○ 24/51

Proof (9)

Finally, formula φ_{move} guarantees that each row of the tableau corresponds to a configuration that legally follows the preceding row's configuration according to *N*'s rules. It does so by ensuring that each 2 window of cells is legal.

We say that a 2×3 windows is legal if that window does not violate the actions specified by $\overline{N's}$ transition function.

Proof (10)

Assume that:

- ▶ When in state q₁ with the head reading an a, N writes a b, stays in state q₁, and moves right.
- ▶ When in state *q*¹ with the head reading a *b*, *N* nondeterministically either
 - 1. writes a c, enters q_2 , and moves to the left, or
 - 2. writes an a, enters q_2 , and moves to the right.

Legal moves

Proof (11)

Assume that

- ▶ When in state q₁ with the head reading an a, N writes a b, stays in state q₁, and moves right.
- ▶ When in state *q*₁ with the head reading a *b*, *N* nondeterministically either
 - 1. writes a c, enters q_2 , and moves to the left, or
 - 2. writes an a, enters q_2 , and moves to the right.

Illegal moves

Proof (12)

If the top row of the tableau is the start configuration and every window in the tableau is legal, each row of the tableau is a configuration that legally follows the preceding one.

$$\varphi_{\text{move}} = \bigwedge_{1 \le i, j < n^k} \text{the } (i, j) \text{-window is legal.}$$

We replace "the (i, j)-window is legal " by

 $\bigvee_{\substack{a_1,\ldots a_6\\\text{is a legal window}}} (x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j+1,a_3}$

$$\land x_{i+1,j-1,a_4} \land x_{i+1,j,a_5} \land x_{i+1,j+1,a_6}).$$

Corollary 3SAT is NP-complete.

Proof (1)

3SAT∈NP is clear.

To show hat every problem in NP can be reduced to 3SAT, we modify the previous reduction to SAT, recall

 $\varphi_{\text{cell}} \land \varphi_{\text{start}} \land \varphi_{\text{move}} \land \varphi_{\text{accept}},$

where

$$\begin{array}{lll} \varphi_{\mathsf{Cell}} & = & \bigwedge_{i,j\in[n^k]} \left[\left(\bigvee_{s\in C} x_{i,j,s}\right) \wedge \left(\bigwedge_{\substack{s,t\in C\\s\neq t}} (\overline{x_{i,j,s}} \vee \overline{x_{i,j,t}})\right) \right] \\ \varphi_{\mathsf{start}} & = & x_{1,1,\#} \wedge x_{1,2,q_0} \wedge x_{1,3,w_1} \wedge x_{1,4,w_1} \wedge \ldots \wedge x_{1,n+2,w_n} \\ & & \wedge x_{1,n+3,\sqcup} \wedge \ldots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#} \\ \varphi_{\mathsf{move}} & = & \bigwedge_{\substack{1 \leq i,j < n^k \\ \text{is a legal window}}} \bigvee_{\substack{a_1,\ldots,a_6 \\ i \leq a,j \leq n^k \end{bmatrix}} (x_{i,j-1,a_1} \ldots \wedge x_{i+1,j+1,a_6}) \\ \varphi_{\mathsf{accept}} & = & \varphi_{\mathsf{accept}} = \bigvee_{i,j\in[n^k]} x_{i,j,q_{\mathsf{accept}}} \end{array}$$

Proof (2)

The formula is almost in conjunctive normal form, except

$$\varphi_{\text{move}} = \bigwedge_{1 \leq i, j < n^k} \bigvee_{\substack{a_1, \dots a_6 \\ \text{is a legal window}}} (x_{i, j-1, a_1} \dots \wedge x_{i+1, j+1, a_6})$$

Recall the distributive laws:

$$(a_{1,1} \vee \ldots a_{1,n_1}) \wedge (a_{2,1} \vee \ldots \vee a_{2,n_2}) = \bigvee_{i \in [n_1], j \in [n_2]} a_{1,i} \wedge a_{2,j}.$$

Therefore $\bigvee_{\substack{a_1,\dots,a_6\\\text{is a legal window}}} (x_{i,j-1,a_1}\dots\wedge x_{i+1,j+1,a_6})$ is equivalent to an cnf-formula of size at most

$$|C|^6 = \mathcal{O}\left(1\right),$$

Where recall $C = Q \cup \Gamma \cup \{\#\}$.

Proof (3)

Now we need to convert the formula in cnf to one with three literals per clause:

- 1. In each clause that currently has one or two literals, we replicate one of the literals until the total number is three.
- 2. If a clause contains $\ell > 3$ clauses

 $(a_1 \vee a_2 \vee \ldots \vee a_\ell),$

We replace it with the $\ell-2$ clauses

 $(a_1 \lor a_2 \lor z_1) \land (\overline{z_1} \lor a_3 \lor z_2) \land (\overline{z_2} \lor a_3 \lor z_3) \land \ldots \land (\overline{z_{\ell-3}} \lor a_{\ell-1} \lor a_{\ell})$

Additional NP-complete problems

Corollary CLIQUE is NP-complete.

▲ □ ▶ NP-Completeness ▲ 볼 ▶ ▲ 볼 ▶ ■ 볼 · ♡ ٩. ○ 35/51

If G is an undirected graph, a vertex cover of G is a subset of the nodes where every edge of G touches one of those nodes.

VERTEX-COVER = { $\langle G, k \rangle \mid G$ is an undirected graph that

has a *k*-node vertex cover}.

Theorem VERTEX-COVER is NP-complete.

 $\varphi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2).$

The Hamiltonian path problem

The Hamiltonian path problem, i.e., *HAMPATH*, asks whether the input graph contains a path from s to t that goes through every node exactly once.

Theorem HAMPATH is NP-complete.

Proof (1)

We show $3SAT \leq_P HAMPATH$. Let

 $\varphi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \ldots \land (a_k \lor b_k \lor c_k).$

We represent each variable x_i with a diamond-shaped structure, and each clause as a single node.

Proof (2)

Proof (3)

The horizontal nodes in a diamond structure

▲□ ▶ NP-Completeness ▲ 臣 ▶ ▲ 臣 ▶ 臣 夕 Q ○ 42/51

Proof (4)

The additional edges when clause c_i contains x_i

Proof (5)

The additional edges when clause c_i contains $\overline{x_i}$

Proof (6)

- If x_i is assigned TRUE, the path zig-zags through the corresponding diamond.
- If x_i is assigned FALSE, the path zag-zigs.

Proof (7)

The above situation cannot occur.

The undirected Hamiltonian path problem

UHAMPATH, asks whether the undirected graph contains a path from s to t that goes through every node exactly once.

Theorem UHAMPATH is NP-complete.

Proof

We show HAMPATH \leq_P UHAMPATH. Let *G* be a directed graph with nodes *s* and *t*.

1. Let u be a node in G with $s \neq u \neq t$. We replace it by a path of length 3

$$u^{\text{in}} - u^{\text{mid}} - u^{\text{out}}$$
.

- 2. *s* and *t* in *G* are replaced by $s^{out} = s'$ and $t^{in} = t'$.
- 3. If there is an edge from u to v in G, then in G' add an edge

$$u^{\mathsf{out}} - v^{\mathsf{in}}$$
.

It is easy to conclude

 $\langle G, s, t \rangle \in \mathsf{HAMPATH} \iff \langle G', s', t' \rangle \in \mathsf{UHAMPATH}.$

The subset-sum problem

Recall

$$\begin{aligned} \mathsf{SUBSET}\text{-}\mathsf{SUM} &= \{ \langle S, t \rangle \mid \quad S = \{x_1, \dots, x_k\}, \text{ and for some} \\ \{y_1, \dots, y_\ell\} \subset S, \text{ we have } \sum_{i \in [\ell]} y_i = t \end{aligned} \end{aligned}$$

Theorem SUBSET-SUM is NP-complete.

Proof (1)

We show $3SAT \leq_P SUBSET-SUM$. Let φ be a Boolean formula with variables x_1, \ldots, x_ℓ and clauses c_1, \ldots, c_k .

- 1. *S* consists of the numbers $y_1, z_1, \ldots, y_\ell, z_\ell$ and $g_1, h_1, \ldots, g_k, h_k$.
- 2. For each x_i , we have two numbers y_i and z_i , where y_i for the positive and z_i for the negative literals.
- 3. The decimal representation of these numbers is in two parts.
 - The left-hand part comprises a 1 followed by ℓi 0s.
 - The right-hand part contains one digit for each clause, where the digit of y_i in column c_j is 1 if clause c_j contains literal x_i, and the digit of z_i in column c_j is 1 if clause c_j contains literal x_i.

4. The target
$$t = \underbrace{1 \dots 1}_{\ell \text{ times } k \text{ times}} \underbrace{3 \dots 3}_{k \text{ times}}$$
.

Proof (2)

	1	2	3	4		l	c_1	c_2		c_k
y_1	1	0	0	0	•••	0	1	0	•••	0
z_1	1	0	0	0	• • •	0	0	0		0
y_2		1	0	0	• • •	0	0	1	• • •	0
z_2		1	0	0	• • •	0	1	0	• • •	0
y_3			1	0	• • •	0	1	1	• • •	0
z_3			1	0	• • •	0	0	0	• • •	1
÷					÷.,	÷	÷		÷	÷
y_l						1	0	0	• • •	0
z_l						1	0	0	•••	0
g_1							1	0	• • •	0
h_1							1	0	• • •	0
g_2								1		0
h_2								1		0
÷									÷.,	÷
g_k										1
h_k										1
t	1	1	1	1	• • •	1	3	3	•••	3

 $\varphi = (x_1 \lor \overline{x_2} \lor x_3) \land (x_2 \lor x_3 \lor \ldots) \land \cdots \land (\overline{x_3} \lor \ldots \lor \ldots).$

◆□ ▶_{NP-Completeness} ◆ 壹 ▶ ▲ 壹 ▶ □ 壹 ∽ ♀ ⁽ 51/51)