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In 1970s, Stephen Cook and Leonid Levin discovered certain
problems in NP whose individual complexity is related to that of
the entire class.

If a polynomial time algorithm exists for any of these problems,
all problems in NP would be polynomial time solvable.

These problems are called NP-complete
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Satisfiability Problem

I Boolean variables are assigned to TRUE(1) or FALSE(0).
I Boolean operations are AND, OR, and NOT.
I A Boolean formula is an expression involving Boolean

variables and operations.
I A Boolean formula is satisfiable if some assignment makes

the formula evaluate to 1.
I The satisfiability problem is to test whether a Boolean

formula is satisfiable, i.e.,

SAT = {〈ϕ〉 | ϕ is a satisfiable Boolean formula}.
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Theorem
SAT∈P if and only if P=NP.
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Definition
A function f : Σ∗ → Σ∗ is a polynomial time computable
function if some polynomial time Turing machine exists that
halts with just f(w) on its tape, when started on any input w.

Definition
Let A,B ⊆ Σ∗. Then A is polynomial time mapping reducible,
or simply polynomial time reducible, to B, written A ≤P B, if a
polynomial time computable function f : Σ∗ → Σ∗ exists, where
for every w

w ∈ A ⇔ f(w) ∈ B.
The function f is called the polynomial time reduction of A to B.
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Theorem
If A ≤P B and B ∈P, then A ∈P.
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3SAT

I A literal is a Boolean variable or a negated Boolean
variable.

I A clause is several literals connected with ∨s.
I A Boolean formula is in conjunctive normal from, called a

cnf-formula, if it comprises several clauses connected with
∧s.

I A Boolean formula is a 3cnf-formula if all the clauses have
three literals.

I Let

3SAT = {〈ϕ〉 | ϕ is a satisfiable 3cnf-formula}.



NP-Completeness 11/51

Theorem
3SAT is polynomial time reducible to CLIQUE.
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Proof (1)

Let ϕ be a formula with k clauses such as

ϕ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ · · · (ak ∨ bk ∨ ck).

The reduction generates a string 〈G, k〉.
1. The nodes in G are organized into k groups of three nodes

t1, . . . , tk. Each triple corresponds to one of the clauses,
and each node in a triple corresponds to a literal in the
associated clauses.

2. The edge of G connect all but two types of pairs of nodes
in G.
I No edge is present between nodes in the same triple.
I No edge is present between two nodes with contradictory

labels, e.g., x2 and x2.
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Proof (2)
7.4 NP-COMPLETENESS 303

FIGURE 7.33

The graph that the reduction produces from
φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

Now we demonstrate why this construction works. We show that φ is satisfi-
able iff G has a k-clique.

Suppose that φ has a satisfying assignment. In that satisfying assignment, at
least one literal is true in every clause. In each triple of G, we select one node
corresponding to a true literal in the satisfying assignment. If more than one
literal is true in a particular clause, we choose one of the true literals arbitrarily.
The nodes just selected form a k-clique. The number of nodes selected is k
because we chose one for each of the k triples. Each pair of selected nodes is
joined by an edge because no pair fits one of the exceptions described previously.
They could not be from the same triple because we selected only one node per
triple. They could not have contradictory labels because the associated literals
were both true in the satisfying assignment. Therefore, G contains a k-clique.

Suppose thatG has a k-clique. No two of the clique’s nodes occur in the same
triple because nodes in the same triple aren’t connected by edges. Therefore,
each of the k triples contains exactly one of the k clique nodes. We assign truth
values to the variables of φ so that each literal labeling a clique node is made
true. Doing so is always possible because two nodes labeled in a contradictory
way are not connected by an edge and hence both can’t be in the clique. This
assignment to the variables satisfies φ because each triple contains a clique node
and hence each clause contains a literal that is assigned TRUE. Therefore, φ is
satisfiable.

Theorems 7.31 and 7.32 tell us that if CLIQUE is solvable in polynomial time,
so is 3SAT . At first glance, this connection between these two problems appears
quite remarkable because, superficially, they are rather different. But polynomial
time reducibility allows us to link their complexities. Now we turn to a definition
that will allow us similarly to link the complexities of an entire class of problems.
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ϕ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ · · · ∧ (x1 ∨ x2 ∨ x2).
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Definition
A language B is NP-complete if it satisfies two conditions:

1. B is in NP, and
2. every A in NP is polynomial time reducible to B.
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Theorem
If B is NP-complete and B ∈P, then P=NP.

Theorem
If B is NP-complete and B ≤P C for some C in NP, then C is
NP-complete.
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Theorem
SAT is NP-complete.
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Proof (1)

SAT is in NP, since a nondeterministic polynomial time Turing
machine can

1. guess an assignment to a given formula ϕ,
2. accept if the assignment satisfies ϕ.
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Proof (2)
Let N be an NTM that decides a language A in time nk for
some k ∈ N. We show A ≤p SAT.

A tableau for N on w is an nk × nk table whose rows are the
configurations of the branch of the computation of N on input w.

7.4 NP-COMPLETENESS 305

PROOF IDEA Showing that SAT is in NP is easy, and we do so shortly. The
hard part of the proof is showing that any language in NP is polynomial time
reducible to SAT .

To do so, we construct a polynomial time reduction for each languageA inNP
to SAT . The reduction for A takes a string w and produces a Boolean formula φ
that simulates the NP machine for A on input w. If the machine accepts, φ has
a satisfying assignment that corresponds to the accepting computation. If the
machine doesn’t accept, no assignment satisfies φ. Therefore, w is in A if and
only if φ is satisfiable.

Actually constructing the reduction to work in this way is a conceptually
simple task, though we must cope with many details. A Boolean formula may
contain the Boolean operations AND, OR, and NOT, and these operations form
the basis for the circuitry used in electronic computers. Hence the fact that we
can design a Boolean formula to simulate a Turing machine isn’t surprising. The
details are in the implementation of this idea.

PROOF First, we show that SAT is in NP. A nondeterministic polynomial
time machine can guess an assignment to a given formula φ and accept if the
assignment satisfies φ.

Next, we take any language A in NP and show that A is polynomial time
reducible to SAT . Let N be a nondeterministic Turing machine that decides A
in nk time for some constant k. (For convenience, we actually assume that N
runs in time nk − 3; but only those readers interested in details should worry
about this minor point.) The following notion helps to describe the reduction.

A tableau forN on w is an nk×nk table whose rows are the configurations of
a branch of the computation of N on input w, as shown in the following figure.

FIGURE 7.38

A tableau is an nk × nk table of configurations
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Proof (3)

I We assume that each configuration starts and ends with a
# symbol. Therefore, the first and last columns of a
tableau are all #s.

I The first row of the tableau is the starting configuration of
N on w, and each row follows the previous one according
to N ’s transition function.

I A tableau is accepting if any row of the tableau is an
accepting configuration.

I Every accepting tableau for N on w corresponds to an
accepting computation branch of N on w. Thus the
problem of determining whether N accepts w is equivalent
to the problem of determining whether an accepting
tableau for N on w exits.
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Proof (4)

On input w, the reduction produces a formula ϕ.
1. Let Q and Γ be the state set and tape alphabet of N . We

set

C = Q ∪ Γ ∪ {#}.

2. For each i, j ∈ [nk] and for each s ∈ C, we have a variable
xi,j,s.

3. Each of the
(
nk
)2 entries of a tableau is called a cell.

4. If xi,j,s takes on the value 1, it means that the cell in row i
and column j contains an s.

We represent the contents of the cells with the variable of ϕ.
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Proof (5)

We design ϕ so that a satisfying assignment to the variables
does correspond to an accepting tableau for N for w:

ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕaccept.
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Proof (6)

ϕcell =
∧

i,j∈[nk]


(∨

s∈C
xi,j,s

)
∧

 ∧
s,t∈C

s 6=t

(xi,j,s ∨ xi,j,t)


.
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Proof (7)

ϕstart = x1,1,# ∧ x1,2,q0∧
x1,3,w1 ∧ x1,4,w1 ∧ . . . ∧ x1,n+2,wn∧
x1,n+3,t ∧ . . . ∧ x1,nk−1,t ∧ x1,nk,#.
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Proof (8)

ϕaccept =
∨

i,j∈[nk]

xi,j,qaccept .
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Proof (9)

Finally, formula ϕmove guarantees that each row of the tableau
corresponds to a configuration that legally follows the preceding
row’s configuration according to N ’s rules.
It does so by ensuring that each 2 window of cells is legal.

We say that a 2× 3 windows is legal if that window does not
violate the actions specified by N ’s transition function.
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Proof (10)

Assume that:
I When in state q1 with the head reading an a, N writes a b,

stays in state q1, and moves right.
I When in state q1 with the head reading a b, N

nondeterministically either
1. writes a c, enters q2, and moves to the left, or
2. writes an a, enters q2, and moves to the right.308 CHAPTER 7 / TIME COMPLEXITY

(a)
a q1 b

q2 a c
(b)

a q1 b

a a q2
(c)

a a q1

a a b

(d)
# b a

# b a
(e)

a b a

a b q2
(f )

b b b

c b b

FIGURE 7.39

Examples of legal windows

In Figure 7.39, windows (a) and (b) are legal because the transition function
allows N to move in the indicated way. Window (c) is legal because, with q1
appearing on the right side of the top row, we don’t know what symbol the head
is over. That symbol could be an a, and q1 might change it to a b and move to the
right. That possibility would give rise to this window, so it doesn’t violate N ’s
rules. Window (d) is obviously legal because the top and bottom are identical,
which would occur if the head weren’t adjacent to the location of the window.
Note that # may appear on the left or right of both the top and bottom rows
in a legal window. Window (e) is legal because state q1 reading a b might have
been immediately to the right of the top row, and it would then have moved to
the left in state q2 to appear on the right-hand end of the bottom row. Finally,
window (f ) is legal because state q1 might have been immediately to the left of
the top row, and it might have changed the b to a c and moved to the left.

The windows shown in the following figure aren’t legal for machine N .

(a)
a b a

a a a
(b)

a q1 b

q2 a a
(c)

b q1 b

q2 b q2

FIGURE 7.40

Examples of illegal windows

In window (a), the central symbol in the top row can’t change because a state
wasn’t adjacent to it. Window (b) isn’t legal because the transition function spec-
ifies that the b gets changed to a c but not to an a. Window (c) isn’t legal because
two states appear in the bottom row.

CLAIM 7.41

If the top row of the tableau is the start configuration and every window in the
tableau is legal, each row of the tableau is a configuration that legally follows the
preceding one.
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Proof (11)

Assume that
I When in state q1 with the head reading an a, N writes a b,

stays in state q1, and moves right.
I When in state q1 with the head reading a b, N

nondeterministically either
1. writes a c, enters q2, and moves to the left, or
2. writes an a, enters q2, and moves to the right.
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(a)
a q1 b

q2 a c
(b)

a q1 b

a a q2
(c)

a a q1

a a b

(d)
# b a

# b a
(e)

a b a

a b q2
(f )

b b b

c b b

FIGURE 7.39

Examples of legal windows

In Figure 7.39, windows (a) and (b) are legal because the transition function
allows N to move in the indicated way. Window (c) is legal because, with q1
appearing on the right side of the top row, we don’t know what symbol the head
is over. That symbol could be an a, and q1 might change it to a b and move to the
right. That possibility would give rise to this window, so it doesn’t violate N ’s
rules. Window (d) is obviously legal because the top and bottom are identical,
which would occur if the head weren’t adjacent to the location of the window.
Note that # may appear on the left or right of both the top and bottom rows
in a legal window. Window (e) is legal because state q1 reading a b might have
been immediately to the right of the top row, and it would then have moved to
the left in state q2 to appear on the right-hand end of the bottom row. Finally,
window (f ) is legal because state q1 might have been immediately to the left of
the top row, and it might have changed the b to a c and moved to the left.

The windows shown in the following figure aren’t legal for machine N .

(a)
a b a

a a a
(b)

a q1 b

q2 a a
(c)

b q1 b

q2 b q2

FIGURE 7.40

Examples of illegal windows

In window (a), the central symbol in the top row can’t change because a state
wasn’t adjacent to it. Window (b) isn’t legal because the transition function spec-
ifies that the b gets changed to a c but not to an a. Window (c) isn’t legal because
two states appear in the bottom row.

CLAIM 7.41

If the top row of the tableau is the start configuration and every window in the
tableau is legal, each row of the tableau is a configuration that legally follows the
preceding one.
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Illegal moves
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Proof (12)

If the top row of the tableau is the start configuration and every
window in the tableau is legal, each row of the tableau is a
configuration that legally follows the preceding one.
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ϕmove =
∧

1≤i,j<nk

the (i, j)-window is legal.

We replace “the (i, j)-window is legal ” by∨
a1,...a6

is a legal window

(xi,j−1,a1 ∧ xi,j,a2 ∧ xi,j+1,a3

∧xi+1,j−1,a4 ∧ xi+1,j,a5 ∧ xi+1,j+1,a6).
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Corollary
3SAT is NP-complete.



NP-Completeness 31/51

Proof (1)
3SAT∈NP is clear.
To show hat every problem in NP can be reduced to 3SAT, we
modify the previous reduction to SAT,recall

ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕaccept,

where

ϕcell =
∧

i,j∈[nk]

( ∨
s∈C

xi,j,s

)
∧

 ∧
s,t∈C

s 6=t

(xi,j,s ∨ xi,j,t)




ϕstart = x1,1,# ∧ x1,2,q0 ∧ x1,3,w1 ∧ x1,4,w1 ∧ . . . ∧ x1,n+2,wn

∧x1,n+3,t ∧ . . . ∧ x1,nk−1,t ∧ x1,nk,#

ϕmove =
∧

1≤i,j<nk

∨
a1,...a6

is a legal window

(xi,j−1,a1 . . . ∧ xi+1,j+1,a6)

ϕaccept = ϕaccept =
∨

i,j∈[nk]

xi,j,qaccept
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Proof (2)

The formula is almost in conjunctive normal form, except

ϕmove =
∧

1≤i,j<nk

∨
a1,...a6

is a legal window

(xi,j−1,a1 . . . ∧ xi+1,j+1,a6)

Recall the distributive laws:

(a1,1 ∨ . . . a1,n1) ∧ (a2,1 ∨ . . . ∨ a2,n2) =
∨

i∈[n1],j∈[n2]

a1,i ∧ a2,j .

Therefore
∨

a1,...a6
is a legal window

(xi,j−1,a1 . . .∧ xi+1,j+1,a6) is equivalent to

an cnf-formula of size at most

|C|6 = O (1) ,

Where recall C = Q ∪ Γ ∪ {#}.
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Proof (3)

Now we need to convert the formula in cnf to one with three
literals per clause:

1. In each clause that currently has one or two literals, we
replicate one of the literals until the total number is three.

2. If a clause contains ` > 3 clauses

(a1 ∨ a2 ∨ . . . ∨ a`),

We replace it with the `− 2 clauses

(a1 ∨ a2 ∨ z1) ∧ (z1 ∨ a3 ∨ z2) ∧ (z2 ∨ a3 ∨ z3) ∧ . . . ∧ (z`−3 ∨ a`−1 ∨ a`).
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Additional NP-complete problems
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Corollary
CLIQUE is NP-complete.
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Vertex cover

If G is an undirected graph, a vertex cover of G is a subset of
the nodes where every edge of G touches one of those nodes.

VERTEX-COVER = {〈G, k〉 | G is an undirected graph that
has a k-node vertex cover}.
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Theorem
VERTEX-COVER is NP-complete.
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ϕ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2).

7.5 ADDITIONAL NP-COMPLETE PROBLEMS 313

The gadgets for the clauses are a bit more complex. Each clause gadget is a
triple of nodes that are labeled with the three literals of the clause. These three
nodes are connected to each other and to the nodes in the variable gadgets that
have the identical labels. Thus, the total number of nodes that appear in G is
2m+ 3l, where φ hasm variables and l clauses. Let k bem+ 2l.

For example, if φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2), the
reduction produces 〈G, k〉 from φ, where k = 8 and G takes the form shown in
the following figure.

FIGURE 7.45

The graph that the reduction produces from
φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

To prove that this reduction works, we need to show that φ is satisfiable if and
only if G has a vertex cover with k nodes. We start with a satisfying assignment.
We first put the nodes of the variable gadgets that correspond to the true literals
in the assignment into the vertex cover. Then, we select one true literal in every
clause and put the remaining two nodes from every clause gadget into the vertex
cover. Now we have a total of k nodes. They cover all edges because every vari-
able gadget edge is clearly covered, all three edges within every clause gadget are
covered, and all edges between variable and clause gadgets are covered. Hence
G has a vertex cover with k nodes.

Second, if G has a vertex cover with k nodes, we show that φ is satisfiable
by constructing the satisfying assignment. The vertex cover must contain one
node in each variable gadget and two in every clause gadget in order to cover the
edges of the variable gadgets and the three edges within the clause gadgets. That
accounts for all the nodes, so none are left over. We take the nodes of the vari-
able gadgets that are in the vertex cover and assign TRUE to the corresponding
literals. That assignment satisfies φ because each of the three edges connecting
the variable gadgets with each clause gadget is covered, and only two nodes of
the clause gadget are in the vertex cover. Therefore, one of the edges must be
covered by a node from a variable gadget and so that assignment satisfies the
corresponding clause.
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The Hamiltonian path problem

The Hamiltonian path problem, i.e., HAMPATH, asks whether
the input graph contains a path from s to t that goes through
every node exactly once.

Theorem
HAMPATH is NP-complete.
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Proof (1)

We show 3SAT≤P HAMPATH.
Let

ϕ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ . . . ∧ (ak ∨ bk ∨ ck).

We represent each variable xi with a diamond-shaped
structure, and each clause as a single node.

314 CHAPTER 7 / TIME COMPLEXITY

THE HAMILTONIAN PATH PROBLEM

Recall that the Hamiltonian path problem asks whether the input graph contains
a path from s to t that goes through every node exactly once.

THEOREM 7.46

HAMPATH is NP-complete.

PROOF IDEA We showed that HAMPATH is in NP in Section 7.3. To show
that every NP-problem is polynomial time reducible to HAMPATH, we show
that 3SAT is polynomial time reducible to HAMPATH. We give a way to convert
3cnf-formulas to graphs in which Hamiltonian paths correspond to satisfying
assignments of the formula. The graphs contain gadgets that mimic variables
and clauses. The variable gadget is a diamond structure that can be traversed in
either of two ways, corresponding to the two truth settings. The clause gadget
is a node. Ensuring that the path goes through each clause gadget corresponds
to ensuring that each clause is satisfied in the satisfying assignment.

PROOF We previously demonstrated that HAMPATH is in NP, so all that
remains to be done is to show 3SAT ≤P HAMPATH. For each 3cnf-formula φ,
we show how to construct a directed graph G with two nodes, s and t, where a
Hamiltonian path exists between s and t iff φ is satisfiable.

We start the construction with a 3cnf-formula φ containing k clauses,

φ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ · · · ∧ (ak ∨ bk ∨ ck),
where each a, b, and c is a literal xi or xi. Let x1, . . . , xl be the l variables of φ.

Now we show how to convert φ to a graphG. The graph G that we construct
has various parts to represent the variables and clauses that appear in φ.

We represent each variable xi with a diamond-shaped structure that contains
a horizontal row of nodes, as shown in the following figure. Later we specify the
number of nodes that appear in the horizontal row.

FIGURE 7.47

Representing the variable xi as a diamond structure
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We represent each clause of φ as a single node, as follows.

FIGURE 7.48

Representing the clause cj as a node

The following figure depicts the global structure of G. It shows all the ele-
ments of G and their relationships, except the edges that represent the relation-
ship of the variables to the clauses that contain them.

FIGURE 7.49

The high-level structure of G
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Proof (2)

7.5 ADDITIONAL NP-COMPLETE PROBLEMS 315

We represent each clause of φ as a single node, as follows.

FIGURE 7.48

Representing the clause cj as a node

The following figure depicts the global structure of G. It shows all the ele-
ments of G and their relationships, except the edges that represent the relation-
ship of the variables to the clauses that contain them.

FIGURE 7.49

The high-level structure of G
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Proof (3)

316 CHAPTER 7 / TIME COMPLEXITY

Next, we show how to connect the diamonds representing the variables to the
nodes representing the clauses. Each diamond structure contains a horizontal
row of nodes connected by edges running in both directions. The horizontal
row contains 3k+1 nodes in addition to the two nodes on the ends belonging to
the diamond. These nodes are grouped into adjacent pairs, one for each clause,
with extra separator nodes next to the pairs, as shown in the following figure.

FIGURE 7.50

The horizontal nodes in a diamond structure

If variable xi appears in clause cj , we add the following two edges from the
jth pair in the ith diamond to the jth clause node.

FIGURE 7.51

The additional edges when clause cj contains xi

If xi appears in clause cj , we add two edges from the jth pair in the ith dia-
mond to the jth clause node, as shown in Figure 7.52.

After we add all the edges corresponding to each occurrence of xi or xi in
each clause, the construction of G is complete. To show that this construction
works, we argue that if φ is satisfiable, a Hamiltonian path exists from s to t; and,
conversely, if such a path exists, φ is satisfiable.
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Next, we show how to connect the diamonds representing the variables to the
nodes representing the clauses. Each diamond structure contains a horizontal
row of nodes connected by edges running in both directions. The horizontal
row contains 3k+1 nodes in addition to the two nodes on the ends belonging to
the diamond. These nodes are grouped into adjacent pairs, one for each clause,
with extra separator nodes next to the pairs, as shown in the following figure.

FIGURE 7.50

The horizontal nodes in a diamond structure

If variable xi appears in clause cj , we add the following two edges from the
jth pair in the ith diamond to the jth clause node.

FIGURE 7.51

The additional edges when clause cj contains xi

If xi appears in clause cj , we add two edges from the jth pair in the ith dia-
mond to the jth clause node, as shown in Figure 7.52.

After we add all the edges corresponding to each occurrence of xi or xi in
each clause, the construction of G is complete. To show that this construction
works, we argue that if φ is satisfiable, a Hamiltonian path exists from s to t; and,
conversely, if such a path exists, φ is satisfiable.
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FIGURE 7.52

The additional edges when clause cj contains xi

Suppose that φ is satisfiable. To demonstrate a Hamiltonian path from s to
t, we first ignore the clause nodes. The path begins at s, goes through each
diamond in turn, and ends up at t. To hit the horizontal nodes in a diamond,
the path either zig-zags from left to right or zag-zigs from right to left; the
satisfying assignment to φ determines which. If xi is assigned TRUE, the path
zig-zags through the corresponding diamond. If xi is assigned FALSE, the path
zag-zigs. We show both possibilities in the following figure.

FIGURE 7.53

Zig-zagging and zag-zigging through a diamond, as determined by the
satisfying assignment

So far, this path covers all the nodes in G except the clause nodes. We can
easily include them by adding detours at the horizontal nodes. In each clause,
we select one of the literals assigned TRUE by the satisfying assignment.

If we selected xi in clause cj , we can detour at the jth pair in the ith diamond.
Doing so is possible because xi must be TRUE, so the path zig-zags from left to
right through the corresponding diamond. Hence the edges to the cj node are
in the correct order to allow a detour and return.

Similarly, if we selected xi in clause cj , we can detour at the jth pair in the
ith diamond because xi must be FALSE, so the path zag-zigs from right to left
through the corresponding diamond. Hence the edges to the cj node again are
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FIGURE 7.52

The additional edges when clause cj contains xi

Suppose that φ is satisfiable. To demonstrate a Hamiltonian path from s to
t, we first ignore the clause nodes. The path begins at s, goes through each
diamond in turn, and ends up at t. To hit the horizontal nodes in a diamond,
the path either zig-zags from left to right or zag-zigs from right to left; the
satisfying assignment to φ determines which. If xi is assigned TRUE, the path
zig-zags through the corresponding diamond. If xi is assigned FALSE, the path
zag-zigs. We show both possibilities in the following figure.

FIGURE 7.53

Zig-zagging and zag-zigging through a diamond, as determined by the
satisfying assignment

So far, this path covers all the nodes in G except the clause nodes. We can
easily include them by adding detours at the horizontal nodes. In each clause,
we select one of the literals assigned TRUE by the satisfying assignment.

If we selected xi in clause cj , we can detour at the jth pair in the ith diamond.
Doing so is possible because xi must be TRUE, so the path zig-zags from left to
right through the corresponding diamond. Hence the edges to the cj node are
in the correct order to allow a detour and return.

Similarly, if we selected xi in clause cj , we can detour at the jth pair in the
ith diamond because xi must be FALSE, so the path zag-zigs from right to left
through the corresponding diamond. Hence the edges to the cj node again are
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I If xi is assigned TRUE, the path zig-zags through the
corresponding diamond.

I If xi is assigned FALSE, the path zag-zigs.
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in the correct order to allow a detour and return. (Note that each true literal in a
clause provides an option of a detour to hit the clause node. As a result, if several
literals in a clause are true, only one detour is taken.) Thus, we have constructed
the desired Hamiltonian path.

For the reverse direction, if G has a Hamiltonian path from s to t, we demon-
strate a satisfying assignment for φ. If the Hamiltonian path is normal—that is, it
goes through the diamonds in order from the top one to the bottom one, except
for the detours to the clause nodes—we can easily obtain the satisfying assign-
ment. If the path zig-zags through the diamond, we assign the corresponding
variable TRUE; and if it zag-zigs, we assign FALSE. Because each clause node ap-
pears on the path, by observing how the detour to it is taken, we may determine
which of the literals in the corresponding clause is TRUE.

All that remains to be shown is that a Hamiltonian path must be normal.
Normality may fail only if the path enters a clause from one diamond but returns
to another, as in the following figure.

  

FIGURE 7.54

This situation cannot occur

The path goes from node a1 to c; but instead of returning to a2 in the same
diamond, it returns to b2 in a different diamond. If that occurs, either a2 or a3
must be a separator node. If a2 were a separator node, the only edges entering
a2 would be from a1 and a3. If a3 were a separator node, a1 and a2 would be
in the same clause pair, and hence the only edges entering a2 would be from a1,
a3, and c. In either case, the path could not contain node a2. The path cannot
enter a2 from c or a1 because the path goes elsewhere from these nodes. The
path cannot enter a2 from a3 because a3 is the only available node that a2 points
at, so the path must exit a2 via a3. Hence a Hamiltonian path must be normal.
This reduction obviously operates in polynomial time and the proof is complete.
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The above situation cannot occur.
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The undirected Hamiltonian path problem

UHAMPATH, asks whether the undirected graph contains a
path from s to t that goes through every node exactly once.

Theorem
UHAMPATH is NP-complete.
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Proof
We show HAMPATH ≤P UHAMPATH. Let G be a directed
graph with nodes s and t.

1. Let u be a node in G with s 6= u 6= t. We replace it by a
path of length 3

uin − umid − uout.

2. s and t in G are replaced by sout = s′ and tin = t′.
3. If there is an edge from u to v in G, then in G′ add an edge

uout − vin.

It is easy to conclude

〈G, s, t〉 ∈ HAMPATH ⇔ 〈G′, s′, t′〉 ∈ UHAMPATH.
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The subset-sum problem

Recall

SUBSET-SUM = {〈S, t〉 | S = {x1, . . . , xk}, and for some

{y1, . . . , y`} ⊂ S, we have
∑
i∈[`]

yi = t

}
.

Theorem
SUBSET-SUM is NP-complete.
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Proof (1)

We show 3SAT≤PSUBSET-SUM. Let ϕ be a Boolean formula
with variables x1, . . . , x` and clauses c1, . . . , ck.

1. S consists of the numbers y1, z1, . . . , y`, z` and
g1, h1, . . . , gk, hk.

2. For each xi, we have two numbers yi and zi, where yi for
the positive and zi for the negative literals.

3. The decimal representation of these numbers is in two
parts.
I The left-hand part comprises a 1 followed by `− i 0s.
I The right-hand part contains one digit for each clause,

where the digit of yi in column cj is 1 if clause cj contains
literal xi, and the digit of zi in column cj is 1 if clause cj
contains literal xi.

4. The target t = 1 . . . 1︸ ︷︷ ︸
` times

3 . . . 3︸ ︷︷ ︸
k times

.
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Proof (2)
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Finally, the target number t, the bottom row of the table, consists of l 1s
followed by k 3s.

1 2 3 4 · · · l c1 c2 · · · ck
y1 1 0 0 0 · · · 0 1 0 · · · 0
z1 1 0 0 0 · · · 0 0 0 · · · 0
y2 1 0 0 · · · 0 0 1 · · · 0
z2 1 0 0 · · · 0 1 0 · · · 0
y3 1 0 · · · 0 1 1 · · · 0
z3 1 0 · · · 0 0 0 · · · 1

...
. . .

...
...

...
...

yl 1 0 0 · · · 0
zl 1 0 0 · · · 0
g1 1 0 · · · 0
h1 1 0 · · · 0
g2 1 · · · 0
h2 1 · · · 0

...
. . .

...

gk 1
hk 1

t 1 1 1 1 · · · 1 3 3 · · · 3

FIGURE 7.57

Reducing 3SAT to SUBSET-SUM

Next, we show why this construction works. We demonstrate that φ is satis-
fiable iff some subset of S sums to t.

Suppose that φ is satisfiable. We construct a subset of S as follows. We select
yi if xi is assigned TRUE in the satisfying assignment, and zi if xi is assigned
FALSE. If we add up what we have selected so far, we obtain a 1 in each of the
first l digits because we have selected either yi or zi for each i. Furthermore, each
of the last k digits is a number between 1 and 3 because each clause is satisfied
and so contains between 1 and 3 true literals. We additionally select enough of
the g and h numbers to bring each of the last k digits up to 3, thus hitting the
target.

Suppose that a subset of S sums to t. We construct a satisfying assignment
to φ after making several observations. First, all the digits in members of S are
either 0 or 1. Furthermore, each column in the table describing S contains at
most five 1s. Hence a “carry” into the next column never occurs when a subset
of S is added. To get a 1 in each of the first l columns, the subset must have
either yi or zi for each i, but not both.
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ϕ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ . . .) ∧ · · · ∧ (x3 ∨ . . . ∨ . . .).
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