
Time Complexity 1/65

Complexity Theory

Huan Long

Shanghai Jiao Tong University

Time Complexity 2/65

Acknowledgements

Part of the slides comes from a similar course given by Prof.
Yijia Chen.

http://basics.sjtu.edu.cn/˜chen/

Textbook
Introduction to the theory of computation
Michael Sipser, MIT
Third edition, 2012

http://basics.sjtu.edu.cn/~chen/

Time Complexity 3/65

Outline

Complexity Theory

The Class P

The Class NP

Time Complexity 4/65

Even when a problem is decidable, it might not be solvable in
practice, since the optimal Turing machine which decides this
problem could require astronomical time.

Time Complexity 5/65

Time Complexity

Time Complexity 6/65

Measuring Complexity

Time Complexity 7/65

A = {0k1k | k ≥ 0}

M1 on w:
1. Scan across the tape and reject if a 0 is found to the right

of a 1.
2. Repeat if both 0s and 1s remain on the tape.

I Scan across the tape, crossing off a single 0 and a single 1.

3. If 0s still remain after all the 1s have been crossed off, or if
1s still remain after all the 0s have been crossed off, reject.
Otherwise if neither 0s or 1s remain on the tape, accept.

Time Complexity 8/65

Time complexity of M1

1. Analyze the running time of M1 on every x ∈ Σ∗

f1 : Σ∗ → N.

2. Analyze the worst-case running time of M1 on inputs of
length n ∈ N, f2 : N→ N. In particular

f2(n) = max
x∈Σn

f1(x).

3. Analyze the average-case running time of M1 on inputs of
length n ∈ N, f3 : N→ N. In particular

f3(n) =

∑
x∈Σn f1(x)

|Σ|n

Time Complexity 9/65

Worst-case analysis

Definition
Let M be a deterministic Turing machine that halts on all inputs.
The running time or time complexity of M is the function
f : N→ N, where f(n) is the maximum number of steps that M
uses on any input of length n.

If f(n) is the running time of M , we say that M runs in time
f(n) and that M is an f(n) time Turing machine.

Customarily we use n to represent the length of the input.

Time Complexity 10/65

Big-O Notation

Definition
Let f, g : N→ R+ be two functions. Say that f(n) = O (g(n)) if
positive integers c and n0 exist such that for every integer
n ≥ n0

f(n) ≤ c · g(n).

When f(n) = O (g(n)), we say that g(n) is an upper bound for
f(n), or more precisely, that g(n) is an asymptotic upper bound
for f(n), to emphasize that we are suppressing constant
factors.

Time Complexity 11/65

Examples

1. 5n3 + 2n2 + 22n+ 6 = O
(
n3
)
.

2. Let b ≥ 2. Then

logb n =
log2 n

log2 b

Hence, logb n = O (logn).

3. 3n log2 n+ 5nlog2log2n+ 2 = O (n log n).

4. 210n2+7n−6 = 2O(n2).

Time Complexity 12/65

nc for c > 0 is a polynomial bound.

2(nδ) for δ > 0 is an exponential bound.

Time Complexity 13/65

Small o-notation

Definition
Let f, g : N→ R+ be two functions. Say that f(n) = o (g(n)) if

lim
n→∞

f(n)

g(n)
= 0.

In other words, f(n) = o (g(n)) means that for any real number
c > 0, a number n0 exists, where f(n) < c · g(n) for all n ≥ n0.

Time Complexity 14/65

Examples

1.
√
n = o(n).

2. n = o(n log log n).

3. n log logn = o(n log n).

4. n log n = o(n2).

5. n2 = o(n3).

Time Complexity 15/65

A =
{
0k1k | k ≥ 0

}

M1 on w:
1. Scan across the tape and reject if a 0 is found to the right

of a 1.
2. Repeat if both 0s and 1s remain on the tape.

I Scan across the tape, crossing off a single 0 and a single 1.

3. if 0s still remain after all the 1s have been crossed off, of if
1s still remain after all the 0s have been crossed off, reject.

Otherwise, if neither 0s nor 1s remain on the tape, accept.

Time Complexity 16/65

Time analysis

I The first stage scans the tape to verify the input is of the
form 0∗1∗, taking n steps. Then the machine repositions
the head at the left-hand end of the tape, again using n
steps. In total 2n = O (n) steps.

I In stages 2 and 3, the machine repeatedly scans the tape
and crosses off a 0 and 1 on each scan. Each scan uses
O (n) steps. Because each scan crosses off two symbols,
at most n/2 scans can occur. So the total time taken by
stage 2 and 3 is (n/2)O (n) = O

(
n2
)
.

I In stage 4, the machine makes a single scan to decide
whether to accept or reject, hence require time O (n).

The overall running time

O (n) +O
(
n2
)

+O (n) = O
(
n2
)
.

Time Complexity 17/65

Time classes

Definition
Let t : N→ R+ be a function. Define the time complexity class

TIME(t(n))

to be the collection of all languages that are decidable by an
O (t(n)) time Turing machine.

Example{
0k1k | k ≥ 0

}
∈ TIME(n2).

Time Complexity 18/65

A better algorithm

M2 on w:
1. Scan across the tape and reject if a 0 is found to the right

of a 1.
2. Repeat as long as some 0s and 1s remain on the tape.

2.1 Scan across the tape, checking whether the total number of
0s and 1s remaining is even or odd. If it is odd, then reject.

2.2 Scan again across the tape, crossing off every other 0
starting with the first 0, and then crossing off every other 1
starting with the first 1.

3. If no 0s and no 1s remain on the tape, then accept.
Otherwise, reject.

Time Complexity 19/65

Time analysis

1. Every stage takes O (n) time.
2. Stage 1 and 3 are executed once, hence total O (n) time.
3. Stage 2.2 crosses off at least half of the 0s and 1s each

time it is executed, hence at most 1 + log2 n iterations.
Thus the total time of stages 2,3 and 4 is
(1 + log2 n)O (n) = O (n log n).

The overall running time of M2 is

O (n) +O (n log n) = O (n log n).

Time Complexity 20/65

Can we do even better than O (n log n)?

Theorem
Every language that can be decided in o(n log n) time on a
single-tape Turing machine is regular.

Time Complexity 21/65

{
0k1k | k ≥ 0

}
in linear time on a 2-tape TM

M3 on w:
1. Scan across tape 1 and reject if a 0 is found to the right of

1.
2. Scan across the 0s on tape 1 until the first 1. At the same

time copy the 0s onto tape 2.
3. Scan across the 1s on tape 1 until the end of the input. For

each 1 read on tape 1, cross off a 0 on tape 2. If all 0s are
crossed off before all the 1s are read, then reject.

4. If all the 0s have now been crossed off, then accept. If any
0s remain, then reject.

5. If no 0s and no 1s remain on the tape, then accept.
Otherwise, reject.

Time Complexity 22/65

Complexity relationships among models

Theorem
Let t(n) be a function with t(n) ≥ n. The every t(n) time
multitape Turing machine has an equivalent O

(
t2(n)

)
time

single-tape Turing machine.

Time Complexity 23/65

Proof (1)

We simulate an M with k tapes by a single-tape S.
I S uses # to separate the contents of the different tapes.
I S keeps track of the locations of the heads by writing a

tape symbol with a dot above it to mark the place where
the head on that tape would be.

3.2 VARIANTS OF TURING MACHINES 177

THEOREM 3.13

Every multitape Turing machine has an equivalent single-tape Turing machine.

PROOF We show how to convert a multitape TM M to an equivalent single-
tape TM S. The key idea is to show how to simulateM with S.

Say that M has k tapes. Then S simulates the effect of k tapes by storing
their information on its single tape. It uses the new symbol # as a delimiter to
separate the contents of the different tapes. In addition to the contents of these
tapes, S must keep track of the locations of the heads. It does so by writing a tape
symbol with a dot above it to mark the place where the head on that tape would
be. Think of these as “virtual” tapes and heads. As before, the “dotted” tape
symbols are simply new symbols that have been added to the tape alphabet. The
following figure illustrates how one tape can be used to represent three tapes.

FIGURE 3.14

Representing three tapes with one

S = “On input w = w1 · · · wn:
1. First S puts its tape into the format that represents all k tapes

ofM . The formatted tape contains

#
•
w1w2 · · · wn #

• #
• # · · · #.

2. To simulate a single move, S scans its tape from the first #,
which marks the left-hand end, to the (k + 1)st #, which marks
the right-hand end, in order to determine the symbols under
the virtual heads. Then S makes a second pass to update the
tapes according to the way thatM ’s transition function dictates.

3. If at any point S moves one of the virtual heads to the right onto
a #, this action signifies that M has moved the corresponding
head onto the previously unread blank portion of that tape. So
S writes a blank symbol on this tape cell and shifts the tape
contents, from this cell until the rightmost #, one unit to the
right. Then it continues the simulation as before.”

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

Time Complexity 24/65

Proof (2)
On input w = w1 · · ·wn;

1. First S puts its tape into the format that represents all k
tapes of M :

#ẇ1w2 · · ·wn#ṫ#ṫ# · · ·#.
Time: O (n) = O (t(n)).

2. To determine the symbols under the virtual heads, S scans
its tape from the first #, which marks the left-hand end, to
the (k + 1)st #, which marks the right-hand end. Time:
O (t(n)).

3. Then S makes a second pass to update the tapes
according to the way that Ms transition function dictates.
If S makes one of the virtual heads to the right onto a #,
then S writes t on this tape cell and shifts the tape
contents, from this cell until the rightmost #, one unit to the
right.
Time: O (k · t(n)) = O (t(n)).

4. Go back to 2.

Time Complexity 25/65

Nondeterministic machines

Definition
Let N be a nondeterministic Turing machine that is a decider.
The running time of N is the function f : N→ N, where f(n) is
the maximum number of steps that N uses on any branch of its
computation on any input of length n.

Time Complexity 26/65

7.1 MEASURING COMPLEXITY 283

uses t(n) × O(t(n)) = O(t2(n)) steps. Therefore, the entire simulation of M
uses O(n) +O(t2(n)) steps.

We have assumed that t(n) ≥ n (a reasonable assumption because M could
not even read the entire input in less time). Therefore, the running time of S is
O(t2(n)) and the proof is complete.

Next, we consider the analogous theorem for nondeterministic single-tape
Turing machines. We show that any language that is decidable on such a ma-
chine is decidable on a deterministic single-tape Turing machine that requires
significantly more time. Before doing so, we must define the running time of
a nondeterministic Turing machine. Recall that a nondeterministic Turing ma-
chine is a decider if all its computation branches halt on all inputs.

DEFINITION 7.9

Let N be a nondeterministic Turing machine that is a decider. The
running time of N is the function f : N−→N , where f(n) is the
maximum number of steps that N uses on any branch of its com-
putation on any input of length n, as shown in the following figure.

FIGURE 7.10

Measuring deterministic and nondeterministic time

The definition of the running time of a nondeterministic Turing machine is
not intended to correspond to any real-world computing device. Rather, it is a
useful mathematical definition that assists in characterizing the complexity of an
important class of computational problems, as we demonstrate shortly.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

Time Complexity 27/65

Theorem
Let t(n) be a function with t(n) ≥ n. The every t(n) time
nondeterministic single-tape Turing machine has an equivalent
2O(t(n)) time deterministic single-tape Turing machine.

Time Complexity 28/65

Proof (1)

We simulate a nondeterministic N by a deterministic D.
1. D try all possible branches of N ’s nondeterministic

computation.
2. If D ever finds the accept state on one of these branches, it

accepts.

3.2 VARIANTS OF TURING MACHINES 179

PROOF The simulating deterministic TM D has three tapes. By Theo-
rem 3.13, this arrangement is equivalent to having a single tape. The machine
D uses its three tapes in a particular way, as illustrated in the following figure.
Tape 1 always contains the input string and is never altered. Tape 2 maintains a
copy of N ’s tape on some branch of its nondeterministic computation. Tape 3
keeps track of D’s location in N ’s nondeterministic computation tree.

FIGURE 3.17

Deterministic TM D simulating nondeterministic TM N

Let’s first consider the data representation on tape 3. Every node in the tree
can have at most b children, where b is the size of the largest set of possible
choices given by N ’s transition function. To every node in the tree we assign
an address that is a string over the alphabet Γb = {1, 2, . . . , b}. We assign the
address 231 to the node we arrive at by starting at the root, going to its 2nd child,
going to that node’s 3rd child, and finally going to that node’s 1st child. Each
symbol in the string tells us which choice to make next when simulating a step
in one branch in N ’s nondeterministic computation. Sometimes a symbol may
not correspond to any choice if too few choices are available for a configuration.
In that case, the address is invalid and doesn’t correspond to any node. Tape 3
contains a string over Γb. It represents the branch of N ’s computation from the
root to the node addressed by that string unless the address is invalid. The empty
string is the address of the root of the tree. Now we are ready to describe D.

1. Initially, tape 1 contains the input w, and tapes 2 and 3 are empty.

2. Copy tape 1 to tape 2 and initialize the string on tape 3 to be ε.

3. Use tape 2 to simulateN with input w on one branch of its nondeterminis-
tic computation. Before each step of N , consult the next symbol on tape 3
to determine which choice to make among those allowed byN ’s transition
function. If no more symbols remain on tape 3 or if this nondeterministic
choice is invalid, abort this branch by going to stage 4. Also go to stage 4
if a rejecting configuration is encountered. If an accepting configuration is
encountered, accept the input.

4. Replace the string on tape 3 with the next string in the string ordering.
Simulate the next branch of N ’s computation by going to stage 2.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

Time Complexity 29/65

Proof (2)

I On an input of length n, every branch of N ’s
nondeterministic computation tree has a length of at most
t(n).
Every node in the tree can have at most b children, where b
is the maximum number of legal choices given by N ’s
transition function. Thus, the total number of leaves in the
tree is at most bt(n).

I The total number of the nodes in the tree is less than twice
the maximum number of leaves, hence O

(
bt(n)

)
. The time

it takes to start from the root and travel down to a node is
O (t(n)). Hence the total running time of D is
O
(
t(n)bt(n)

)
= 2O(t(n)).

I D has 3 tapes, thus can be simulated by a single-tape TM
in time (

2O(t(n))
)2

= 2O(t(n)).

Time Complexity 30/65

The Class P

Time Complexity 31/65

Definition
P is the class of languages that are decidable in polynomial
time on a deterministic single-tape Turing machine. In other
words:

P =
⋃

k∈N
TIME

(
nk
)
.

Time Complexity 32/65

1. P is invariant for all models of computation that are
polynomially equivalent to the deterministic single-tape
machine.

2. P roughly corresponds to the class of problems that are
realistically solvable on a computer.

Time Complexity 33/65

Examples of problems in P

Time Complexity 34/65

Reasonable encodings

I We continue to use 〈·〉 to indicate a reasonable encoding of
one or more objects into a string.

I Unary encoding of n as 11 · · · 11︸ ︷︷ ︸
n times

is exponentially larger

than the standard binary encoding of n, hence not
reasonable.

I A graphs can be encoded either by listing its nodes and
edges, i.e., its adjacency list, or its adjacency matrix,
where the (i, j)th entry is 1 if there is an edge from node i
to node j and 0 i if not.

Time Complexity 35/65

The path problem

PATH = {〈G, s, t〉 | G is a directed graph
that has a directed path from s and t} .

Theorem
PATH ∈ P.

Time Complexity 36/65

Testing relative prime

RELPRIMIE = {〈x, y〉 | x and y are relatively prime} .

Theorem
RELPRIMIE ∈ P.

Time Complexity 37/65

The Euclidean Algorithm

Recall the greatest common divisor gcd(x, y) is the largest
integer that divides both x and y.

E on 〈x, y〉:
1. Repeat until y = 0:
2. Assign x← x (mod y).
3. Exchange x and y.
4. Output x.

Time Complexity 38/65

R on 〈x, y〉:
1. Run E on 〈x, y〉.
2. If the result is 1, then accept. Otherwise, reject.

Time Complexity 39/65

Time analysis

We show that E runs in polynomial time
1. Every execution of stage 2 with y ≤ x cuts the value x at

least by half.
2. Thus, the maximum number of times that stage 2 and 3

are executed is the lesser of 2 log2 x and 2 log2 y.

Time Complexity 40/65

Testing context-freeness

Theorem
Every context-free language is a member of P.

Time Complexity 41/65

Recall (1)

Definition
A context-free grammar is in Chomsky normal form if every rule
is of the form

A→ BC and A→ a

where a is any terminal and A,B and C are any variables,
except that B and C may be not the start variable. In addition,
we permit the rule S → ε, where S is the start variable.

Theorem
Any context-free language is generated by a context-free
grammar in Chomsky normal form.

Theorem
Let G be CFG in Chomsky normal form, and G generates w
with w 6= ε. Then any derivation of w has 2|w| − 1 steps.

Time Complexity 42/65

Recall (2)

S on 〈G,w〉
1. Convert G to an equivalent grammar in Chomsky normal

form.
2. List all derivations with 2|w| − 1 steps; except if |w| = 0,

then instead check whether there is a rule S → ε.
3. If any of these derivations generates w, then accept;

otherwise reject.
The running time of S is 2O(n).

Time Complexity 43/65

Dynamic programming

Let w be an input string and n := |w|.
For every i ≤ j ≤ n we will compute

table(i, j) = the collection of variables that can
generate the substring wiwi+1 . . . wj .

Time Complexity 44/65

Dynamic Programming (cont’d)
D on w = w1 · · ·wn:

1. For w = ε, if S → ε is a rule, then accept; else reject.
2. For i = 1 to n:
3. For each variable A:
4. Test whether A→ b is a rule, where b = wi.
5. If so, place A in table(i, i).
6. For ` = 2 to n:
7. For i = 1 to n− `+ 1:
8. Let j = i+ `− 1

9. For k = i to j − 1:
10. For each rule A→ BC:
11. If B ∈table(i, k) and C ∈table(k + 1, j),

then put A in table(i, j).
12. If S ∈table(1, n), then accept; else reject.

Time Complexity 45/65

The Class NP

Time Complexity 46/65

Hamiltonian path

Definition
A Hamiltonian path in a directed graph G is a directed path that
goes through each node exactly once.

HAMPATH = {〈G, s, t〉 | G is a directed graph
With a Hamiltonian path from s and t}

Time Complexity 47/65

Hamiltonian path (cont’d)

292 CHAPTER 7 / TIME COMPLEXITY

7.3
THE CLASS NP

As we observed in Section 7.2, we can avoid brute-force search in many problems
and obtain polynomial time solutions. However, attempts to avoid brute force
in certain other problems, including many interesting and useful ones, haven’t
been successful, and polynomial time algorithms that solve them aren’t known
to exist.

Why have we been unsuccessful in finding polynomial time algorithms for
these problems? We don’t know the answer to this important question. Perhaps
these problems have as yet undiscovered polynomial time algorithms that rest
on unknown principles. Or possibly some of these problems simply cannot be
solved in polynomial time. They may be intrinsically difficult.

One remarkable discovery concerning this question shows that the complex-
ities of many problems are linked. A polynomial time algorithm for one such
problem can be used to solve an entire class of problems. To understand this
phenomenon, let’s begin with an example.

A Hamiltonian path in a directed graphG is a directed path that goes through
each node exactly once. We consider the problem of testing whether a directed
graph contains a Hamiltonian path connecting two specified nodes, as shown in
the following figure. Let

HAMPATH = {〈G, s, t〉| G is a directed graph

with a Hamiltonian path from s to t}.

FIGURE 7.17

A Hamiltonian path goes through every node exactly once

We can easily obtain an exponential time algorithm for the HAMPATH prob-
lem by modifying the brute-force algorithm for PATH given in Theorem 7.14.
We need only add a check to verify that the potential path is Hamiltonian. No
one knows whether HAMPATH is solvable in polynomial time.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

Time Complexity 48/65

Polynomial verifiability

Even though we don’t know how to determine fast whether a
graph contains Hamiltonian path, if such a path were
discovered somehow (perhaps using the exponential time
algorithm), we could easily convince someone else of its
existence simply by presenting it.

In other words, verifying the existence of a Hamiltonian path
may be much easier than determining its existence.

Time Complexity 49/65

Testing composite

Definition
A natural number is composite if it is the product of two integers
> 1.

COMPOSITES = {x | x = pq for integers p, q > 1}.

Time Complexity 50/65

Verifiers

Definition
A verifier for a language A is an algorithm V , where

A = {w | V accepts 〈w, c〉 for some string c}.

We measure the time of a verifier only in terms of the length of
w, so a polynomial time verifier runs in polynomial time in the
length of w. A language A is polynomial verifiable if it has a
polynomial time verifier.

The string c in the above definition is a certificate, or proof, of
membership in A. For polynomial verifiers, the certificate has
polynomial length (in the length of w).

Time Complexity 51/65

Certificates

For HAMPATH, a certificate for 〈G, s, t〉 ∈ HAMPATH is a
Hamiltonian path from s to t.

For COMPOSITES, a certificate for x is one of its divisors.

Time Complexity 52/65

The class NP

Definition
NP is the class of languages that have polynomial time verifiers.

Time Complexity 53/65

Nondeterministic polynomial Turing machines

Theorem
A language is in NP if and only if it is decided by some
nondeterministic polynomial time Turing machines.

Time Complexity 54/65

Proof (1)

Assume that the verifier V is a TM that runs in time nk.
N on w with n = |w|

1. Nondeterministically select string c of length at most nk.
2. Run V on 〈w, c〉.
3. If V accepts, then accept; otherwise, reject.

Time Complexity 55/65

Proof (2)

Assume that A id decided by a polynomial time NTM N .
V on 〈w, c〉

1. Simulate N on input w, treating each symbol of c as a
description of the nondeterministic choice to make at each
step.

2. If this branch of N ’s computation accepts, then accept;
otherwise, reject.

Time Complexity 56/65

Nondeterministic time complexity classes

Definition
NTIME(t(n)) = {L | L is a language decided by an

O (t(n)) time nondeterministic Turing machine } .

Corollary

NP =
⋃

k∈N
NTIME

(
nk
)
.

Time Complexity 57/65

Examples of problems in NP

Time Complexity 58/65

The clique problem

Definition
A clique in an undirected graph is a subgraph, wherein every
two nodes are connected by an edge. A k-clique is a clique that
contains k nodes.296 CHAPTER 7 / TIME COMPLEXITY

FIGURE 7.23

A graph with a 5-clique

The clique problem is to determine whether a graph contains a clique of a
specified size. Let

CLIQUE = {〈G, k〉| G is an undirected graph with a k-clique}.

THEOREM 7.24

CLIQUE is in NP.

PROOF IDEA The clique is the certificate.

PROOF The following is a verifier V for CLIQUE.

V = “On input 〈〈G, k〉, c〉:
1. Test whether c is a subgraph with k nodes in G.
2. Test whether G contains all edges connecting nodes in c.
3. If both pass, accept ; otherwise, reject .”

ALTERNATIVE PROOF If you prefer to think of NP in terms of nonde-
terministic polynomial time Turing machines, you may prove this theorem by
giving one that decides CLIQUE. Observe the similarity between the two proofs.

N = “On input 〈G, k〉, where G is a graph:
1. Nondeterministically select a subset c of k nodes of G.
2. Test whether G contains all edges connecting nodes in c.
3. If yes, accept ; otherwise, reject .”

Next, we consider the SUBSET-SUM problem concerning integer arithmetic.
We are given a collection of numbers x1, . . . , xk and a target number t. We want
to determine whether the collection contains a subcollection that adds up to t.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

A graph with a 5-clique.

Time Complexity 59/65

The clique problem (cont’d)

CLIQUE={〈G, k〉 | G is an undirected graph with a k clique}.

Theorem
CLIQUE is in NP.

Time Complexity 60/65

Proof (1)

V on 〈〈G, k〉, c〉:
1. Test whether c is a subgraph with k nodes in G.
2. Test whether G contains all edges connecting nodes in c.
3. If both pass, then accept; otherwise reject.

Time Complexity 61/65

Proof (2)

N on 〈G, k〉:
1. Nondeterministically select a subset c of k nodes in G,
2. Test whether G contains all edges connecting nodes in c.
3. If yes, then accept; otherwise reject.

Time Complexity 62/65

The subset-sum problem

SUBSET-SUM = {〈S, t〉 | S = {x1, · · ·xk} and for some
{y1, · · · , y`} ⊆ S, we have

∑
i∈[`]

yi = t}.

Theorem
SUBSET-SUM is in NP.

Time Complexity 63/65

The P versus NP question

P = the class of languages for which membership can be decided
quickly.

NP = the class of language for which membership can be verified
quickly.

Time Complexity 64/65

Two possibilities

298 CHAPTER 7 / TIME COMPLEXITY

time. P is the class of languages where membership can be tested in polyno-
mial time. We summarize this information as follows, where we loosely refer to
polynomial time solvable as solvable “quickly.”

P = the class of languages for which membership can be decided quickly.

NP = the class of languages for which membership can be verified quickly.

We have presented examples of languages, such as HAMPATH and CLIQUE,
that are members ofNP but that are not known to be inP. The power of polyno-
mial verifiability seems to be much greater than that of polynomial decidability.
But, hard as it may be to imagine, P and NP could be equal. We are unable to
prove the existence of a single language in NP that is not in P.

The question of whether P = NP is one of the greatest unsolved problems
in theoretical computer science and contemporary mathematics. If these classes
were equal, any polynomially verifiable problem would be polynomially decid-
able. Most researchers believe that the two classes are not equal because people
have invested enormous effort to find polynomial time algorithms for certain
problems in NP, without success. Researchers also have tried proving that the
classes are unequal, but that would entail showing that no fast algorithm exists
to replace brute-force search. Doing so is presently beyond scientific reach. The
following figure shows the two possibilities.

FIGURE 7.26

One of these two possibilities is correct

The best deterministic method currently known for deciding languages inNP
uses exponential time. In other words, we can prove that

NP ⊆ EXPTIME =
⋃

k

TIME(2n
k

),

but we don’t know whether NP is contained in a smaller deterministic time com-
plexity class.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

Time Complexity 65/65

S. Smale. P versus NP, a gift to mathematics
from computer science.

	Complexity Theory
	The Class P
	The Class NP

