Complexity Theory

Huan Long

Shanghai Jiao Tong University

Acknowledgements

Part of the slides comes from a similar course given by Prof.
Yijia Chen.

http://basics.sjtu.edu.cn/~chen/

Textbook

Introduction to the theory of computation
Michael Sipser, MIT

Third edition, 2012

http://basics.sjtu.edu.cn/~chen/

Outline

Complexity Theory

The Class P

The Class NP

Even when a problem is decidable, it might not be solvable in
practice, since the optimal Turing machine which decides this
problem could require astronomical time.

Time Complexity

Measuring Complexity

A={0*1% | k > 0}

My on w:

1.

Scan across the tape and reject if a 0 is found to the right
ofat.

Repeat if both Os and 1s remain on the tape.
» Scan across the tape, crossing off a single 0 and a single 1.
If Os still remain after all the 1s have been crossed off, or if

1s still remain after all the Os have been crossed off, reject.
Otherwise if neither Os or 1s remain on the tape, accept.

Time complexity of M;
1. Analyze the running time of M; on every = € ¥*

fl:Zf — N.

2. Analyze the worst-case running time of M; on inputs of
lengthn € N, fo : N — N. In particular

fo(n) = max fi(z).

redn

3. Analyze the average-case running time of M; on inputs of
lengthn € N, f3 : N — N. In particular

2 zexn f1(2)

fa(n) = P

Worst-case analysis

Definition

Let M be a deterministic Turing machine that halts on all inputs.
The running time or time complexity of M is the function

[:N— N, where f(n) is the maximum number of steps that M
uses on any input of length n.

If f(n) is the running time of M, we say that M runs in time
f(n) and that M is an f(n) time Turing machine.

Customarily we use n to represent the length of the input.

Big-O Notation

Definition
Let f,¢g : N — R* be two functions. Say that f(n) = O (g(n)) if
positive integers ¢ and ng exist such that for every integer
n > ng

f(n) <c-g(n).
When f(n) = O (g(n)), we say that g(n) is an upper bound for
f(n), or more precisely, that g(n) is an asymptotic upper bound
for f(n), to emphasize that we are suppressing constant
factors.

Examples

1. 5n% +2n2 + 22n + 6 = O (n?).

2. Letb > 2. Then
log, n

1 g
Ogb n IOgQ b

Hence, logy n = O (logn).
3. 3nlogyn + 5nlogalogan + 2 = O (nlogn).

4. 910n*+7n—6 _ 9O(n?)

n® for ¢ > 0 is a polynomial bound.

2("") for § > 0'is an exponential bound.

Small o-notation

Definition

Let f,¢g : N — R* be two functions. Say that f(n) = o (g(n)) if
lim M =0.
n—0 g(n)

In other words, f(n) = o(g(n)) means that for any real number
¢ > 0, a number nq exists, where f(n) < c¢- g(n) for all n > ny.

Examples

o &~ D

n = o(nloglogn).
nloglogn = o(nlogn).

nlogn = o(n?).

A={0"1* |k >0}

M; on w:

1.

Scan across the tape and reject if a 0 is found to the right
ofal.

Repeat if both 0s and 1s remain on the tape.

» Scan across the tape, crossing off a single 0 and a single 1.
if Os still remain after all the 1s have been crossed off, of if
1s still remain after all the Os have been crossed off, reject.

Otherwise, if neither 0s nor 1s remain on the tape, accept.

Time analysis

» The first stage scans the tape to verify the input is of the
form 0*1*, taking n steps. Then the machine repositions
the head at the left-hand end of the tape, again using n
steps. In total 2n = O (n) steps.

> |n stages 2 and 3, the machine repeatedly scans the tape
and crosses off a 0 and 1 on each scan. Each scan uses
O (n) steps. Because each scan crosses off two symbols,
at most n/2 scans can occur. So the total time taken by
stage 2 and 3 is (n/2)0 (n) = O (n?).

» In stage 4, the machine makes a single scan to decide
whether to accept or reject, hence require time O (n).

The overall running time

O (n) + 0O (n®) + O (n) = O (n?).

Time classes

Definition
Lett : N — R™ be a function. Define the time complexity class

TIME(t(n))

to be the collection of all languages that are decidable by an
O (t(n)) time Turing machine.

Example
{0F1% | k > 0} € TIME(n?).

A better algorithm

M- on w:

1. Scan across the tape and reject if a 0 is found to the right
ofai.

2. Repeat as long as some 0s and 1s remain on the tape.
2.1 Scan across the tape, checking whether the total number of
0s and 1s remaining is even or odd. If it is odd, then reject.
2.2 Scan again across the tape, crossing off every other 0

starting with the first 0, and then crossing off every other 1
starting with the first 1.

3. If no 0s and no 1s remain on the tape, then accept.
Otherwise, reject.

Time analysis

1. Every stage takes O (n) time.
2. Stage 1 and 3 are executed once, hence total O (n) time.

3. Stage 2.2 crosses off at least half of the 0s and 1s each
time it is executed, hence at most 1 + log, n iterations.

Thus the total time of stages 2,3 and 4 is
(14 logan)O (n) = O (nlogn).

The overall running time of M, is

O (n) 4+ O (nlogn) = O (nlogn).

Can we do even better than O (nlogn)?

Theorem
Every language that can be decided in o(nlogn) time on a
single-tape Turing machine is regular.

{0*1% | k > 0} in linear time on a 2-tape TM

Ms3 on w:

1.

Scan across tape 1 and reject if a 0 is found to the right of
1.

Scan across the 0s on tape 1 until the first 1. At the same
time copy the Os onto tape 2.

Scan across the 1s on tape 1 until the end of the input. For
each 1 read on tape 1, cross off a 0 on tape 2. If all Os are
crossed off before all the 1s are read, then reject.

If all the Os have now been crossed off, then accept. If any
0s remain, then reject.

If no 0s and no 1s remain on the tape, then accept.
Otherwise, reject.

Complexity relationships among models

Theorem

Lett(n) be a function with t(n) > n. The every t(n) time
multitape Turing machine has an equivalent O (t*(n)) time
single-tape Turing machine.

Proof (1)

We simulate an M with k tapes by a single-tape S.
» S uses # to separate the contents of the different tapes.

» S keeps track of the locations of the heads by writing a
tape symbol with a dot above it to mark the place where
the head on that tape would be.

Lo 1]ofs]o]u]. .

s [#]o[1]o[1]o]#]alalal#]b]al#][u]...

Proof (2)
Oninput w = wy - - - wy;
1. First S puts its tape into the format that represents all &
tapes of M:

#Fuwiwy - - - W FHUFHH - - #.

Time: O (n) = O (t(n)).

2. To determine the symbols under the virtual heads, S scans
its tape from the first #, which marks the left-hand end, to
the (k + 1)st #, which marks the right-hand end. Time:

O (t(n)).

3. Then S makes a second pass to update the tapes
according to the way that Ms transition function dictates.
If S makes one of the virtual heads to the right onto a #,
then S writes LI on this tape cell and shifts the tape
contents, from this cell until the rightmost #, one unit to the
right.
Time: O (k- t(n)) = O (t(n)).

4. Go back to 2.

Nondeterministic machines

Definition

Let V be a nondeterministic Turing machine that is a decider.
The running time of N is the function f : N — N, where f(n) is
the maximum number of steps that V uses on any branch of its

computation on any input of length n.

Deterministic
fn)
l _accept/reject

Nondeterministic

e
reject

1 _accept

l/ reject

f(n)

Theorem

Lett(n) be a function with t(n) > n. The every t(n) time
nondeterministic single-tape Turing machine has an equivalent
20((n) time deterministic single-tape Turing machine.

Proof (1)

We simulate a nondeterministic N by a deterministic D.

1. D try all possible branches of N’s nondeterministic
computation.

2. If D ever finds the accept state on one of these branches, it
accepts.

nnn ... input tape

lx[x[#lolllx[u[... simulation tape

[1]2]3]3]2]3]t]2]1]1]3]u]... addresstape

Proof (2)

» On an input of length n, every branch of N’s
nondeterministic computation tree has a length of at most
t(n).

Every node in the tree can have at most b children, where b
is the maximum number of legal choices given by N’s
transition function. Thus, the total number of leaves in the
tree is at most b'(").

» The total number of the nodes in the tree is less than twice
the maximum number of leaves, hence O (b!(™). The time
it takes to start from the root and travel down to a node is
O (t(n)). Hence the total running time of D is
O (t(n)bt(”)) = 20(t(n))

» D has 3 tapes, thus can be simulated by a single-tape TM
in time

(20<t<n>>)2 _ 90(t(n).

The Class P

Definition
P is the class of languages that are decidable in polynomial
time on a deterministic single-tape Turing machine. In other

words:

P=|JTIME <nk)

keN

1. P is invariant for all models of computation that are
polynomially equivalent to the deterministic single-tape
machine.

2. P roughly corresponds to the class of problems that are
realistically solvable on a computer.

Examples of problems in P

Reasonable encodings

» We continue to use (-) to indicate a reasonable encoding of
one or more objects into a string.

> . o .
Unary encoding of n as 11---11 is exponentially larger

n times
than the standard binary encoding of n, hence not

reasonable.

» A graphs can be encoded either by listing its nodes and
edges, i.e., its adjacency list, or its adjacency matrix,
where the (i, j)th entry is 1 if there is an edge from node i
to node j and 0 i if not.

The path problem

PATH = {(G, s,t) | G is a directed graph
that has a directed path from sand ¢} .

Theorem
PATH € P.

Testing relative prime

RELPRIMIE = {(z,y) | x and y are relatively prime} .

Theorem
RELPRIMIE € P.

The Euclidean Algorithm

Recall the greatest common divisor gcd(z, v) is the largest
integer that divides both x and .

Eon (z,y):
1. Repeat until y = 0:
2. Assign x < z (mod y).
3. Exchange z and y.
4. QOutput z.

Ron (z,y):
1. Run E on (z,y).
2. If the result is 1, then accept. Otherwise, reject.

Time analysis

We show that E runs in polynomial time

1. Every execution of stage 2 with y < x cuts the value z at
least by half.

2. Thus, the maximum number of times that stage 2 and 3
are executed is the lesser of 2 log, x and 2 log, y.

Testing context-freeness

Theorem
Every context-free language is a member of P.

Recall (1)

Definition
A context-free grammar is in Chomsky normal form if every rule
is of the form

A— BC and A —a

where «a is any terminal and A, B and C' are any variables,
except that B and C' may be not the start variable. In addition,
we permit the rule S — ¢, where S is the start variable.

Theorem
Any context-free language is generated by a context-free
grammar in Chomsky normal form.

Theorem
Let G be CFG in Chomsky normal form, and G generates w
with w # e. Then any derivation of w has 2|w| — 1 steps.

Recall (2)

Son (G,w)
1. Convert G to an equivalent grammar in Chomsky normal
form.
2. List all derivations with 2|w| — 1 steps; except if jw| =0,
then instead check whether there is a rule S — e.

3. If any of these derivations generates w, then accept;
otherwise reject.

The running time of S is 29",

Dynamic programming

Let w be an input string and n := |w].
For every i < j < n we will compute

table(i, j) = the collection of variables that can
generate the substring w;w;41 . . . w;.

Dynamic Programming (cont’d)

Donw=w - wy,:

1. Forw = ¢, if S — eis a rule, then accept; else reject.
2. Fori=1ton:
3. For each variable A:
4. Test whether A — b is a rule, where b = w;.
5. If so, place A in table(i, 7).
6. For{=2ton:
7. Fori=1ton—/¢+1:
8. Letj=i+¢—-1
9. Fork=itoj—1:
10. For each rule A — BC:
11. If B etable(i, k) and C etable(k + 1, j),
then put A in table(i, 7).
12. If S etable(1,n), then accept; else reject.

The Class NP

Hamiltonian path

Definition
A Hamiltonian path in a directed graph G is a directed path that
goes through each node exactly once.
HAMPATH = {(G, s, t) | G is a directed graph
With a Hamiltonian path from s and ¢}

Hamiltonian path (cont'd)

Polynomial verifiability

Even though we don’t know how to determine fast whether a
graph contains Hamiltonian path, if such a path were
discovered somehow (perhaps using the exponential time
algorithm), we could easily convince someone else of its
existence simply by presenting it.

In other words, verifying the existence of a Hamiltonian path
may be much easier than determining its existence.

Testing composite

Definition
A natural number is composite if it is the product of two integers
> 1.

COMPOSITES = {z | = = pq for integers p,q > 1}.

Verifiers

Definition
A verifier for a language A is an algorithm V, where

A ={w |V accepts (w, c) for some string c}.

We measure the time of a verifier only in terms of the length of
w, SO a polynomial time verifier runs in polynomial time in the
length of w. A language A is polynomial verifiable if it has a
polynomial time verifier.

The string ¢ in the above definition is a certificate, or proof, of
membership in A. For polynomial verifiers, the certificate has
polynomial length (in the length of w).

Certificates

For HAMPATH, a certificate for (G, s,t) € HAMPATH is a
Hamiltonian path from s to ¢.

For COMPOSITES, a certificate for = is one of its divisors.

The class NP

Definition
NP is the class of languages that have polynomial time verifiers.

Nondeterministic polynomial Turing machines

Theorem
A language is in NP if and only if it is decided by some
nondeterministic polynomial time Turing machines.

Proof (1)

Assume that the verifier V is a TM that runs in time n*.
N on w with n = |w|

1. Nondeterministically select string ¢ of length at most n*.
2. Run V on (w,¢).
3. If V accepts, then accept; otherwise, reject.

Proof (2)

Assume that A id decided by a polynomial time NTM N.
Voon (w,c)
1. Simulate N on input w, treating each symbol of ¢ as a
description of the nondeterministic choice to make at each
step.

2. If this branch of N’s computation accepts, then accept;
otherwise, reject.

Nondeterministic time complexity classes

Definition
NTIME(t(n)) = {L | L is a language decided by an
O (t(n)) time nondeterministic Turing machine }.

Corollary

= k)
NP kLEJN NTIME <n)

Examples of problems in NP

The clique problem

Definition
A clique in an undirected graph is a subgraph, wherein every
two nodes are connected by an edge. A k-clique is a clique that

contains k£ nodes.

N

A graph with a 5-clique.

The clique problem (cont'd)

CLIQUE={(G, k) | G is an undirected graph with a & clique}.

Theorem
CLIQUE is in NP

Proof (1)

Von ((G,k),c):
1. Test whether c is a subgraph with £ nodes in G.
2. Test whether GG contains all edges connecting nodes in c.
3. If both pass, then accept; otherwise reject.

Proof (2)

N on (G, k):
1. Nondeterministically select a subset ¢ of k£ nodes in G,
2. Test whether G contains all edges connecting nodes in c.
3. If yes, then accept; otherwise reject.

The subset-sum problem

SUBSET-SUM = {(S,t) | S = {x1,- -z} and for some

{yla"' 7y£}QS, we have Zylzt}
1€l

Theorem
SUBSET-SUM is in NP

The P versus NP question

P = the class of languages for which membership can be decided
quickly.

NP = the class of language for which membership can be verified
quickly.

Two possibilities

NP

S. Smale. P versus NP, a gift to mathematics
from computer science.

	Complexity Theory
	The Class P
	The Class NP

