
L and NL 1/28

The classes L and NL

Huan Long

Shanghai Jiao Tong University

L and NL 2/28

Acknowledgements

Part of the slides comes from a similar course given by Prof.
Yijia Chen.

http://basics.sjtu.edu.cn/˜chen/
http://basics.sjtu.edu.cn/˜chen/teaching/TOC/

Textbook
Introduction to the theory of computation
Michael Sipser, MIT
Third edition, 2012

http://basics.sjtu.edu.cn/~chen/
http://basics.sjtu.edu.cn/~chen/teaching/TOC/

L and NL 3/28

Outline

The classes L and NL

NL-Completeness

NL=coNL

L and NL 4/28

The classes L and NL

L and NL 5/28

Until now, we have considered only time and space complexity
bounds that are at least linear — that is, bounds where f(n) is
at least n.

Now we examine smaller sublinear space bounds.

Not enough space to store the input. To consider this situation
meaningfully, we need to modify the computational model.

L and NL 6/28

Machine model for NL

A Turing machine with two tapes:
1. a read-only input tape;
2. a read/write work tape.

On the input tape, the input head can detect symbols, but not
change them. The input head must remain on the portion of the
tape containing the input. (Like a CD-ROM to a PC)

The work tape may be read and written in the usual way. (Like
the main memory to a PC)

Only the cells scanned on the work tape contribute to the
space complexity of this type of Turing machine.

L and NL 7/28

For sublinear space bounds, we use only the two-tape model.

Definition
L is the class of languages that are decidable on logarithmic
space on a deterministic Turing machine. In other words,

L=SPACE(log n).

NL is the class of languages that are decidable in logarithmic
space on a nondeterministic Turing machine. In other words,

NL=NSPACE(log n).

L and NL 8/28

A = {0k1k | k ≥ 0} ∈ L

Obviously, A ∈ SPACE(n). To make it sublinear,

The machine counts the number of 0s and separately, the
number of 1s in binary on the work tape.

The only space required is that used to record the two
counters. Hence the algorithm runs in O (log n).

L and NL 9/28

PATH ∈ NL

PATH
={〈G, s, t〉 | G is a directed graph that has a directed path from s to t}

The NTM: starting at node s, nondeterministically guessing the nodes
of a path from s to t. In detail

I The machine only records the position of the current node at at
each step on the work tape, not the entire path (which would
exceed the logarithmic space requirement),

I The machine nondeterministically selects the next node from
among those pointed by the current node,

I Repeat this action until it reaches node t and accepts.
Or, until it has gone on for m steps and rejects, where m is the
number of nodes in the graph.

It is not clear whether PATH∈ L holds.

L and NL 10/28

Space vs. Time

The result that any f(n) space bounded Turing machine also
runs in time 2O(f(n)) is no longer true for very small space
bounds.

For example, a TM that use O (1) space may run for n steps.

L and NL 11/28

Space vs. Time

To obtain a bound on the running time that applies for every
space bound f(n), we give the following definition.

Definition
If M is a Turing machine that has a separate read-only input
tape and w is an input, a configuration of M on w is a setting
of the state, the work tape, and the positions of the two tape
heads. The input w is not a part of the configuration of M on w.

If M runs in f(n) space and w is an input of length n, the
number of configurations of M on w is n2O(f(n)).

Now, when f(n) ≥ log n, we still have that the time complexity
of a machine is at most exponential in its space
complexity. Savitch’s theorem can be also extended to the
sublinear space case provided that f(n) ≥ log n.

L and NL 12/28

NL-Completeness

L and NL 13/28

L ?
= NL

Highly unlikely!

L and NL 14/28

log space reduction

We define an NL-complete language: the one who is in NL
and to which any other language in NL is reducible.

We don’t use polynomial time reducibility, because
I all problems in NL except ∅ and Σ∗ are polynomial time

reducible to one another.
i.e., polynomial time reducibility is too strong to differentiate
problems in NL from one another.

Instead, we use a new type of reducibility called log space
reducibility.

L and NL 15/28

log space reduction

Definition
A log space transducer is a TM with a read-only input tape, a
write-only output tape, and a read/write work tape. The head
on the output tape cannot move leftward, so it cannot read what
it has written. The work tape may contain O (log n) symbols.

A log space transducer M computes a function f : Σ∗ → Σ∗,
where f(w) is the string remaining on the output tape after M
halts when it is started with w on its input tape. We call f a log
space computable function.

Language A is log space reducible to language B, written
A ≤L B, if A is mapping reducible to B by means of a log
space computable function f .

L and NL 16/28

NL-complete

Definition
A language B is NL-complete if

1. B ∈NL, and
2. every A ∈ NL is log space reducible to B.

L and NL 17/28

NL-complete
Theorem
If A ≤L B and B ∈ L, then A ∈ L.

Proof.
f(w) may be too large to fit within the log space bound!

Suppose the log space reduction function is f , and B is
decided by a TM MB ∈L. We build a TM MA for A:
I MA computes individual symbols of f(w) as required by
MB,

I MA keeps track of where MB ’s input head would be on
f(w),

I Every time MB moves, MA restarts the computation of f
on w from the beginning and ignores all the output except
for the desired location of f(w).

Only a single symbol of f(w) needs to be stored at any point, in
effect trading time for space.

L and NL 18/28

Corollary
If any NL-complete language is in L, then L=NL.

L and NL 19/28

NL-complete problem

Theorem
PATH is NL-complete.

L and NL 20/28

Proof(1)

For any language A in NL, say NTM M decides A in O (log n)
space. Given an input w we construct 〈G, s, t〉 in log space,
where G is a directed graph that

G contains a path from s to t iff M accepts w.
1. Nodes of G are the configurations of M on w;
2. For configurations c1 and c2 of M on w, the pair (c1, c2) is

an edge of G if c2 is one of the possible next configurations
of M starting from c1;

3. Node s is the start configuration of M on w;
4. M is modified to have a unique accepting configuration,

which is node t.

L and NL 21/28

Proof(2)

The above reduction operates in log space: there is a log space
transducer T that outputs 〈G, s, t〉 on input w

1. List the nodes of G
Each node is a configuration of M on w and can be
represented in c log n space for some constant c.
T sequentially goes through all possible strings of length
c log n and tests whether each is a legal configuration of M
on w, and output those that pass the test.

2. List the edges of G
T tries all pairs (c1, c2) , tests whether each is a legal
configuration of M on w. Those that do are added to the
output tape.

L and NL 22/28

Corollary
NL ⊆ P.

Proof.
1. A ∈ NL then A ≤LPATH;
2. As any TM uses space f(n) runs in time n2O(f(n)), a log

space reducer also runs in polynomial time;
3. 1. and 2. imply A is polynomial time reducible to PATH;
4. PATH∈P.

L and NL 23/28

NL=coNL

L and NL 24/28

Theorem (Immerman-Szelepcsényi Theorem 1988,1987)
NL=coNL.

L and NL 25/28

Proof

PATH ={〈G, s, t〉 | There is no path from s to t in G}.

Suppose G has m nodes in all (represented by [m]). Let c be the
number of nodes in G that are reachable from s. Consider the input
〈G, s, t, c〉 first.

The machine M works as following:
I Initialize θ = 0, for every node u ∈ [m]:

1. M nondeterministically guess if u is reachable from s.
1.1 if u = t and the guess is YES, reject.
1.2 if u 6= t and the guess is YES, verify the guess:

Guessing a path of length at most m from s to u.
i. If the verifying passes: θ ++;
ii. If the verifying fails: reject.

I If θ = c, accept; otherwise, reject.

L and NL 26/28

Proof (to get c)
Ai (0 ≤ i ≤ m) is defined as the collection of nodes that are at
a distance of i or less from s.
Then A0 = {s}, Ai ⊆ Ai+1.
Let ci = |Ai|, then c = cm.

Obviously c0 = 1, we will calculate ci+1 from ci.
I Initialize ci+1 = 1.

For every node v, repeat: c′i = 0,
1. for every node u in G, guess whether u ∈ Ai

1.1 If YES, verify the guess:
Guessing the path of length at most i from s to u.

- If the verifying passes, c′i ++;
- Test if (u, v) ∈ G:

If YES, ci+1 ++ and return (try another v);
otherwise return; (try another u)

- otherwise return. (try another u)
2. If c′i 6= ci, reject. (start another branch of 1.)

(try another v)
I Output ci+1.

L and NL 27/28

Proof (the final algorithm)
356 CHAPTER 8 / SPACE COMPLEXITY

Here is an algorithm for ‘no PATH ’. Let m be the number of nodes of G.

M = “On input 〈G, s, t〉:
1. Let c0 = 1. [[A0 = {s} has 1 node]]

2. For i = 0 tom− 1: [[compute ci+1 from ci]]

3. Let ci+1 = 1. [[ci+1 counts nodes in Ai+1]]

4. For each node v 6= s in G: [[check if v ∈ Ai+1]]

5. Let d = 0. [[d re-counts Ai]]

6. For each node u in G: [[check if u ∈ Ai]]

7. Nondeterministically either perform or skip these steps:
8. Nondeterministically follow a path of length at most i

from s and reject if it doesn’t end at u.
9. Increment d. [[verified that u ∈ Ai]]

10. If (u, v) is an edge of G, increment ci+1 and go to
stage 5 with the next v. [[verified that v ∈ Ai+1]]

11. If d 6= ci, then reject . [[check whether found all Ai]]

12. Let d = 0. [[cm now known; d re-counts Am]]

13. For each node u in G: [[check if u ∈ Am]]

14. Nondeterministically either perform or skip these steps:
15. Nondeterministically follow a path of length at most m

from s and reject if it doesn’t end at u.
16. If u = t, then reject . [[found path from s to t]]

17. Increment d. [[verified that u ∈ Am]]

18. If d 6= cm, then reject . [[check whether found all of Am]]

Otherwise, accept .”

This algorithm only needs to store m, u, v, ci, ci+1, d, i, and a pointer to the
head of a path at any given time. Hence it runs in log space. (Note that M
accepts improperly formed inputs, too.)

We summarize our present knowledge of the relationships among several
complexity classes as follows:

L ⊆ NL = coNL ⊆ P ⊆ NP ⊆ PSPACE.

We don’t know whether any of these containments are proper, although we
prove NL (PSPACE in Corollary 9.6. Consequently, either coNL (P or
P (PSPACE must hold, but we don’t know which one does! Most researchers
conjecture that all these containments are proper.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

L and NL 28/28

‘

L and NL 28/28

Complexity classes so far

L ⊆ NL = coNL ⊆ P ⊆ NP ⊆ PSPACE.

	The classes L and NL
	NL-Completeness
	NL=coNL

