The classes L and NL

Huan Long

Shanghai Jiao Tong University

Acknowledgements

Part of the slides comes from a similar course given by Prof. Yijia Chen.

```
http://basics.sjtu.edu.cn/~chen/
http://basics.sjtu.edu.cn/~chen/teaching/TOC/
```

Textbook Introduction to the theory of computation Michael Sipser, MIT Third edition, 2012

The classes L and NL

NL-Completeness

NL=coNL

<□ ▶ Land NL < ■ ▶ < ■ ▶ ■ ⑦ < ♡ 3/28

The classes L and NL

Until now, we have considered only time and space complexity bounds that are at least linear — that is, bounds where f(n) is at least n.

Now we examine smaller *sublinear* space bounds.

Not enough space to store the input. To consider this situation meaningfully, we need to modify the computational model.

Machine model for NL

A Turing machine with two tapes:

- 1. a read-only input tape;
- 2. a read/write work tape.

On the input tape, the input head can detect symbols, but <u>not</u> change them. The input head must remain on the portion of the tape containing the input. (Like a CD-ROM to a PC)

The work tape may be read and written in the usual way. (Like the main memory to a PC)

Only the cells scanned on the work tape <u>contribute to the</u> space complexity of this type of Turing machine.

For sublinear space bounds, we use only the two-tape model.

Definition

L is the class of languages that are decidable on logarithmic space on a deterministic Turing machine. In other words,

L=SPACE($\log n$).

NL is the class of languages that are decidable in logarithmic space on a nondeterministic Turing machine. In other words,

NL=NSPACE($\log n$).

 $A = \{0^k 1^k \mid k \ge 0\} \in L$

Obviously, $A \in SPACE(n)$. To make it sublinear,

The machine counts the number of 0s and separately, the number of 1s in *binary* on the work tape.

The only space required is that used to record the two counters. Hence the algorithm runs in $O(\log n)$.

$\text{PATH} \in \text{NL}$

PATH

={ $\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t$ }

The NTM: starting at node s, nondeterministically guessing the nodes of a path from s to t. In detail

- The machine only records the position of the current node at at each step on the work tape, not the entire path (which would exceed the logarithmic space requirement),
- The machine nondeterministically selects the next node from among those pointed by the current node,
- Repeat this action until it reaches node t and accepts. Or, until it has gone on for m steps and rejects, where m is the number of nodes in the graph.

It is not clear whether $PATH \in L$ holds.

The result that any f(n) space bounded Turing machine also runs in time $2^{\mathcal{O}(f(n))}$ is no longer true for very small space bounds.

For example, a TM that use $\mathcal{O}(1)$ space may run for *n* steps.

Space vs. Time

To obtain a bound on the running time that applies for every space bound f(n), we give the following definition.

Definition

If M is a Turing machine that has a separate read-only input tape and w is an input, a **configuration of** M **on** w is a setting of the state, the work tape, and the positions of the two tape heads. The input w is not a part of the configuration of M on w.

If *M* runs in f(n) space and *w* is an input of length *n*, the number of configurations of *M* on *w* is $n2^{\mathcal{O}(f(n))}$.

Now, when $f(n) \ge \log n$, we still have that the time complexity of a machine is at most exponential in its space complexity. Savitch's theorem can be also extended to the sublinear space case provided that $f(n) \ge \log n$. **NL-Completeness**

$\mathsf{L} \stackrel{?}{=} \mathsf{N}\mathsf{L}$

Highly unlikely!

< □ ▶ L and NL < ■ ▶ < ■ ▶ ■ ⑦ ۹ ℃ 13/28

We define an **NL-complete** language: the one who is in NL and to which any other language in NL is reducible.

We don't use polynomial time reducibility, because

► all problems in NL except Ø and ∑* are polynomial time reducible to one another.

i.e., polynomial time reducibility is too strong to differentiate problems in NL from one another.

Instead, we use a new type of reducibility called \log *space reducibility*.

log space reduction

Definition

A log *space transducer* is a TM with a read-only input tape, a write-only output tape, and a read/write work tape. The head on the output tape cannot move leftward, so it cannot read what it has written. The work tape may contain $O(\log n)$ symbols.

A log space transducer M computes a function $f: \Sigma^* \to \Sigma^*$, where f(w) is the string remaining on the output tape after Mhalts when it is started with w on its input tape. We call f a log space computable function.

Language *A* is $\log \text{ space reducible}$ to language *B*, written $A \leq_L B$, if *A* is mapping reducible to *B* by means of a \log space computable function *f*.

NL-complete

Definition

A language B is NL-complete if

- 1. $B \in NL$, and
- 2. every $A \in \mathsf{NL}$ is log space reducible to B.

NL-complete

Theorem

If $A \leq_L B$ and $B \in L$, then $A \in L$.

Proof.

f(w) may be too large to fit within the \log space bound!

Suppose the log space reduction function is f, and B is decided by a TM $M_B \in L$. We build a TM M_A for A:

- M_A computes individual symbols of f(w) as required by M_B ,
- ► M_A keeps track of where M_B's input head would be on f(w),
- Every time M_B moves, M_A restarts the computation of f on w from the beginning and ignores all the output except for the desired location of f(w).

Only a single symbol of f(w) needs to be stored at any point, in effect trading time for space.

< □ ▶ Land NL < ■ ▶ < ■ ▶ ■ の ↓ 17/28

Corollary If any NL-complete language is in L, then L=NL.

< □ > Land NL < Ξ > < Ξ > Ξ の Q (* 18/28

NL-complete problem

Theorem PATH is NL-complete.

Proof(1)

For any language A in NL, say NTM M decides A in $\mathcal{O}(\log n)$ space. Given an input w we construct $\langle G, s, t \rangle$ in \log space, where G is a directed graph that

G contains a path from s to t iff M accepts w.

- 1. Nodes of G are the configurations of M on w;
- 2. For configurations c_1 and c_2 of M on w, the pair (c_1, c_2) is an edge of G if c_2 is one of the possible next configurations of M starting from c_1 ;
- 3. Node s is the start configuration of M on w;
- 4. M is modified to have a unique accepting configuration, which is node t.

Proof(2)

The above reduction operates in \log space: there is a \log space transducer T that outputs $\langle G, s, t \rangle$ on input w

1. List the <u>nodes</u> of G

Each node is a configuration of M on w and can be represented in $c \log n$ space for some constant c. T sequentially goes through all possible strings of length $c \log n$ and tests whether each is a legal configuration of Mon w, and output those that pass the test.

2. List the edges of G

T tries all pairs (c_1,c_2) , tests whether each is a legal configuration of M on w. Those that do are added to the output tape.

Corollary

 $NL \subseteq P$.

Proof.

- 1. $A \in \mathsf{NL}$ then $A \leq_L \mathsf{PATH}$;
- 2. As any TM uses space f(n) runs in time $n2^{\mathcal{O}(f(n))}$, a log space reducer also runs in polynomial time;
- 3. 1. and 2. imply A is polynomial time reducible to *PATH*;

▲□▶_{Land NL} < 토▶ < 토▶ < 토▶ < 토 < 오
 22/28

4. *PATH*∈P.

NL=coNL

Theorem (Immerman-Szelepcsényi Theorem 1988,1987) *NL=coNL*.

< □ > Land NL < Ξ > < Ξ > Ξ の Q (24/28

Proof

PATH ={ $\langle G, s, t \rangle$ | There is no path from *s* to *t* in *G*}.

Suppose *G* has *m* nodes in all (represented by [m]). Let *c* be the number of nodes in *G* that are reachable from *s*. Consider the input $\langle G, s, t, c \rangle$ first.

The machine M works as following:

- Initialize $\theta = 0$, for every node $u \in [m]$:
 - 1. M nondeterministically guess if u is reachable from s.
 - 1.1 if u = t and the guess is YES, reject.
 - 1.2 if $u \neq t$ and the guess is YES, verify the guess:
 - Guessing a path of length at most m from s to u.
 - *i*. If the verifying passes: $\theta + +$;
 - ii. If the verifying fails: reject.

• If $\theta = c$, accept; otherwise, reject.

Proof (to get c)

 $A_i \quad (0 \leq i \leq m) \text{ is defined as the collection of nodes that are at a distance of } i \text{ or less from } s.$

Then $A_0 = \{s\}$, $A_i \subseteq A_{i+1}$. Let $c_i = |A_i|$, then $c = c_m$.

Obviously $c_0 = 1$, we will calculate c_{i+1} from c_i .

Initialize c_{i+1} = 1.
For every node v, repeat: c'_i = 0,
1. for every node u in G, guess whether u ∈ A_i
1.1 If YES, verify the guess: Guessing the path of length at most i from s to u.
If the verifying passes, c'_i + +;
Test if (u, v) ∈ G: If YES, c_{i+1} + + and return (try another v); otherwise return; (try another u)
otherwise return. (try another u)
If c'_i ≠ c_i, reject. (start another branch of 1.)

(try another v)

• Output c_{i+1} .

Proof (the final algorithm) Here is an algorithm for 'no *PATH'*. Let m be the number of nodes of G.

M

input $\langle G, s, t \rangle$:	
Let $c_0 = 1$.	$\llbracket A_0 = \{s\} \text{ has } 1 \text{ node } \rrbracket$
For $i = 0$ to $m - 1$:	$\llbracket \text{ compute } c_{i+1} \text{ from } c_i \rrbracket$
Let $c_{i+1} = 1$.	$[c_{i+1} \text{ counts nodes in } A_{i+1}]$
For each node $v \neq s$ in G :	$\llbracket \text{check if } v \in A_{i+1} \rrbracket$
Let $d = 0$.	$\llbracket d \text{ re-counts } A_i \rrbracket$
For each node u in G :	$\llbracket \text{check if } u \in A_i \rrbracket$
7. Nondeterministically either perform or skip these steps:	
Nondeterministically for	ollow a path of length at most <i>i</i>
from s and reject if it doesn't end at u.	
Increment d.	\llbracket verified that $u \in A_i \rrbracket$
If (u, v) is an edge of	G , increment c_{i+1} and go to
stage 5 with the next v .	\llbracket verified that $v \in A_{i+1} \rrbracket$
If $d \neq c_i$, then <i>reject</i> .	[check whether found all A_i]
Let $d = 0$.	c_m now known; d re-counts A_m]
For each node u in G :	$\llbracket \text{check if } u \in A_m \rrbracket$
14. Nondeterministically either perform or skip these steps:	
15. Nondeterministically follow a path of length at most m	
from s and reject if it doesn't end at u.	
If $u = t$, then reject.	[found path from s to t]
Increment d.	\llbracket verified that $u \in A_m$ \rrbracket
If $d \neq c_m$, then <i>reject</i> .	$\llbracket \text{ check whether found all of } A_m \rrbracket$
Otherwise, accept."	
	a input $\langle G, s, t \rangle$: Let $c_0 = 1$. For $i = 0$ to $m - 1$: Let $c_{i+1} = 1$. For each node $v \neq s$ in G : Let $d = 0$. For each node u in G : Nondeterministically eith Nondeterministically for from s and $reject$ if it d Increment d . If (u, v) is an edge of stage 5 with the next v . If $d \neq c_i$, then $reject$. Let $d = 0$. For each node u in G : Nondeterministically either pe Nondeterministically either pe Nondeterministically either pe Nondeterministically follow from s and $reject$ if it doesn If $u = t$, then $reject$. Increment d . If $d \neq c_m$, then $reject$. Otherwise, $accept$."

6

Complexity classes so far

$\mathsf{L}\subseteq\mathsf{N}\mathsf{L}=\mathsf{co}\mathsf{N}\mathsf{L}\subseteq\mathsf{P}\subseteq\mathsf{N}\mathsf{P}\subseteq\mathsf{PSPACE}.$

< □ > Land NL < Ξ > < Ξ > Ξ の Q (* 28/28