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Definition
Let M be a DTM that halts on all inputs. The space complexity
of M is the function f : N→ N, where f(n) is the maximum
number of tape cells that M scans on any input of length n. If
the space complexity of M is f(n), we also say that M runs in
space f(n).

If M is an NTM wherein all branches halt on all inputs, we
define its space complexity f(n) to be the maximum number of
tape cells that M scans on any branch of its computation for
any input of length n.
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Definition
Let f : N→ R+ be a function. The space complexity classes,

SPACE(f(n))={L | L is a language decided
by an O (f(n)) space DTM}

NSPACE(f(n))={L | L is a language decided
by an O (f(n)) space NTM}
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SAT ∈ SPACE(n)

M1 on 〈ϕ〉, where ϕ is a Boolean formula:
1. For each truth assignment to the variable x1, . . . , xm of ϕ:
2. Evaluate ϕ on that truth assignment.
3. If ϕ ever evaluated to 1, then accept; if not, then reject.

M1 runs in linear space.
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ALLNFA ∈ NSPACE(n)

ALLNFA = {〈A〉 | A is an NFA and L(A) = Σ∗}.

N on 〈M〉, where M is an NFA:
1. Place a marker on the start state of the NFA.
2. Repeat 2q times, where q is the number of states of M :
3. Nondeterministically select an input symbol and change

the positions of the markers on M ’s state to simulate
reading the symbol.

4. Accept if stage 2 and 3 reveal some string that M rejects,
that is if at some point none of the markers lie on accept
state of M . Otherwise, reject.
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Savitch’s Theorem
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Theorem (Savitch, 1969)
For any function f : N→ R+, where f(n) > n,

NSPACE(f(n)) ⊆ SPACE(f2(n)).
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Proof (1)

CANYIELD on input c1, c2 and t:
1. If t = 1, then test whether c1 = c2 or whether c1 yields c2 in

one step according to the rules of N . Accept if either test
succeeds; reject if both fail.

2. If t > 1, then for each configuration cm of N using space
f(n):

3. Run CANYIELD(c1, cm, t/2).
4. Run CANYIELD(cm, c2, t/2).
5. If step 3 and 4 both accept, then accept.
6. If haven’t yet accept, then reject.



Space Complexity 12/44

Proof (2)

I Modify N so that when it accepts, it clears its tape and
moves the head to the leftmost cell - thereby entering a
configuration caccept.

I Let cstart be the start configuration of N on w.
I We select a constant d so that N has no more than 2d·f(n)

configurations using f(n) tape, where n = |w|.
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Proof (3)

M on input w:
1. Output the result of CANYIELD

(
cstart, caccept, 2

d·f(n)).
M uses space

O
(

log 2d·f(n) · f(n)
)

= O
(
f2(n)

)
.

Where do we get f(n)?

M tries f(n) = 1, 2, 3, . . . .
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The Class PSPACE
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Definition
PSPACE is the class of languages that are decidable in
polynomial space on a deterministic Turing machine. In other
words,

PSPACE =
⋃
k

SPACE
(
nk
)
.

We could also define

NPSPACE =
⋃
k

NSPACE
(
nk
)
.

Then by Savitch’s Theorem

NPSPACE = PSPACE.
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The relationship of PSPACE with P and NP

A machine which runs in time t can use at most space t.

Hence

P ⊆ PSAPCE and NP ⊆ NPSPACE = PSPACE.
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PSPACE and EXPTIME

Let f : N→ R+ satisfy f(n) ≥ n. Then a TM uses f(n) space
can have at most

f(n) · 2O(f(n))

configurations. Therefore it must run in time f(n) · 2O(f(n)).

Hence

PSAPCE ⊆ EXPTIME =
⋃
k

TIME
(

2n
k
)
.
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We know

P ⊆ NP ⊆ PSAPCE = NPSPACE ⊆ EXPTIME

and it is easy to show P6=EXPTIME.

The general consensus is

8.3 PSPACE-COMPLETENESS 337

believe that all the containments are proper. The following diagram depicts
the relationships among these classes, assuming that all are different.

FIGURE 8.7

Conjectured relationships among P, NP, PSPACE, and EXPTIME

8.3
PSPACE-COMPLETENESS

In Section 7.4, we introduced the category of NP-complete languages as rep-
resenting the most difficult languages in NP. Demonstrating that a language is
NP-complete provides strong evidence that the language is not in P. If it were,
P and NP would be equal. In this section, we introduce the analogous notion
PSPACE-completeness for the class PSPACE.

DEFINITION 8.8

A language B is PSPACE-complete if it satisfies two conditions:

1. B is in PSPACE, and

2. every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is PSPACE-hard.

In defining PSPACE-completeness, we use polynomial time reducibility as
given in Definition 7.29. Why don’t we define a notion of polynomial space
reducibility and use that instead of polynomial time reducibility? To understand
the answer to this important question, consider ourmotivation for defining com-
plete problems in the first place.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
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PSPACE Completeness
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Definition
A language B is PSPACE-complete if

1. B is in PSPACE, and
2. every A ∈PSAPCE is polynomial time reducible to B.

If B merely satisfies condition 2, then it is PSPACE-hard.
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Why not polynomial space reducibility?

Let A,B ⊆ Σ∗. Then A is polynomial space reducible to B, if a
polynomial space computable function f : Σ∗ → Σ∗ exists,
where for every w

w ∈ A ⇐⇒ f(w) ∈ B.

Remark
1. Let B be a language with ∅ 6= B 6= Σ∗. Then every

A ∈PSPACE is polynomial space reducible to B.
2. Let B ∈ P and A be polynomial space reducible to B. It is

not known that A ∈P too.
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The TQBF problem
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I A Boolean formula contains Boolean variables, the
constant 0 and 1, and the Boolean operations ∧, ∨, and ¬.

I The universal quantifiers ∀ in ∀ϕ means that ϕ is true for
every value of x in the universe.

I The existential quantifiers ∃ in ∃ϕ means that ϕ is true for
some value of x in the universe.

I Boolean formulas with quantifiers are
quantified Boolean formulas. For such formulas, the
universe is {0, 1}. E.g.

∀x∃y [(x ∨ y) ∧ (x ∨ y)] .

I When each variable of a formula appears within the scope
of some quantifier, the formula is fully quantified. A fully
quantified Boolean formula is always either true or false.
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The TQBF problem

The TQBF problem is to determine whether a fully quantified
Boolean formula is true or false, i.e.,

TQBF = {〈ϕ〉 | TQBF is a true fully quantifier Boolean formula}.
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Theorem
TQBF is PSPACE-complete.
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Proof (1)

T on 〈ϕ〉, a fully quantifier Boolean formula:
1. If ϕ contains no quantifiers, then it contains no variables,

so evaluate ϕ and accept if it is true; otherwise reject.
2. If ϕ = ∃xψ, recursively call T on ψ first with x:=0 and

second with x:=1. If either result is accept, then accept;
otherwise reject.

3. If ϕ = ∀xψ, recursively call T on ψ first with x:=0 and
second with x:=1. If both results are accept, then accept;
otherwise reject.

T runs in polynomial space.
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Proof (2)

Let A be a language decided by a TM M in space nk. We need
to show A ≤P TQBF.
Using two collections of variables c1, c2 and t > 0, we define a
formula ϕc1,c2,t. If we assign c1 and c2 to actual configurations,
the formula is true if and only if M can go from c1 to c2 in at
most t steps.

Then we can let ϕ be the formula

ϕcstart,caccetp,h,

where h = 2d·n
k
, where d is chosen so that M has no more

than 2d·n
k

configurations on an input of length n.
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Proof (3)

The formula encodes the contents of configuration cells as in
the proof of the Cook-Levin theorem.
I Each cell has several variables associated with it, one for

each tape symbol and state, corresponding to the possible
settings of that cell.

I Each configuration has nk cells and so is encoded by
O
(
nk
)

variables.
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Proof (4)

Let t = 1. We define ϕc1,c2,1 to say that either c1 = c2, or c2
follows from c1 in a single step of M .
I We express c1 = c2 by saying that each of the variables

representing c1 contains the same Boolean value as the
corresponding variables representing c2.

I We express the second possibility by using the technique
presented in the proof of the Cook-Levin theorem.
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Proof (5)

Let t > 1. Our first try is to define

ϕc1,c2,t = ∃m1

[
ϕc1,m1,t/2 ∧ ϕm1,c2,t/2

]
where m1 represents a configuration of M .
I ϕc1,c2,t is true if and only if M can go from c1 to c2 within t

steps.
I But it is of size roughly t, which could be 2d·n

k
, exponential

in n.
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Proof (6)

Instead we define

ϕc1,c2,t = ∃m1∀(c3, c4) ∈ {(c1,m1), (m1, c2)}
[
ϕc3,c4,t/2

]
.

Then the size of ϕc1,c2,t is log t, bounded by

log 2d·n
k

= nO(k).
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Winning strategies for games
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The formula game

Let
ϕ = ∃x1∀x2∃x3 · · ·Qxk [ψ]

We associate a game with ϕ.
1. Two players, Player A and Player E, take turns selecting

the values of the variables x1, . . . , xk.
2. Player A selects values for the variable bounded to ∀.
3. Player E selects values for the variable bounded to ∃.
4. At the end, if ψ is true, then Player E wins; otherwise

Player A wins.
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Example
Player E has a winning strategy for

∃x1∀x2∃x3 [(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3)].

Example
Player A has a winning strategy for

∃x1∀x2∃x3 [(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3)].



Space Complexity 35/44

Let

FORMULA-GAME={〈ϕ〉| Player E has a winning strategy
the formula game associated with ϕ}

Theorem
FORMULA-GAME is PSPACE-complete.
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Generalized geography
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1. Two players take turns to name cities from anywhere in the
world.

2. Each city chosen must begin with the same letter that
ended the previous city’s name.

3. Repetition isn’t permitted.
4. The game starts with some designated starting city and

ends when some player can’t continue and thus loses the
game.
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FIGURE 8.12

Portion of the graph representing the geography game

When the rules of geography are interpreted for this graphic representation,
one player starts by selecting the designated start node and then the players take
turns picking nodes that form a simple path in the graph. The requirement that
the path be simple (i.e., doesn’t use any node more than once) corresponds to the
requirement that a city may not be repeated. The first player unable to extend
the path loses the game.

In generalized geography, we take an arbitrary directed graph with a des-
ignated start node instead of the graph associated with the actual cities. For
example, the following graph is an example of a generalized geography game.

FIGURE 8.13

A sample generalized geography game
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Generalized Geography

1. Take an arbitrary directed graph with a designated start
node.

344 CHAPTER 8 / SPACE COMPLEXITY

FIGURE 8.12

Portion of the graph representing the geography game
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one player starts by selecting the designated start node and then the players take
turns picking nodes that form a simple path in the graph. The requirement that
the path be simple (i.e., doesn’t use any node more than once) corresponds to the
requirement that a city may not be repeated. The first player unable to extend
the path loses the game.

In generalized geography, we take an arbitrary directed graph with a des-
ignated start node instead of the graph associated with the actual cities. For
example, the following graph is an example of a generalized geography game.
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A sample generalized geography game
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2. Player 1 starts by selecting the designated start node.
3. Then the players take turns picking nodes that form a

simple path in the graph.
4. The first player unable to extend the path loses the game.
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Let

GG={〈G, b〉| Player I has a winning strategy for the geography
game played on graph G starting at b}.

Theorem
GG is PSPACE-complete.
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Proof (1)

M on 〈G, b〉:
1. If b has outdegree 0, then reject.
2. Remove node b and all connected arrows to get a new

graph G′.
3. For each of the nodes b1, b2, . . . , bk that b originally pointed

at, recursively call M on 〈G′, bi〉.
4. If all of these accept, then Player II has a winning strategy

in the original game, so reject. Otherwise, accept.
M runs in linear space.
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Proof (2)

To show the hardness, we give a reduction from
FORMULA-GAME.

Let
ϕ = ∃x1∀x2∃x3 · · ·Qxk [ψ],

where
I the quantifier begin and end with ∃, and alternate between
∃ and ∀,

I ψ is in conjunctive normal form.
We constructs a geography game on a graph G where optimal
play mimics optimal play of the formula game on ϕ, in which
Player I in the geography game takes the role of Player E in the
formula game, and Player II takes the role of Player A.
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Proof (3)

346 CHAPTER 8 / SPACE COMPLEXITY

The only space required by this algorithm is for storing the recursion stack.
Each level of the recursion adds a single node to the stack, and at mostm levels
occur, wherem is the number of nodes in G. Hence the algorithm runs in linear
space.

To establish the PSPACE-hardness of GG, we show that FORMULA-GAME
is polynomial time reducible to GG. The reduction maps the formula

φ = ∃x1 ∀x2 ∃x3 · · · Qxk [ψ ]

to an instance 〈G, b〉 of generalized geography. Here we assume for simplicity
that φ’s quantifiers begin and end with ∃, and that they strictly alternate between
∃ and ∀. A formula that doesn’t conform to this assumption may be converted
to a slightly larger one that does by adding extra quantifiers binding otherwise
unused or “dummy” variables. We assume also that ψ is in conjunctive normal
form (see Problem 8.12).

The reduction constructs a geography game on a graphG where optimal play
mimics optimal play of the formula game on φ. Player I in the geography game
takes the role of Player E in the formula game, and Player II takes the role of
Player A.

The structure of graphG is partially shown in the following figure. Play starts
at node b, which appears at the top left-hand side ofG. Underneath b, a sequence
of diamond structures appears, one for each of the variables of φ. Before getting
to the right-hand side of G, let’s see how play proceeds on the left-hand side.

FIGURE 8.15

Partial structure of the geography game simulating the formula game
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Figure: At the last node of the left diamonds, it is Player I’s move.
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Proof (4)

8.3 PSPACE-COMPLETENESS 347

Play starts at b. Player I must select one of the two edges going from b. These
edges correspond to Player E’s possible choices at the beginning of the formula
game. The left-hand choice for Player I corresponds to TRUE for Player E in the
formula game and the right-hand choice to FALSE. After Player I has selected
one of these edges—say, the left-hand one—Player II moves. Only one outgoing
edge is present, so this move is forced. Similarly, Player I’s next move is forced
and play continues from the top of the second diamond. Now two edges again
are present, but Player II gets the choice. This choice corresponds to Player A’s
first move in the formula game. As play continues in this way, Players I and II
choose a rightward or leftward path through each of the diamonds.

After play passes through all the diamonds, the head of the path is at the
bottom node in the last diamond, and it is Player I’s turn because we assumed
that the last quantifier is ∃. Player I’s next move is forced. Then they are at node
c in Figure 8.15 and Player II makes the next move.

This point in the geography game corresponds to the end of play in the
formula game. The chosen path through the diamonds corresponds to an as-
signment to φ’s variables. Under that assignment, if ψ is TRUE, Player E wins
the formula game; and if ψ is FALSE, Player A wins. The structure on the right-
hand side of the following figure guarantees that Player I can win if Player E has
won, and that Player II can win if Player A has won.

FIGURE 8.16

Full structure of the geography game simulating the formula game, where
φ = ∃x1 ∀x2 · · · ∃xk [(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ · · · ) ∧ · · · ∧ ( )]
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∃x1∀x2 · · · ∃xk [(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ · · · ) ∧ · · · ].
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