Space Complexity

Huan Long

Shanghai Jiao Tong University

Acknowledgements

Part of the slides comes from a similar course given by Prof.
Yijia Chen.

http://basics.sjtu.edu.cn/~chen/

Textbook

Introduction to the theory of computation
Michael Sipser, MIT

Third edition, 2012

http://basics.sjtu.edu.cn/~chen/

Outline

Space Complexity

Savitch’s Theorem

The Class PSPACE

Space Complexity

Definition

Let M be a DTM that halts on all inputs. The space complexity
of M is the function f : N — N, where f(n) is the maximum
number of tape cells that M scans on any input of length n. If
the space complexity of M is f(n), we also say that M runs in

space f(n).

If M is an NTM wherein all branches halt on all inputs, we
define its space complexity f(n) to be the maximum number of
tape cells that M scans on any branch of its computation for
any input of length n.

Definition
Let f : N — R™ be a function. The space complexity classes,

SPACE(f(n))={L | L is a language decided
by an O (f(n)) space DTM}

NSPACE(f(n))={L | L is a language decided
by an O (f(n)) space NTM}

SAT € SPACE(n)

M, on (p), where ¢ is a Boolean formula:
1. For each truth assignment to the variable z1, ..., x,, of ¢:
2. Evaluate ¢ on that truth assignment.
3. If p ever evaluated to 1, then accept; if not, then reject.
My runs in linear space.

ALLnra € NSPACE(n)

ALLnea = {(A) | Aisan NFAand L(A) = X*}.

N on (M), where M is an NFA:
1. Place a marker on the start state of the NFA.
2. Repeat 27 times, where ¢ is the number of states of M:
3. Nondeterministically select an input symbol and change
the positions of the markers on M’s state to simulate
reading the symbol.

4. Accept if stage 2 and 3 reveal some string that M rejects,
that is if at some point none of the markers lie on accept
state of M. Otherwise, reject.

Savitch’s Theorem

Theorem (Savitch, 1969)
For any function f : N — R*, where f(n) > n,

NSPACE(f(n)) C SPACE(f*(n)).

Proof (1)

CANYIELD on input ¢1, ¢o and ¢:

1.

o o kW

If t =1, then test whether ¢; = c5 or whether ¢; yields ¢, in
one step according to the rules of N. Accept if either test
succeeds; reject if both fail.

If t > 1, then for each configuration ¢, of N using space
f(n):

Run CANYIELD(c1, ¢, t/2).

Run CANYIELD(cyy, ¢2,t/2).

If step 3 and 4 both accept, then accept.
If haven’t yet accept, then reject.

Proof (2)

» Modify N so that when it accepts, it clears its tape and
moves the head to the leftmost cell - thereby entering a
Conﬁguration Caccept.

> Let csiart be the start configuration of N on w.

» We select a constant d so that N has no more than 2¢/()
configurations using f(n) tape, where n = |w]|.

Proof (3)

M on input w:
1. Output the result of CANYIELD (cstart, cacoept. 247).
M uses space

O (1og 9d:f(n) . f(n)) =0 (f2(n)).

Where do we get f(n)?

M tries f(n) =1,2,3,....

The Class PSPACE

Definition
PSPACE is the class of languages that are decidable in
polynomial space on a deterministic Turing machine. In other

words,

PSPACE = _J SPACE (n").
k

We could also define

NPSPACE = | JNSPACE (n*).
k

Then by Savitch’s Theorem
NPSPACE = PSPACE.

The relationship of PSPACE with P and NP

A machine which runs in time ¢ can use at most space t.

Hence

P C PSAPCE and NP C NPSPACE = PSPACE.

PSPACE and EXPTIME

Let f: N — R satisfy f(n) > n. Then a TM uses f(n) space

can have at most
f(n) - 90(f(n))

configurations. Therefore it must run in time f(n) - 20U (),

Hence

PSAPCE C EXPTIME = | JTIME (27“*)
k

We know
P C NP € PSAPCE = NPSPACE C EXPTIME

and it is easy to show P#EXPTIME.

The general consensus is

EXPTIME

PSPACE

PSPACE Completeness

Definition
A language B is PSPACE-complete if
1. Bisin PSPACE, and

2. every A ePSAPCE is polynomial time reducible to B.

If B merely satisfies condition 2, then it is PSPACE-hard.

Why not polynomial space reducibility?

Let A, B C ¥*. Then A is polynomial space reducible to B, if a
polynomial space computable function f : ¥* — »* exists,

where for every w

weA = f(w)eB.

Remark
1. Let B be a language with () £ B # >*. Then every
A ePSPACE is polynomial space reducible to B.
2. Let B € P and A be polynomial space reducible to B. ltis
not known that A P too.

The TQBF problem

A Boolean formula contains Boolean variables, the
constant 0 and 1, and the Boolean operations A, v, and —.

The universal quantifiers V in Vo means that ¢ is true for
every value of x in the universe.

The existential quantifiers 3 in 3p means that ¢ is true for
some value of x in the universe.

Boolean formulas with quantifiers are
quantified Boolean formulas. For such formulas, the
universe is {0,1}. E.g.

Vzdy [(zVy) A (@ V).

When each variable of a formula appears within the scope
of some quantifier, the formula is fully quantified. A fully
quantified Boolean formula is always either true or false.

The TQBF problem

The TQBF problem is to determine whether a fully quantified
Boolean formula is true or false, i.e.,

TQBF = {(¢) | TQBF is a true fully quantifier Boolean formula}.

Theorem
TQBF is PSPACE-complete.

Proof (1)

T on (), a fully quantifier Boolean formula:

1. If ¢ contains no quantifiers, then it contains no variables,
so evaluate ¢ and accept if it is true; otherwise reject.

2. If ¢ = Jz9), recursively call T' on v first with x:=0 and
second with x:=1. If either result is accept, then accept;
otherwise reject.

3. If ¢ = V), recursively call T on) first with x:=0 and
second with x:=1. If both results are accept, then accept;
otherwise reject.

T runs in polynomial space.

Proof (2)

Let A be a language decided by a TM M in space »n*. We need
to show A <p TQBF.

Using two collections of variables ¢1, co and ¢ > 0, we define a
formula ¢, ., +. If we assign ¢; and ¢, to actual configurations,
the formula is true if and only if M can go from ¢; to ¢z in at
most ¢ steps.

Then we can let ¢ be the formula

(
VDCstart:Caccetp hs

where h = 29" where d is chosen so that M has no more
than 247" configurations on an input of length n.

Proof (3)

The formula encodes the contents of configuration cells as in
the proof of the Cook-Levin theorem.

» Each cell has several variables associated with it, one for
each tape symbol and state, corresponding to the possible
settings of that cell.

» Each configuration has n* cells and so is encoded by
O (nk) variables.

Proof (4)

Let t = 1. We define ¢, ,,1 to say that either ¢c; = ¢, or 2
follows from ¢; in a single step of M.

» We express c¢; = ¢y by saying that each of the variables
representing c¢; contains the same Boolean value as the
corresponding variables representing cs.

> We express the second possibility by using the technique
presented in the proof of the Cook-Levin theorem.

Proof (5)

Let ¢ > 1. Our first try is to define

Per,cot = dmy [9901,7711.1,/2 A @ml,(‘g.l,/ﬂ

where m; represents a configuration of M.

> ©c1,e0,t 18 true if and only if M can go from ¢; to cp within ¢
steps.

> But it is of size roughly ¢, which could be 24" | exponential
in n.

Proof (6)

Instead we define
Per,eat = E|m1V(03, 64) € {(Clv ml)? (mh CQ)} [@(:3,@,1&/2] .
Then the size of ¢, ., is logt, bounded by

log gdn® _ Ok),

Winning strategies for games

The formula game

Let

¢ = Jx1Vaodxs - - - Qg [¢]

We associate a game with .

1.

Two players, Player A and Player E, take turns selecting
the values of the variables x4, ..., z.

Player A selects values for the variable bounded to V.
Player E selects values for the variable bounded to 3.

At the end, if ¢ is true, then Player E wins; otherwise
Player A wins.

Example
Player E has a winning strategy for

Jz1VeoTdws [(z1 V 22) A (22 V x3) A (T2 V T3)].

Example
Player A has a winning strategy for

Tz VeoTdws [(z1 V 22) A (22 V x3) A (T2 V T3)].

Let

FORMULA-GAME={{y)| Player E has a winning strategy
the formula game associated with ¢}

Theorem
FORMULA-GAME is PSPACE-complete.

Generalized geography

. Two players take turns to name cities from anywhere in the
world.

. Each city chosen must begin with the same letter that
ended the previous city’s name.

. Repetition isn’t permitted.

. The game starts with some designated starting city and

ends when some player can’t continue and thus loses the
game.

Peoria

Generalized Geography

1. Take an arbitrary directed graph with a designated start
node.

2. Player 1 starts by selecting the designated start node.

3. Then the players take turns picking nodes that form a
simple path in the graph.

4. The first player unable to extend the path loses the game.

Let

GG={(G,b)| Player | has a winning strategy for the geography
game played on graph G starting at b}.

Theorem
GG is PSPACE-complete.

Proof (1)

M on (G, b):
1. If b has outdegree 0, then reject.
2. Remove node b and all connected arrows to get a new
graph G'.
3. For each of the nodes b1, b, ..., b, that b originally pointed
at, recursively call M on (G, b;).

4. If all of these accept, then Player Il has a winning strategy
in the original game, so reject. Otherwise, accept.

M runs in linear space.

Proof (2)

To show the hardness, we give a reduction from
FORMULA-GAME.

Let
® = 31’1V$23$3 te ka [?7/)},
where
» the quantifier begin and end with 3, and alternate between
JandV,

» 1 is in conjunctive normal form.

We constructs a geography game on a graph G where optimal
play mimics optimal play of the formula game on ¢, in which
Player | in the geography game takes the role of Player E in the
formula game, and Player Il takes the role of Player A.

Proof (3)

Figure: At the last node of the left diamonds, it is Player I's move.

Proof (4)

Jr Vg - - Jap [(x1 VI Va3) AN(T2 VI3V -) A---].

	Space Complexity
	Savitch's Theorem
	The Class PSPACE

