Intractability

Huan Long

Shanghai Jiao Tong University

Acknowledgements

Part of the slides comes from a similar course given by Prof.
Yijia Chen.

http://basics.sjtu.edu.cn/~chen/

Textbook

Introduction to the theory of computation
Michael Sipser, MIT

Third edition, 2012

http://basics.sjtu.edu.cn/~chen/

Outline

Hierarchy Theorems

Relativization

Circuit Complexity

Main objective

Proving the existence of problems that are decidable in
principle but not in practice.
—that is, problems that are decidable but intractable.

Hierarchy Theorems

Intuitively, giving a Turing machine more time or space should
increase the class of problems that it can solve.

Yes, the hierarchy theorem.

Space constructible

Definition

A function f : N — N, where f(n) is at least O (logn), is called
space constructible if the function that maps the string 1™ to the
binary representation of f(n) is computable in space O (f(n)).

In other words, f is space constructible if some O (f(n)) space
TM exists that always halts with the binary representation of
f(n) on its tape when started on input 1.

Examples for space constructible functions

> n?

> nlogn
> logn
> ...

Note that when showing functions f(n) that are o (n) to be
space constructible, we use a separate read-only input tape.

Space hierarchy theorem

Theorem

For any space constructible function f : N — N, a language A

exists that is decidable in O (f(n)) space but notin o (f(n))
space.

Proof idea

We demonstrate a language A which is decidable in O (f(n))
space while notin o (f(n)) space.

We describe A by giving an algorithm D that decides it. D runs
in O (f(n)) space and it ensures that A is different from any
language that is decidable in o (f(n)) space.

Suppose M is a TM that decides a language in o (f(n))
space, D will implement the diagonalization method: D ensures
that A different from M’s language in at least one place. i.e.,
the place corresponding to (M).

D runs M on input (M) within the space bound f(n). If M halts
within that much space, D accepts iff M rejects. (If M doesn’t
halt, D just rejects.).

Two technical details

1. Even when M runs in o (f(n)) space, it may use more than
f(n) space for small n. (When the asymptotic behavior
hasn'’t ‘kicked in’ yet).

Sol: Padding. (M)10* give additional opportunities to avoid
M’s language.

2. When D runs M on some string, M may get into an infinite
loop, while D should be a decider.

Sol: Counting. Let D counts the number of steps used in
simulating M and reject if the counter ever exceeds 2/(™).

Proof

The following O (f(n)) space algorithm D decides a language
A that is not decidable in o (f(n)) space.
D : Oninput w

1. Let n be the length of w.

2. Compute f(n) using space constructibility and mark off this
much tape. If later stages ever attempt to use more, reject.

3. If w is not of the form (A)10* for some TM M, reject.

4. Simulate M on w while counting the number of steps used
in the simulation. If the count ever exceeds 27", reject.
(Note here may have a constant factor overhead: if M runs
in g(n) space, then D uses d - g(n) space to simulate M for
some constant d that depends on M)

5. If M accepts, reject. If M rejects, accept.

Space hierarchy

Corollary

For any two functions fi, fo : N — N, where f1(n) is o (fa(n))
and f» is space constructible, SPACE(f1(n)) C SPACE(f2(n)).

Corollary
For any two real numbers 0 < e < €9

SPACE(n®') C SPACE(n®).

Space hierarchy

Corollary
NL c PSPACE.

Proof.
» By Savitch’s theorem NL C SPACE(log” n),
> While SPACE(log?n) c SPACE(n).

Corollary
TQBF ¢ NL.

Intractable problem

Definition
EXPSPACE = | J, SPACE(2™").

Corollary
PSPACE c EXPSPACE.

Proof.
SPACE(n*) C SPACE(n'°s™) c SPACE(2") C EXPSPACE. [

An EXPSPACE complete problem

Extend the regular expression (a, €, (), Ry U Ry, Ry o Ry, R*) with
1: the exponentiation operation defined as:
k
——
RF=Rtk=RoRo---oR

Definition
A language B is EXPSAPCE-complete if
1. B € EXPSPACE, and
2. every A in EXPSPACE is polynomial time reducible to B.

Theorem
EQpexy = {(Q, R) | Q and R are equivalent regular
expressions with exponentiation.}
is EXPSAPCE-complete.

Time constructible

Definition

A function ¢ : N — N, where t(n) is at least O (nlogn), is called
time constructible if the function that maps the string 1™ to the
binary representation of ¢(n) is computable in time O (t(n)).

In other words, t is space constructible if some O (t(n)) time
TM exists that always halts with the binary representation of
t(n) on its tape when started on input 1".

Examples for time constructible functions

nlogn

n\/n

2’I'L

Time hierarchy theorem

Theorem

For any time constructible functiont : N — N, a language A
exists that is decidable in O (t(n)) space but not decidable in
o(t(n)/logt(n)) time.

Proof idea

We construct a TM D which decides a language A in time

O (t(n)), whereby A cannot be decided in o (t(n)/logt(n)) time.
Here, D takes an input w of the form (A/)10* and simulate M
on input w, making sure not to use more than ¢(n) time. If M
halts within that much time, D gives the opposite output.

For time complexity, the above simulation introduces a
logarithmic factor overhead.

Proof

The following O (¢(n)) time algorithm D decides a language A
that is not decidable in o (t(n)/log t(n)) time.
D : Oninput w
1. Let n be the length of w.
2. Compute ¢(n) using time constructibility and store the
value "t(n)/logt(n)™ in a binary counter.Decrement this

counter before each step used to carry out stage 4,5. If the
counter ever hits 0, reject.

3. If w is not of the form (AM)10* for some TM M, reject.
4. Simulate M on w.
5. If M accepts, reject. If M rejects, accept.

Time hierarchy

Corollary

For any two functions t,,t; : N — N, where t1(n) is
o (t2(n)) /logta(n) and ts is time constructible,
TIME(t1(n)) C TIME(t2(n)).

Corollary
For any two real numbers 1 < ¢1 < eo,

TIME(n®") C TIME(n®).

Corollary
P c EXPTIME.

Relativization

Oracle model

An oracle for a language A is a device that is capable of
reporting whether any string w is a member of A. An oracle
Turing machine M4 is a modified Turing machine that has the
additional capability of querying an oracle for A. Whenever M4
writes a string on a special oracle tape, it is informed whether
that string is @ member of A in a single computation step.

Let P4 be the class of languages decidable with a polynomial
time oracle Turing machine that uses oracle A. Define the class
N P4 similarly.

Examples

» NP C PSAT
» coNP C PSAT

» MIN-FORMULA C NPSAT

Limits of the diagonalization method

At its core, the diagonalization method is a simulation of one
TM by another: TM M; simulates TM M, and then behave
differently.

Give them the same oracle O, M can simulate MY just as
before.

Thus any theorem proved about TM by using only the
diagonalization method will still hold if both machines were
given the same oracle.

The same works for ‘P versus NP’.

Limits of the diagonalization method

‘P versus NP’

Theorem
1. An oracle A exists whereby P* # NP4,
2. An oracle B exists whereby P® = NP?.

Proof: 3B (P” = NP”)

Let B be TQBF will do the job.

NPTABF c NPSPACE C PSAPCE C PTQBF

Proof: 3A (P* £ NP4) (1)

For an oracle A, define language

La={w|3recAllz = |w|]}

Obviously, for any 4, L4 € NP4,
We will build an A such that L4 ¢ P*.

Proof: 3A (P* # NP4) (2)

Construct As.t. Ly ={w | Iz € A ||z E |w|]} & P4

Let My, M>, ... be a list of all polynomial time oracle TMs.
Assume M; runs in time n’. Language A will be constructed in
stages. Each stage determines the status of only a finite
number of strings.

Stage 7 will ensure that M;* does not decide A.

Proof: 3A (P* £ NP4) (3)
Build Ast Ly={w|3ze A[|z = |w|]} &P~ Let My, Mo, ...
be a list of all polynomial time oracle TMs. Assume M, runs in
time n’. Stage 7 will ensure that A//* does not decide A.
» Initialize A =0 ;
» Stage i (: > 1): So far A is finite and suppose string ¢ € A
is of maximal length so far.
Choose n such that both n > |¢| and 2" > »'.
Run M; on input 1™, if M; queries a string y, respond to its
oracle queries as follows:
» y’s status has been determined: respond consistently;
» y’s status is undetermined: respond NO, declare y ¢ A.
— If M; accepts 1™:declare A does not contain any string
of length n.
— If M; rejects 1™:declare an un-queried string of length n
to be in A.
— Declare any string of length at most n, whose status
remains undetermined at this point, is out of A.
Proceed with Stage i + 1.

In summary

The relativization method tells us that to solve the P versus NP
question, we must analyze computation, not just simulate them.

Circuit Complexity

Computers are built from electronic devices wired together in a
design called a digital circuit. The theoretical counterpart to
digital circuit is Boolean circuit.

Boolean circuit

Definition

A boolean circuit is a collection of gates and inputs connected
by wires. Cycles are not permitted. Gates take three forms:
AND gates, OR gates, and NOT gates, as shown schematically

in the following figure.

inputs

outputs
AND OR NOT

Boolean circuit

The inputs are labeled x4, ..., z,. One of the gates is
designated the output gate.

Example

input x T x3
variables

output gate

Boolean circuit

A Boolean circuit computes an output value from a setting of
the inputs by propagating values along the wires and
computing the function associated with the respective gates
until the output gate is assigned a value.

Example

inputs

Boolean circuit
To a Boolean circuit C' with n input variables, we associate a
function fc : {0,1}" — {0, 1}, where if C outputs b when its
inputs x4, ...,xz, are settiay,...,a,, we write
fela, ..., ay) = b. We say that C' computes the function fc.
Example
The n—input Parity function parity,, : {0,1}"™ — {0, 1} outputs 1
if an odd number of 1s appear in the input variables.

Figure: parity,

Circuit family

As any particular circuit can handle only inputs of some fixed
length, whereas a language may contain string of different
lengths. So instead of using a single circuit to test language
membership, we use an entire family of circuits: one for each
input length.

Definition

A circuit family C'is an infinite list of circuits, (Cy, C1,Cs, . ..)
where C,, has n input variables. We say that C' decides a
language A over {0, 1} if for every string w,

we A iff Cp(w) =1,

where n is the length of w.

Circuit complexity

The size of a circuit is the number of gates that it contains. Two
circuits are equivalent if they have the same input variables and
output the same value on every input assignment. A circuit is
size minimal if no smaller circuit is equivalent to it. The size
complexity of a circuit family (Cy, C1, Cs, .. .) is the function

f N —= N, where f(n) is the size of C,,.

The depth of a circuit is the length of the longest path from an
input variable to the output variable.

Similarly, we have depth minimal circuits and circuit families,
and the depth complexity of circuit families.

Circuit complexity

Definition

The circuit complexity of a language is the size complexity of a
minimal circuit family for that language. The circuit depth
complexity of a language is defined similarly, using depth
instead of size.

Example
parity,, has circuit complexity O (n).

Circuit complexity

Theorem
Lett : N — N be a function, where t(n) > n. If A € TIME(t(n)),
then A has circuit complexity O (t*(n)).

Proof (1)

123 Co t(n)
cell[l.,l]—/—qnoo 11o0lulululul -+ |u startconﬁguratlox?
second configuration
0101
0
cell[t(n),1]
(accept
position)
t(n)th configuration

Proof (2)

Proof (3)

© Q@ ---

CIRCUIT-SAT

We say that a Boolean circuit is satisfiable if some setting of the
inputs causes the circuit to output 1. The circuit-satisfiability
problem tests whether a circuit is satisfiable. Let

CIRCUIT-SAT = {(C) | C is a satisfiable Boolean circuit}.

Theorem
CIRCUIT-SAT is NP-complete.

3SAT

Theorem
3SAT is NP-complete.

Proof.
We give a polynomial time reduction f from CIRCUIT-SAT to
3SAT. O

Proof

Let C be a circuit containing inputs z1, ..., 2; and gates
g1, - - - gm- We will build a formula ¢ from C. Each of ¢’s
variables corresponds to a wire in C. The z; variables
corresponds to the input wires, and the g; variables correspond
to the wires at the gate outputs. We relabel ¢’s variables as
Wiy ey Witm-
» w; = NOT(w;): (w; = wj) A (w; — w5);
> wp = AND(UJZ, wj): ((WZ/\W]) — @)/\
((wi A wy) = W) A ((wi A7) — W) A ((wi Awy) — wie);
» wi = OR(w;, wj): ((w; A wy) — Wk)A
((Wi/\wj) — wk) N ((wl /\uT]) — wk) VAN ((’U)Z /\wj) — wk).

	Hierarchy Theorems
	Relativization
	Circuit Complexity

