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Main objective

Proving the existence of problems that are decidable in
principle but not in practice.

– that is, problems that are decidable but intractable.
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Hierarchy Theorems
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Intuitively, giving a Turing machine more time or space should
increase the class of problems that it can solve.

Yes, the hierarchy theorem.
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Space constructible

Definition
A function f : N→ N, where f(n) is at least O (log n), is called
space constructible if the function that maps the string 1n to the
binary representation of f(n) is computable in space O (f(n)).

In other words, f is space constructible if some O (f(n)) space
TM exists that always halts with the binary representation of
f(n) on its tape when started on input 1n.
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Examples for space constructible functions

I n2

I n log n

I log n

I · · ·
Note that when showing functions f(n) that are o (n) to be
space constructible, we use a separate read-only input tape.
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Space hierarchy theorem

Theorem
For any space constructible function f : N→ N, a language A
exists that is decidable in O (f(n)) space but not in o (f(n))
space.
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Proof idea

We demonstrate a language A which is decidable in O (f(n))
space while not in o (f(n)) space.

We describe A by giving an algorithm D that decides it. D runs
in O (f(n)) space and it ensures that A is different from any
language that is decidable in o (f(n)) space.

Suppose M is a TM that decides a language in o (f(n))
space,D will implement the diagonalization method: D ensures
that A different from M ’s language in at least one place. i.e.,
the place corresponding to 〈M〉.

D runs M on input 〈M〉 within the space bound f(n). If M halts
within that much space, D accepts iff M rejects. (If M doesn’t
halt, D just rejects.).
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Two technical details

1. Even when M runs in o (f(n)) space, it may use more than
f(n) space for small n. (When the asymptotic behavior
hasn’t ‘kicked in’ yet).
Sol: Padding. 〈M〉10∗ give additional opportunities to avoid
M ′s language.

2. When D runs M on some string, M may get into an infinite
loop, while D should be a decider.
Sol: Counting. Let D counts the number of steps used in
simulating M and reject if the counter ever exceeds 2f(n).
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Proof

The following O (f(n)) space algorithm D decides a language
A that is not decidable in o (f(n)) space.
D : On input w

1. Let n be the length of w.
2. Compute f(n) using space constructibility and mark off this

much tape. If later stages ever attempt to use more, reject.
3. If w is not of the form 〈M〉10∗ for some TM M , reject.
4. Simulate M on w while counting the number of steps used

in the simulation. If the count ever exceeds 2f(n), reject.
(Note here may have a constant factor overhead: if M runs
in g(n) space, then D uses d · g(n) space to simulate M for
some constant d that depends on M .)

5. If M accepts, reject. If M rejects, accept.
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Space hierarchy

Corollary
For any two functions f1, f2 : N→ N, where f1(n) is o (f2(n))
and f2 is space constructible, SPACE(f1(n)) ⊂ SPACE(f2(n)).

Corollary
For any two real numbers 0 ≤ ε1 < ε2

SPACE(nε1) ⊂ SPACE(nε2).
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Space hierarchy

Corollary
NL ⊂ PSPACE.

Proof.
I By Savitch’s theorem NL ⊆ SPACE(log2 n),
I While SPACE(log2 n) ⊂ SPACE(n).

Corollary
TQBF 6∈ NL.
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Intractable problem

Definition
EXPSPACE =

⋃
k SPACE(2n

k
).

Corollary
PSPACE ⊂ EXPSPACE.

Proof.
SPACE(nk) ⊆ SPACE(nlogn) ⊂ SPACE(2n) ⊆ EXPSPACE.
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An EXPSPACE complete problem

Extend the regular expression (a, ε, ∅, R1 ∪R2, R1 ◦R2, R
?) with

↑: the exponentiation operation defined as:

Rk = R ↑ k =

k︷ ︸︸ ︷
R ◦R ◦ · · · ◦R

Definition
A language B is EXPSAPCE-complete if

1. B ∈ EXPSPACE, and
2. every A in EXPSPACE is polynomial time reducible to B.

Theorem
EQREX↑ = {〈Q,R〉 | Q and R are equivalent regular

expressions with exponentiation.}
is EXPSAPCE-complete.
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Time constructible

Definition
A function t : N→ N, where t(n) is at least O (n log n), is called
time constructible if the function that maps the string 1n to the
binary representation of t(n) is computable in time O (t(n)).

In other words, t is space constructible if some O (t(n)) time
TM exists that always halts with the binary representation of
t(n) on its tape when started on input 1n.
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Examples for time constructible functions

I n log n

I n
√
n

I n2

I 2n

I · · ·
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Time hierarchy theorem

Theorem
For any time constructible function t : N→ N, a language A
exists that is decidable in O (t(n)) space but not decidable in
o (t(n)/ log t(n)) time.
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Proof idea

We construct a TM D which decides a language A in time
O (t(n)), whereby A cannot be decided in o (t(n)/ log t(n)) time.
Here, D takes an input w of the form 〈M〉10∗ and simulate M
on input w, making sure not to use more than t(n) time. If M
halts within that much time, D gives the opposite output.

For time complexity, the above simulation introduces a
logarithmic factor overhead.
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Proof

The following O (t(n)) time algorithm D decides a language A
that is not decidable in o (t(n)/ log t(n)) time.
D : On input w

1. Let n be the length of w.
2. Compute t(n) using time constructibility and store the

value pt(n)/ log t(n)q in a binary counter.Decrement this
counter before each step used to carry out stage 4,5. If the
counter ever hits 0, reject.

3. If w is not of the form 〈M〉10∗ for some TM M , reject.
4. Simulate M on w.
5. If M accepts, reject. If M rejects, accept.



Context Free Language 22/48

Time hierarchy

Corollary
For any two functions t1, t2 : N→ N, where t1(n) is
o (t2(n)) / log t2(n) and t2 is time constructible,
TIME(t1(n)) ⊂ TIME(t2(n)).

Corollary
For any two real numbers 1 ≤ ε1 < ε2,

TIME(nε1) ⊂ TIME(nε2).

Corollary
P ⊂ EXPTIME.
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Relativization
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Oracle model

An oracle for a language A is a device that is capable of
reporting whether any string w is a member of A. An oracle
Turing machine MA is a modified Turing machine that has the
additional capability of querying an oracle for A. Whenever MA

writes a string on a special oracle tape, it is informed whether
that string is a member of A in a single computation step.

Let PA be the class of languages decidable with a polynomial
time oracle Turing machine that uses oracle A. Define the class
NPA similarly.
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Examples

I NP ⊆ PSAT

I coNP ⊆ PSAT

I MIN-FORMULA ⊆ NPSAT
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Limits of the diagonalization method

At its core, the diagonalization method is a simulation of one
TM by another: TM M1 simulates TM M2 and then behave
differently.

Give them the same oracle O, MO
1 can simulate MO

2 just as
before.

Thus any theorem proved about TM by using only the
diagonalization method will still hold if both machines were
given the same oracle.

The same works for ‘P versus NP’.



Context Free Language 27/48

Limits of the diagonalization method

‘P versus NP’

Theorem
1. An oracle A exists whereby PA 6= NPA.
2. An oracle B exists whereby PB = NPB.
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Proof: ∃B (PB = NPB)

Let B be TQBF will do the job.

NPTQBF ⊆ NPSPACE ⊆ PSAPCE ⊆ PTQBF



Context Free Language 29/48

Proof: ∃A (PA 6= NPA) (1)

For an oracle A, define language

LA = {w | ∃x ∈ A [ |x |= |w| ]}.

Obviously, for any A, LA ∈ NPA.

We will build an A such that LA 6∈ PA.
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Proof: ∃A (PA 6= NPA) (2)

Construct A s.t. LA = {w | ∃x ∈ A [ |x |= |w| ]} 6∈ PA.

Let M1,M2, . . . be a list of all polynomial time oracle TMs.
Assume Mi runs in time ni. Language A will be constructed in
stages. Each stage determines the status of only a finite
number of strings.

Stage i will ensure that MA
i does not decide A.
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Proof: ∃A (PA 6= NPA) (3)
Build A s.t. LA = {w | ∃x ∈ A [ |x |= |w| ]} 6∈ PA. Let M1,M2, . . .
be a list of all polynomial time oracle TMs. Assume Mi runs in
time ni. Stage i will ensure that MA

i does not decide A.
I Initialize A = ∅ ;
I Stage i (i ≥ 1): So far A is finite and suppose string ` ∈ A

is of maximal length so far.
Choose n such that both n > |`| and 2n > ni.
Run Mi on input 1n, if Mi queries a string y, respond to its
oracle queries as follows:
I y’s status has been determined: respond consistently;
I y’s status is undetermined: respond NO, declare y 6∈ A.
− If Mi accepts 1n:declare A does not contain any string
of length n.
− If Mi rejects 1n:declare an un-queried string of length n
to be in A.
− Declare any string of length at most n, whose status
remains undetermined at this point, is out of A.
Proceed with Stage i+ 1.
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In summary

The relativization method tells us that to solve the P versus NP
question, we must analyze computation, not just simulate them.
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Circuit Complexity
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Computers are built from electronic devices wired together in a
design called a digital circuit. The theoretical counterpart to
digital circuit is Boolean circuit.
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Boolean circuit

Definition
A boolean circuit is a collection of gates and inputs connected
by wires. Cycles are not permitted. Gates take three forms:
AND gates, OR gates, and NOT gates, as shown schematically
in the following figure.

380 CHAPTER 9 / INTRACTABILITY

DEFINITION 9.21

A Boolean circuit is a collection of gates and inputs connected by
wires. Cycles aren’t permitted. Gates take three forms: AND gates,
OR gates, and NOT gates, as shown schematically in the following
figure.

FIGURE 9.22

An AND gate, an OR gate, and a NOT gate

The wires in a Boolean circuit carry the Boolean values 0 and 1. The gates are
simple processors that compute the Boolean functions AND, OR, and NOT. The
AND function outputs 1 if both of its inputs are 1 and outputs 0 otherwise. The
OR function outputs 0 if both of its inputs are 0 and outputs 1 otherwise. The
NOT function outputs the opposite of its input; in other words, it outputs a 1 if
its input is 0 and a 0 if its input is 1. The inputs are labeled x1, . . . , xn. One of
the gates is designated the output gate. The following figure depicts a Boolean
circuit.

FIGURE 9.23

An example of a Boolean circuit

A Boolean circuit computes an output value from a setting of the inputs by
propagating values along the wires and computing the function associated with
the respective gates until the output gate is assigned a value. The following
figure shows a Boolean circuit computing a value from a setting of its inputs.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.
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Boolean circuit

The inputs are labeled x1, . . . , xn. One of the gates is
designated the output gate.

Example

380 CHAPTER 9 / INTRACTABILITY
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Boolean circuit
A Boolean circuit computes an output value from a setting of
the inputs by propagating values along the wires and
computing the function associated with the respective gates
until the output gate is assigned a value.

Example
9.3 CIRCUIT COMPLEXITY 381

FIGURE 9.24

An example of a Boolean circuit computing

We use functions to describe the input/output behavior of Boolean cir-
cuits. To a Boolean circuit C with n input variables, we associate a function
fC : {0,1}n−→{0,1}, where if C outputs b when its inputs x1, . . . , xn are set to
a1, . . . , an, we write fC(a1, . . . , an) = b. We say that C computes the function
fC . We sometimes consider Boolean circuits that have multiple output gates. A
function with k output bits computes a function whose range is {0,1}k.

EXAMPLE 9.25

The n-input parity function parityn : {0,1}n−→{0,1} outputs 1 if an odd num-
ber of 1s appear in the input variables. The circuit in Figure 9.26 computes
parity4, the parity function on 4 variables.

FIGURE 9.26

A Boolean circuit that computes the parity function on 4 variables
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Boolean circuit
To a Boolean circuit C with n input variables, we associate a
function fC : {0, 1}n → {0, 1}, where if C outputs b when its
inputs x1, . . . , xn are set ti a1, . . . , an, we write
fC(a1, . . . , an) = b. We say that C computes the function fC .

Example
The n−input Parity function parityn : {0, 1}n → {0, 1} outputs 1
if an odd number of 1s appear in the input variables.

9.3 CIRCUIT COMPLEXITY 381
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Figure: parity4
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Circuit family

As any particular circuit can handle only inputs of some fixed
length, whereas a language may contain string of different
lengths. So instead of using a single circuit to test language
membership, we use an entire family of circuits: one for each
input length.

Definition
A circuit family C is an infinite list of circuits, (C0, C1, C2, . . .)
where Cn has n input variables. We say that C decides a
language A over {0, 1} if for every string ω,

ω ∈ A iff Cn(ω) = 1,

where n is the length of ω.
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Circuit complexity

The size of a circuit is the number of gates that it contains. Two
circuits are equivalent if they have the same input variables and
output the same value on every input assignment. A circuit is
size minimal if no smaller circuit is equivalent to it. The size
complexity of a circuit family (C0, C1, C2, . . .) is the function
f : N→ N, where f(n) is the size of Cn.

The depth of a circuit is the length of the longest path from an
input variable to the output variable.

Similarly, we have depth minimal circuits and circuit families,
and the depth complexity of circuit families.
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Circuit complexity

Definition
The circuit complexity of a language is the size complexity of a
minimal circuit family for that language. The circuit depth
complexity of a language is defined similarly, using depth
instead of size.

Example
parityn has circuit complexity O (n).
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Circuit complexity

Theorem
Let t : N→ N be a function, where t(n) ≥ n. If A ∈ TIME(t(n)),
then A has circuit complexity O

(
t2(n)

)
.
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Proof (1)

384 CHAPTER 9 / INTRACTABILITY

We make two assumptions about TM M in defining the notion of a tableau.
First, as we mentioned in the proof idea, M accepts only when its head is on
the leftmost tape cell and that cell contains the  symbol. Second, once M has
halted, it stays in the same configuration for all future time steps. So by looking
at the leftmost cell in the final row of the tableau, cell [t(n), 1], we can determine
whetherM has accepted. The following figure shows part of a tableau forM on
the input 0010.

 
 

FIGURE 9.31

A tableau forM on input 0010

The content of each cell is determined by certain cells in the preceding row.
If we know the values at cell [i− 1, j − 1], cell [i− 1, j], and cell [i − 1, j + 1], we
can obtain the value at cell [i, j] with M ’s transition function. For example, the
following figure magnifies a portion of the tableau in Figure 9.31. The three top
symbols, 0, 0, and 1, are tape symbols without states, so the middle symbol must
remain a 0 in the next row, as shown.

Now we can begin to construct the circuit Cn. It has several gates for each
cell in the tableau. These gates compute the value at a cell from the values of the
three cells that affect it.
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Proof (2)

384 CHAPTER 9 / INTRACTABILITY
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Proof (3)

9.3 CIRCUIT COMPLEXITY 385

To make the construction easier to describe, we add lights that show the out-
put of some of the gates in the circuit. The lights are for illustrative purposes
only and don’t affect the operation of the circuit.

Let k be the number of elements in Γ ∪ (Q × Γ). We create k lights for
each cell in the tableau—one light for each member of Γ, and one light for each
member of (Q×Γ)—or a total of kt2(n) lights. We call these lights light [i, j, s],
where 1 ≤ i, j ≤ t(n) and s ∈ Γ ∪ (Q × Γ). The condition of the lights in a
cell indicates the contents of that cell. If light [i, j, s] is on, cell [i, j] contains the
symbol s. Of course, if the circuit is constructed properly, only one light would
be on per cell.

Let’s pick one of the lights—say, light [i, j, s] in cell [i, j]. This light should be
on if that cell contains the symbol s. We consider the three cells that can affect
cell [i, j] and determine which of their settings cause cell [i, j] to contain s. This
determination can be made by examining the transition function δ.

Suppose that if the cells cell [i− 1, j − 1], cell [i− 1, j], and cell [i− 1, j + 1]
contain a, b, and c, respectively, cell [i, j] contains s, according to δ. We wire the
circuit so that if light [i − 1, j − 1, a], light [i − 1, j, b], and light [i − 1, j + 1, c]
are on, then so is light [i, j, s]. We do so by connecting the three lights at the
i− 1 level to an AND gate whose output is connected to light [i, j, s].

In general, several different settings (a1, b1, c1), (a2, b2, c2), . . . , (al, bl, cl) of
cell [i− 1, j− 1], cell [i− 1, j], and cell [i− 1, j+1]may cause cell [i, j] to contain
s. In this case, we wire the circuit so that for each setting ai, bi, ci, the respective
lights are connected with an AND gate, and all the AND gates are connected with
an OR gate. This circuitry is illustrated in the following figure.

FIGURE 9.32

Circuitry for one light
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CIRCUIT-SAT

We say that a Boolean circuit is satisfiable if some setting of the
inputs causes the circuit to output 1. The circuit-satisfiability
problem tests whether a circuit is satisfiable. Let

CIRCUIT-SAT = {〈C〉 | C is a satisfiable Boolean circuit}.

Theorem
CIRCUIT-SAT is NP-complete.
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3SAT

Theorem
3SAT is NP-complete.

Proof.
We give a polynomial time reduction f from CIRCUIT-SAT to
3SAT.
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Proof

Let C be a circuit containing inputs x1, . . . , xl and gates
g1, . . . gm. We will build a formula φ from C. Each of φ’s
variables corresponds to a wire in C. The xi variables
corresponds to the input wires, and the gi variables correspond
to the wires at the gate outputs. We relabel φ’s variables as
w1, . . . , wl+m.
I wj = NOT(wi): (wi → wj) ∧ (wi → wj);
I wk = AND(wi, wj): ((wi ∧ wj)→ wk)∧

((wi ∧wj)→ wk)∧ ((wi ∧wj)→ wk)∧ ((wi ∧wj)→ wk);
I wk = OR(wi, wj): ((wi ∧ wj)→ wk)∧

((wi ∧wj)→ wk)∧ ((wi ∧wj)→ wk)∧ ((wi ∧wj)→ wk).
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