BASICS Lab

Shanghai Jiao Tong University

Spring, 2024

« 0O

” BasicsessTu ¢

i
v

DA 713

https://basics.sjtu.edu.cn/
https://basics.sjtu.edu.cn/

Course Materials

The Textbook

Glynn Winskel
The Formal Semantics of Programming Languages: An Introduction

The MIT Press, 1993

https://basics.sjtu.edu.cn/

Chapter 0

What is this course about?

https://basics.sjtu.edu.cn/

Programming Languages

» imperative languages: C, C++, Java, Python, ...
» functional languages: Haskell, ML, OCaml, ...
» assembly languages: MASM, NASM, ...

But: Warning!

» This course is not about how to write programs!!!

https://basics.sjtu.edu.cn/

Course Focus

Program Semantics
» programs as mathematical objects
> logical characterizations of programs
» mathematical properties for programs

https://basics.sjtu.edu.cn/

Course Focus

Why study programs mathematically?

» fundamental components
» rising complexity
» main factor in system performance

» main reason for system failure

Potential Hazard of Program Error

» malfunction of codes
» crash of systems

» attack from hackers
> ...

https://basics.sjtu.edu.cn/

Course Focus

Program Verification

Formal approaches for analysing programs:
» rigorous proof for absence of bugs
rigorous proof for absence of vulnerabilities

>
» full enumeration of race situations
» timing analysis of programs

>

https://basics.sjtu.edu.cn/

Course Focus

Testing Approaches

>

>
4
>
>

easy to conduct

can detect normal bugs

less coverage over codes

more tendency to neglect critical bugs

inapplicable in certain situations (e.g., concurrency)

https://basics.sjtu.edu.cn/

Stuxnet

Stuxnet Computer Worm:
> targets Programmable Logic Controllers;
» hinders automation of electromechanical processes;

» damaged Iran’s nuclear plants.

https://basics.sjtu.edu.cn/

WannaCry

WannaCry Ransomware:
» utilizes a flaw in the Microsoft SMB protocol,
» enforces encryption of data and demands ransom;

» affected computers worldwide.

https://basics.sjtu.edu.cn/

Timsort

Timsort Implementation Bug:
» is introduced by optimization on merge sort;
> is widely used;
» causes software crash;

» happens rarely.

https://basics.sjtu.edu.cn/

Retrospect

» Subtle critical bugs are hard to detect through testing.
» Subtle critical bugs can be devastating if they are triggered.

» Subtle critical bugs are vulnerable against adversaries.

https://basics.sjtu.edu.cn/

Successful Stories

functionally-correct operating system: SEL4
hacker-free operating system: CertiKOS
error-free compiler: CompCert, L2C

race-free concurrency: Astrée

vvyYVvyVvVvyy

https://basics.sjtu.edu.cn/

Successful Stories

SEL4 Operating System

< C 8= nusiseisysiems

The selL4 Microkernel 08614
Security is no excuse for poor performance! pem——

‘The world's first operating-system kerel with an end-to-end proof of implementation correctness and security.
enforcement s available as open source.

signup to seit-announce [l Sign up to seld-devel

source: from internet

https://basics.sjtu.edu.cn/

Successful Stories

CertiKOS Operating System

I
CERTIKOS

source: from internet

https://basics.sjtu.edu.cn/

Successful Stories

source: from internet

CompCert Compiler

https://basics.sjtu.edu.cn/

Successful Stories

Astrée Static Analyzer

Project Analyis Editors Edt Tools Help

PEEORPE R OO® ¢« H

Example 1: scenarios Analyzed file: dbinvalid/path/scenarios.c o Original source: src/scenarios.c EE]
© wekome e Q
Configuration B ove cost cousing vertton
o Papocesor [P ——
B pur 7
e % < rec 00 of seinter arithueti
A Annotations BN per = Shrraystockiols
%
i [gr—
@o il R S
L Callgaph L

fl7
it mimeEnzEER) ¢ © 89| ar unintiatized 2) ¢
Bt 15) = 0R10; // hard Cel st e sy e ones e
@)

. 3 .
£ 5 lahort) (unsioned short)ur s+ (unsiancd shorthy || 89 2 = (short) (unsioned shorthux s (snsianed shortv
I ASTREE assert((2=z 66 122 99 LASTREE assert((<= 3

s contot.

|| Type s | |Conment s 8of 8 fvngs veile

Gategory Location__ Clsifction | Comment -

erors: 3
s Ao, c-bound oy scess # scenaioscoL 17 out-of-bound arayndec 15} nt inct

e F © Out-of-bound aray 811719 of-bound aray index(15} not
T e e Y —rr——"
[—
Ruleviolatons: 0 6 ¥ alam (4] Use of uninitialized variables ¥ scenarios.c848-23 uninitilized read: reading & byte(s) ot

| BT P il drfeence derterencing by
oot rces
Reochedeode: 0%) Asseion aure) scenarios 127440 s e _ASTREE ssen(second
Duation: < D
YY) A ount [rnds| Attreahed A ath A sexch 3

source: from internet

https://basics.sjtu.edu.cn/

Successful Stories

L2C: A Formally Verified Compiler From Lustre To C

s LustroSGen
(Simplification or Normalization) Programmed in Caml or Coq.

Programmed and Proved in Coq

) (QustreF1)

[Tyon hociing |

/

(luswe$) ool (CusroR2) (Cuwsts
s G G

RY
p— LustoRGen TransMaindrgs TransTypecms Lustroren | [Outsiueicen
(Eimination of | | (Transiaton of (transation of | | (Eimination | | (Generaton of
o Temporal | | Oupu Stret)

Input Arguments | | Comparison Operations
of the Hain Node | | of Complex Type into
Comparison functions)

Operators)

Transiation of Highr-

~— orier operstorsy | | te s Stvet)
N — — _— _— —
U Ctemp LustreC) (LustreD (CustreE2) (LustreEd) (LustreF2)
Com?) e (Lustret Lustreez, (LustreET, T
v A 12

CompCert Compiler CtempGen ClassityArgsVar SimplEny ResetfuncGen ClassityRetsVar
(Goneration o Glamp | | (Soparstoofinput | | (Transiation of mput | | (Gonerationof | | (Soparateof Rourn

rermedite o | | argamoniota nodermto s | | Reset puncions) | | Variabtos hom
P Reprosontion) | | ORcinary vaiptes) | | Siuet s Simply the ORdinary vriaples)

Assembly) Semanic Envonment)

source: from internet

https://basics.sjtu.edu.cn/

Successful Stories

Amazon Web Services

dWsS

source: from internet

https://basics.sjtu.edu.cn/

Successful Stories

Huawei Harmony OS

>

7

HarmonyOS

-

source: from internet

https://basics.sjtu.edu.cn/

Perspective

Program Verification
» is difficult, but not infeasible.
» has much better guarantee than testing.

» is necessary in critical systems.

In Our Course:
Program semantics provides a solid theoretical foundation for program
verification.

https://basics.sjtu.edu.cn/

What will the course cover?

[m]

BASICS@SJTU

DA 2713

https://basics.sjtu.edu.cn/

Course Content

Program Semantics
» operational semantics: how do programs execute ?
» denotational semantics: what do programs output ?

» axiomatic semantics: which requirements do programs meet ?

https://basics.sjtu.edu.cn/

Course Content

Types of Programs
» (mostly) imperative programs
> (some) functional programs

Technical Content
» logical definitions for programs
» mathematical background behind program semantics

https://basics.sjtu.edu.cn/

Course Content

vVvyYVvyVvVYyyvyy

Chapter 1: set theory

Chapter 2,3,4: operational semantics
Chapter 5: denotational semantics
Chapter 6,7: axiomatic semantics
Chapter 8: domain theory

Chapter 11: typed languages

https://basics.sjtu.edu.cn/

An Example

while (X <100) do X :=X+2

https://basics.sjtu.edu.cn/

Another Example

while (X <100) do
if (X<0)
then X =X -1
else X =X +2

https://basics.sjtu.edu.cn/

What can we gain from this course?

[m]

BASICS@SJTU

DA /713

https://basics.sjtu.edu.cn/

Course Benefits

» a rigorous thinking of programs

» a comprehensive start to program analysis and verification

https://basics.sjtu.edu.cn/

Chapter 1

Basic set theory

https://basics.sjtu.edu.cn/

Topics

A

S

Informal Introduction on Set Theory
What are sets?
How can one reason about sets?

How can one construct sets?

vvyyvyy

How relations and functions are defined in set theory?

Textbook Content
» Chapter 1: Basic Set Theory

https://basics.sjtu.edu.cn/

Set Theory: An Intuitive Description

https://basics.sjtu.edu.cn/

Why Set Theory?

» a rigorous language for a logical world
» a solid foundation for mathematics

» a solid foundation for programming languages

https://basics.sjtu.edu.cn/

Why Set Theory?

» Reasoning without a solid foundation is error-prone.

» Reasoning with a solid foundation is precise.

https://basics.sjtu.edu.cn/

Set Theory

What is a Set?
A set is a collection of objects that acts as a single entity.

https://basics.sjtu.edu.cn/

Set Theory: An Overview

» an abstract world: a world of sets as objects

https://basics.sjtu.edu.cn/

Set Theory: An Overview

» set reasoning: for any object a and set X, either a € X or a ¢ X but
not both.

https://basics.sjtu.edu.cn/

P set construction: any set can be constructed from the empty set
through a finite number of axioms

https://basics.sjtu.edu.cn/

Sets: Examples

> {a}, {a, b}, {a1,...,an}

» N 7Z QR,C

> RxR

> [a,b]={xeR|a<x&x<b}

» {peN|Vq,reN[p=q-r=(q=1Vr=1)]}

https://basics.sjtu.edu.cn/

The Language of Set Theory

https://basics.sjtu.edu.cn/

The Language of Set Theory

» a formal language for sets

» a formal language for mathematical objects, i.e., numbers, functions,
graphs, ...
(as they can be defined as sets in set theory)

https://basics.sjtu.edu.cn/

The Language of Set Theory

» names: ag,dly ..., A07A17~--
» variables: xg, x1,...

» logic connectives: =, &, or , = , & , 3,V

https://basics.sjtu.edu.cn/

The Language of Set Theory

Formulas (Clauses, Sentences)

» atomic formulas: x =y, x €y
(x, y are names or variables);
» boolean connectives:

» if ¢ is a formula, then so is —¢;
> if ¢1, ¢ are formulas, then so too are

01 & g2, prorga, p1= 2, g1 ¢ ;

» quantifiers: if ¢ is a formula and x is a variable, then Vx.¢, dx.¢ are
formulas.

https://basics.sjtu.edu.cn/

Atomic Formulae

>) x=y

(meaning the assertion “x,y name the same object (set)")
> ()x €y

(meaning the assertion “x is an element of y")
> evaluated to

> either true (i.e. the formula holds),
» or false (i.e., the formula does not hold)

when the meaning of x, y (i.e., which sets x, y name) is clear

https://basics.sjtu.edu.cn/

Boolean Connectives

—: negation (“not”)

&: conjunction (“and")

or: disjunction (“or")

= implication (“imply")
< double implication (“iff")

vvyyVvyVvVvyy

https://basics.sjtu.edu.cn/

Truth Table

Negation (“not")

¢ ¢
true | false
false | true

https://basics.sjtu.edu.cn/

Truth Table

Conjunction (“and")

$1 $2 | ¢1 & ¢

true true true
true false false
false true false
false false false

https://basics.sjtu.edu.cn/

Truth Table

Disjunction (“or")

P12 | p1or
true true true
true false true
false true true

false

false false

https://basics.sjtu.edu.cn/

Truth Table

Implication (“imply")

1 $2 | 1= oo

true true true
true false false
false true true
false false true

https://basics.sjtu.edu.cn/

Truth Table

Double Implication (“iff")

(2 b2 | 41 & o

true true true
true false false
false true false
false false true

https://basics.sjtu.edu.cn/

Boolean Expressibility

Exercise
Prove (through truth table) that the following formulas are logically
equivalent:

> ¢1 or ¢p and = (g1 & —2);

> 1= ¢ and (—¢1) or ¢o;

> ¢1 < ¢ and (d1 & ¢2) or (1 & —2).
> 91 ¢ and (p1 = b2) & (¢2 = ¢1)

https://basics.sjtu.edu.cn/

Quantifiers

Universal Quantification
Vx.¢(x) holds (or simply written as Vx.¢(x)) if
» (intuition) for any set x, ¢(x) holds;

> (meaning) ¢(x) is true (i.e., holds) no matter what x names in the
universe of all sets;

Example
> A B : sets
> Aequals B: Vx.(x e As x € B)

https://basics.sjtu.edu.cn/

Quantifiers

Existential Quantification
Ix.¢(x) holds (or simply written as 3x.¢(x)) if
» (intuition) there exists a set x such that ¢(x) holds;

» (meaning) there exists a set such that ¢(x) is true (i.e., holds) when
X names that set.

https://basics.sjtu.edu.cn/

Quantifiers

> no clear thinking (e.g., no truth table)
> Vx.¢ is logically equivalent to — (3x.—¢).

Exercise
Prove that Vx.¢ is logically equivalent to — (3x.—¢).

https://basics.sjtu.edu.cn/

Quantifiers

Conditioned Quantifiers
> A: aset
> Vx € Ap(x) = ¥x.(x € A= ¢(x))
> Ix € Ag(x) == Ixe A (x € A& ¢(x))

Exercise
Prove that Vx € A.¢ is logically equivalent to = (Ix € A.—¢).

https://basics.sjtu.edu.cn/

Axioms

» formulas assumed to be correct
» formulas for asserting properties of sets

» formulas for constructing sets

https://basics.sjtu.edu.cn/

Axioms for Set Reasoning

https://basics.sjtu.edu.cn/

Set Reasoning

Extensionality Axiom

» statement: YAVB.[Vx.(x e A< x € B) = A= B]

> meaning: if two sets A, B have exactly the same members, then they
are equal.

https://basics.sjtu.edu.cn/

Set Reasoning

Set Inclusion

» definition: Given any two sets A, B, we write
ACBifVx.(x e A= x € B).

» property: For any two sets A, B, A= B iff AC B and B C A.

Exercise
Prove from Extensionality Axiom that A= B iff AC B and B C A.

https://basics.sjtu.edu.cn/

Set Reasoning

The Axiom of Foundation (Regularity)
» statement: VA.[A# 0= 3B.(B€ A& BNA=10)].
» corollary: for any set A, A ¢ A.

» corollary: there is no infinite set sequence Ag, A1, - -+ such that
€A1 €A E - € A € A

https://basics.sjtu.edu.cn/

Axioms for Set Construction

https://basics.sjtu.edu.cn/

Set Construction

Empty Set Axiom
> statement: IB. (Vx.x € B);
» uniqueness: VAVB. [(Vx.x € A) & (Vx.x ¢ B) = A= B]
> notation: () is the set without any member.

Question
Why do we need uniqueness?

https://basics.sjtu.edu.cn/

Set Construction

Pairing Axiom
» statement: Yu.Vv.3B.[Vx.(x € B x =uor x = v)];

» uniqueness: from Extensionality Axiom
» notation: B = {u,v} ({u} :={u,u}).

https://basics.sjtu.edu.cn/

Set Construction

Pairing Axiom

» ordered pairs: (x,y) := {{x},{x,y} };
> property: (x1,y1) = (X2, y2) iff X0 = X2 and y1 = y».

https://basics.sjtu.edu.cn/

Set Construction

Union Axiom (Preliminary Version)
> statement: VAVB.3C.[Vx.(x € C< x € Aor x € B)];

» uniqueness: from Extensionality Axiom
» notation: C=AUB

https://basics.sjtu.edu.cn/

Set Construction

Union Axiom
> statement: VAIB. [Vx.(x € B« A e Ax € A)];
» uniqueness: from Extensionality Axiom
» notation: B=JA
» example: AU B = J{A, B}

https://basics.sjtu.edu.cn/

Set Construction

Power Set Axiom
> statement: VAIB.[Vx.x € B< x C A];
» uniqueness: from Extensionality Axiom

» notation: B =24, B = Pow(A) (textbook) or informally
B={Y|YCA}

Example

2{0’1} = {@7 {0}, {1}3 {Oa 1}}

https://basics.sjtu.edu.cn/

Set Construction

Subset Axiom

» statement: for any set A, for any sets ty, ..., t,, for any formula
&(x,¥1,...,¥n), there exists a set B such that

Vx.(xeBexe A& o(x, tr,....t)) ;

» uniqueness: from Extensionality Axiom
» notation: B={x€ A| ¢(x,t1,...,tn)}

https://basics.sjtu.edu.cn/

Set Construction

Some Set Operations

» intersection: ANB:={x€ AUB|xe€ A& x e B},
» set difference: A\ B:={x€ AUB|x€ A& x ¢ B};
» general intersection: if A # 0,

(A={xe|JA|VB.(Be A= x< B)};

https://basics.sjtu.edu.cn/

Set Construction

Cartesian Product
> A B: sets
» informal definition: Ax B :={(x,y) | x€ A& y € B};

» formal definition:

AxB:={we2?”’ | IxTy.(w=(x,y) &xc A& y € B)}:

https://basics.sjtu.edu.cn/

Set Construction

Disjoint Union
> A B: sets
> Aw B := ({0} x A)U ({1} x B)

https://basics.sjtu.edu.cn/

Set Construction

Why subset axiom requires a super set?

> Russell's Paradox: X := {x | x & x};
» the paradox:

> XeX=>XéEX
> X¢gX=>XeX

> explanation: {x | x € x} conceptually exists, but is not a set.

https://basics.sjtu.edu.cn/

Natural Numbers

> 0:=0;
> 1:=0uU{0};

» nt:=nU{n} for any natural number n;

https://basics.sjtu.edu.cn/

Natural Numbers

Inductive Sets
A set Ais inductive if) € A and for any a € A, a* := aU {a} € A.

Infinity Axiom
There exists an inductive set: JA. [l € A& (Vaac A= a" € A)].

https://basics.sjtu.edu.cn/

Natural Numbers

Definition
» A : an inductive set;

» natural numbers:

w:=N:={ne A|VB.(B is inductive = n € B)}

> w=N=1{01,2...}

https://basics.sjtu.edu.cn/

Numbers

> the set of integers

» the set of rational numbers
» the set of real numbers

» the set of complex numbers

https://basics.sjtu.edu.cn/

The Overview of Set Theory

https://basics.sjtu.edu.cn/

Relations and Functions

https://basics.sjtu.edu.cn/

Relations

Definition

> x,y: sets (objects)

» ordered pairs: (x,y) = {{x}, {x,y}};
A relation R is a set of ordered pairs.

Intuition
(x,¥) € R means x,y are related by R in order.

Notation
xRy : (x,y) € R

https://basics.sjtu.edu.cn/

Examples

> R =10

> R=1{(0,1),(0,2),(2,1),(1,2),(4 1)}
> R=NxN;

» R={(n,m)e NxN|m=2-n};

> R={(x,y) ERxR| x>+ y2=1};

https://basics.sjtu.edu.cn/

Binary Relations

Definition
> X,Y: sets
A binary relation R between X and Y is a subset R C X x Y of X x Y.

https://basics.sjtu.edu.cn/

Binary Relations

Images
> X,Y: sets
» R C X x Y: a binary relation
» direct image: for any A C X,

R(A):={y €Y |Ixe AxRy}

» inverse image: forany BCY,

R7YB) :={x € X |3Jy € BxRy}

https://basics.sjtu.edu.cn/

Binary Relations

Examples
> R={(x,y) eRxR|x®2+y?>=1}
> R({-1}) = {0}
> R({0}) = {~1.1)
» R={(x,y) eRxR|x <y}
> R({1}) = [1,00)
> RT({1}) = (~00,1]

https://basics.sjtu.edu.cn/

Composition

Definition
> R: a binary relation between X and Y
» S: a binary relation between Y and Z
S o R is the binary relation between X and Z

SoR:={(x,z) e X x Z|3y.(xRy & ySz)}

https://basics.sjtu.edu.cn/

Composition

> RCXxX

Repeated Composition
| 4 RO :IdR = {(X,}/)EXXX‘X:}/};
> R :=RoR"

Closures
> Rt =, R
’ R* = Un Rn;

https://basics.sjtu.edu.cn/

Composition

Closures
> transitive closure: RY :=J, R

> reflexive transitive closure: R* :=J, R™

Properties

» transitivity: for any x,y,z € X,

xRTy & yRTz = xRz

> R* is in addition reflexive: for any x € X, xR*x;

https://basics.sjtu.edu.cn/

Equivalence Relations

Definition
> X: aset
> R C X x X: a binary relation
R is an equivalence relation on X if:
> reflexibility: for any x € X, xRx;
> symmetry: for any x,y € X, xRy < yRx;
> transitivity: for any x,y,z € X, xRy & yRz = xRz.

https://basics.sjtu.edu.cn/

Equivalence Relations

Examples
> {(x,y) e Xx X |x=y}
> {(x,y) e X x X | f(x)=f(y)} (f is a function on X);
» {(m,n) e Nx N |7|m— n};

https://basics.sjtu.edu.cn/

Equivalence Relations

Definition
> X: aset
» R C X x X: an equivalence relation on X

For any a € X, define the equivalence class of a by

[a]r == {x € X | xRa}

https://basics.sjtu.edu.cn/

Equivalence Relations

Examples
> R={(x,y) €XxX|x=y} [ar = {a};

> {(xy) e Xx X[f(x)=Ff(y)} [alr = {x [f(x) = f(a)};
> {(m,n) e NxN|7m—n}, [6]g ={n|3keNn=7 -k+6}

https://basics.sjtu.edu.cn/

Partial Orders

Definition
> X: aset
> R C X x X: a binary relation
R is a partial order on X if:
> reflexibility: for any x € X, xRx;
> antisymmetry: for any x,y € X, xRy & yRx = x =y;
> transitivity: for any x,y,z € X, xRy & yRz = xRz.

https://basics.sjtu.edu.cn/

Partial Orders

Examples
> {(xy) e Xx X |x=y}
> <onN,QR,
» {(m,n) e NxN|m,n>1 m|n},

https://basics.sjtu.edu.cn/

Functions

» informal vs. set-theoretic definitions

https://basics.sjtu.edu.cn/

Functions

Intuition
> X,Y: sets

A function from X to Y is a mapping that assigns to each element in X
a unique element in Y.

https://basics.sjtu.edu.cn/

Functions

Intuition

» A single map is of the form a — b (a € X, b€ Y).
» A function is a collection of such maps.

» It will never happen that there exist two maps a + b, a — ¢ such
that b # c.

https://basics.sjtu.edu.cn/

Functions

Characterization
» a single map a — b: an ordered pair (a,b) € X x Y
» a collection of maps: a binary relation FC X x Y

» no a+— b,ar— c satisfying b # c:
for any (a, b),(a,c) € F, we have b= ¢
Example

> F(x)=x? x€R
> F={(x,y) ERxR|y=x?}

https://basics.sjtu.edu.cn/

Functions

Set-Theoretic Definition

> X.,Y: sets
A partial function F from X to Y is a binary relation F C X x Y such
that

Vx € XNy,y' € Y.[xFy & xFy' =y =]

Notation
» A partial function F from X to Y is stressed by F : X — Y.
> F(x) is define as the unique y such that xFy if such y exists.

https://basics.sjtu.edu.cn/

Functions

Set-Theoretic Definition
> X,Y: sets

A (total) function F from X to Y is a partial function from X to Y such
that for any x € X there exists y € Y such that xFy.

Notation
> For each x € X, F(x) is the unique element such that (x, F(x)) € F.
» A function F from X to Y is stressed by F : X — Y.

https://basics.sjtu.edu.cn/

Functions

> range: F(X)={y e Y |3xy=F(x)}
» domain: FY(Y)={xe X |Iyy=Fx)}=X

https://basics.sjtu.edu.cn/

Functions

Examples
» F:R—R, F(x)=1:

F={(xy) eRxR|x-y=1};

» F:R—>R, F(x)=sinx:

F={(x,y) eRxR|y=sinx};

> F:RxR—-R, F(x,y)=x+y:

F={((xy),2) e RxR)xR|z=x+y};

https://basics.sjtu.edu.cn/

Functions

A-Notation

> X.,Y: sets

» f: X — Y: afunction

> e: an expression representing f (e.g., e = x+ 1 and f(x) = x + 1)
Then we denote also by Ax € X.e the function f.

Example
> Ax € w.(x 4+ 1): the function f(x) = x +1
> Ax € R.sinx: the function f(x) = sinx

https://basics.sjtu.edu.cn/

Composition (Recall)

Definition
> R: a binary relation between X and Y
» S: a binary relation between Y and Z
S o R is the binary relation between X and Z defined by

SoR:={(x,z) e X x Z|3y.(xRy & ySz)}

https://basics.sjtu.edu.cn/

Composition (Recall)

Definition
» R: a binary relation between X and Y
» S: a binary relation between Y and Z
S o R is the binary relation between X and Z defined by

SoR :={(x,z) € X x Z|3Jy.(xRy & ySz)}

Example
>» F: XY
> G: Y Z
G o F: X — Z satisfies that (G o F)(x) = G(F(x))

https://basics.sjtu.edu.cn/

Cantor’s Diagonal Argument

Inverse
> X,Y: sets

A function F: X — Y has an inverse G : Y — X if
» G(F(x)) = x for all x € X, and
» F(G(y))=yforallyeY.

If there exists a function F : X — Y with its inverse G : Y — X, then
X, Y are in 1-1 correspondence.

https://basics.sjtu.edu.cn/

Cantor’s Diagonal Argument

Theorem
> X: a set

X and 2% are not in 1-1 correspondence.

https://basics.sjtu.edu.cn/

Cantor’s Diagonal Argument

Theorem

X and 2% are not in 1-1 correspondence.

Proof (by Contradiction)

0 : X — 2% with an inverse

0(x) 0(x1) 6(x) 0(x)
% | 0 1 1 i
X1 1 1 1 0
X 0 0 1 0
1

Xij 0 1 0

https://basics.sjtu.edu.cn/

Cantor’s Diagonal Argument

Theorem
X and 2% are not in 1-1 correspondence.

Proof

0 : X — 2% with an inverse

https://basics.sjtu.edu.cn/

Cantor’s Diagonal Argument

Theorem
X and 2% are not in 1-1 correspondence.

Proof
> Suppose that there is a function 6 : X — 2X with an inverse.
» Define the set

Y ={xeX|x¢g0(x)}ec2X.

> Let y be the unique element in X such that 6(y) =Y.
> yeY=y2o(y)(=Y)
> ygY=yebly)(=Y)

https://basics.sjtu.edu.cn/

Summary

Basic Set Theory

» a deeper understanding of sets
» axioms for set reasoning and construction
> set-theoretic definitions for relations and functions

» rigorous reasoning with relations and functions

https://basics.sjtu.edu.cn/

Chapter 2

Introduction to operational
semantics

https://basics.sjtu.edu.cn/

Topic

Operational Semantics
» a simple imperative language as a minimal language
» a set of rules as building blocks for the semantics
» rule-based derivations as the operational semantics

https://basics.sjtu.edu.cn/

Topic

After the lecture, we will be able to ...
» know the logical background of operational semantics.

» know the necessary ingredients to construct operational semantics.

https://basics.sjtu.edu.cn/

A Simple Imperative Language IMP

Textbook, Page 11 — Page 13

https://basics.sjtu.edu.cn/

A Simple Imperative Language IMP

> data type: integers N
(e.g., 0,1,2,...,—1,-2,...)
» truth value: boolean values T = {true, false}
> locations: Loc (identifiers or program variables)
(e.g %, vy 1y Jy a, b, flag,...)
P arithmetic expressions: Aexp
(eg x4y, z—=3, x Xy, ...)
» boolean expressions: Bexp

(e.g., (x> 0)A(y <0), (x>0)V(y <0), =(x>y), ...

» commands: statements Com
(e.g., assignment, if branch, while loop, ...)

https://basics.sjtu.edu.cn/

Program Syntax

Arithmetic Expressions Aexp
Arithmetic expressions are built from

P integers,

» locations (identifiers),

» arithmetic operations including +, —, X.

The syntax:
az=n| X | ao+a1 | a—a1 | a x a1

where n is any integer and X is any location.

https://basics.sjtu.edu.cn/

Program Syntax

Boolean Expressions Bexp
Boolean expressions are built from
» truth values: true, false
» comparison: =, <, >, <, >
» propositional logical connectives: =, A, V

The syntax
b:= true | false | ax a | =b | bAD | bV

where x € {=, <, >, <, >} and a, & are arithmetic expressions.

https://basics.sjtu.edu.cn/

Program Syntax

Commands Com
> assignment statements
» sequential composition
» if branches

» while loops

https://basics.sjtu.edu.cn/

Program Syntax

Commands Com
The syntax of commands:

c ::= skip
| X:=a
\ Coy 1
| if b then ¢ else ¢;
| while b do ¢’

https://basics.sjtu.edu.cn/

Program Syntax

A Variant of the Euclidean Algorithm

while —-(M = N) do
if M<N
then N.=N-M
else M:=M-N

https://basics.sjtu.edu.cn/

Program Syntax

IMP allows

2

>
>
>
>

integer type,
assignment,

sequential composition,
conditional branch,

while loop.

https://basics.sjtu.edu.cn/

Program Syntax

IMP does not allow
» data structures,
floating numbers,
recursion,

>
>
» pointers,
| 4

https://basics.sjtu.edu.cn/

The Operational Semantics of IMP

Textbook, Page 15 — 20

https://basics.sjtu.edu.cn/

Operational Semantics

Overview
» rules for arithmetic/boolean expressions
» rules for commands (statements)
» derivations for the final operational semantics

https://basics.sjtu.edu.cn/

Operational Semantics

States
» A state is a function o : Loc — N.
» The set of states is denote by ¥.

Intuition
A state specifies values held by locations.

https://basics.sjtu.edu.cn/

Operational Semantics

Our Goal
A relation R C (Com x X) x X such that (c,0) R o’ iff
when executing ¢ with initial state o, ¢ and we even-

tually get o’ after the execution.

We often write (c,0) — o’ instead of (¢,0)Ro’.

https://basics.sjtu.edu.cn/

Operational Semantics

Question
How can we construct such a relation?

The Methodology

» from rules to derivations

» from arithmetic expressions to commands

https://basics.sjtu.edu.cn/

Arithmetic Expressions

Configurations (for Aexp)

A configuration is a pair (a,0) where a € Aexp and 0 € X.

Sub-goal

a relation for {(a,0) — n:
an arithmetic expression a is evaluated to an integer n when
locations in a are substituted by their values from o.

https://basics.sjtu.edu.cn/

Arithmetic Expressions

Question
How can we define “(a,o) — n" rigorously?

Principles

» The definition should be syntactical.
» The definition should be correct.

https://basics.sjtu.edu.cn/

Arithmetic Expressions

The Intuition
How can we evaluate ag + a; under a state o 7

> first evaluate ag, a; correctly: (ap, o) — no, (a1,0) = m

» then evaluate ag + a; correctly: (ag + a1,0) — ng + m

Implementation: rules and derivations!

https://basics.sjtu.edu.cn/

Arithmetic Expressions

The Rule for Addition

<30,0'> — N, <81,0> — N
<ao+31,0'> — Ng + Ny

» if (ag,0) — ng and (a1, o) — nq, then {(ag + a1,0) — ny + nq;
» premise: (ag, o) — ng and (a1, o) — ny;
» conclusion: {ag + a1, o) — ng + ny;

https://basics.sjtu.edu.cn/

Arithmetic Expressions

How to build rules?

» Establish rules for each arithmetic operation.
(e.g., addition, subtraction, multiplication)

» Prove correctness for each rule.
(i.e., proving that the premise implies the conclusion)

https://basics.sjtu.edu.cn/

Arithmetic Expressions

Numbers and Locations

(n,o) = n (X,0) = a(X)

» axioms: rules without premise

» metavariables: n, X, o

https://basics.sjtu.edu.cn/

Arithmetic Expressions

Arithmetic Operations

(ao,0>—>n0, <31,0'>—>n1 (ao,a>—>n0, <31,0'>—)n1

(ap + a1, 0) = no+ m (ag — a1,0) = ng—m

<ao,0'> — Ng, <31,0'> — N

<ao X 31,U> — Ng -+ N

» ng, N, ag, ai,o: metavariables

https://basics.sjtu.edu.cn/

Arithmetic Expressions

Rule Instances
A rule instance is obtained from substituting metavariables by concrete

elements.

Examples

(5,0) =5 (X, {X+—4,Y —»5}) — 4

a — 2, (a —+3
< 0’?> v A >1i>f>6 (a;'s are concrete arithmetic expressions)
do d1, o

https://basics.sjtu.edu.cn/

Arithmetic Expressions

Question
How can we organize rules for compound arithmetic expressions?

https://basics.sjtu.edu.cn/

Arithmetic Expressions

Derivation Trees
> o(X)=1,0(Y)=-1
> the evaluation of ((X +5) — (Y x 2),0):

(X,o0) =1 (5,0) =5 (Y,0) = -1 (2,0) =2
(X15,0) =6 Y x2,0) > 2
(X+5)—(Y x2),0) > 8

» conclusion: (X +5)—(Y x2),0) — 8

https://basics.sjtu.edu.cn/

Arithmetic Expressions

Derivation Tree
A derivation tree (derivation) is a finite tree such that every
parent-children substructure in the tree is a rule instance.

Definitions
» definition: {a,o) — n iff there is a derivation tree with conclusion
(a,0) — n.
property: Va.Vo.3n.(a,0) — n
equivalence: a ~ @' iff VnVo. ((a,0) = n& (a',0) — n)

big-step semantics: internal computation is omitted.

vvyyvyy

missing rigor: derivation trees

https://basics.sjtu.edu.cn/

Boolean Expressions

Truth Values

(true, o) — true (false, o) — false

https://basics.sjtu.edu.cn/

Boolean Expressions

Comparison

<30)0> — No, <31,J> —m
if np=m

(ag = a1,0) — true

<30)0> — No, <31,J> —m

if
(ag = a1,0) — false .m0 7 m

https://basics.sjtu.edu.cn/

Boolean Expressions

Comparison

apg,0) — N a,o) —n
<0)> 07<17> lifn0§n1

(a0 < a1,0) — true

<30)0> — No, <31,J> - m
(a0 < a1,0) — false

if ng > m

https://basics.sjtu.edu.cn/

Boolean Expressions

Negation

(b,0) — true (b,0) — false
(=b,0) — false (=b,0) — true

https://basics.sjtu.edu.cn/

Boolean Expressions

Disjunction and Conjunction

<b070> — to, <b170> -t

<b0/\b1,0’> — to Aty

<b070> — to, <b170> — b

<b0\/b1,0’> — to Vit

https://basics.sjtu.edu.cn/

Boolean Expressions

Definition

>

>
>

definition: (b, o) — t iff there is a derivation tree with conclusion
(b,o)y — t.

property: Vb.Vo.3t.(b,o) — t

equivalence: b~ b’ iff

Vt € {true,false}.Vo. ((b,0) = t < (b',0) = t)

big-step semantics: Internal computation is omitted.

missing rigor: derivation trees

https://basics.sjtu.edu.cn/

Commands

Skip

(skip,0) = o

https://basics.sjtu.edu.cn/

Commands

Substitution over States

P> o: a state

> m: an integer

» X: a location (program variable)
We define o [m/X] by

m ifY=X
o(Y) otherwise

o[m/X](Y):= {

https://basics.sjtu.edu.cn/

Commands

Assignment Statements

(a,0) = m

(X :=a,0) = o[m/X]

https://basics.sjtu.edu.cn/

Commands

Sequential Composition

(co,0) = 0", {a1,0") = o’

(co; c1,0) = o’

https://basics.sjtu.edu.cn/

Commands

Conditional Branches

(b,c) — true, (cy,0) — o’

(if b then ¢ else ¢;,0) — o’

(b,o) — false, {c1,0) — o’

(if b then ¢ else ¢;,0) — o’

https://basics.sjtu.edu.cn/

Commands

While Loops

(b,o) — false
(while bdo c,0) — o

(b,c) — true, {(c,c) — ¢”, (while bdo c,0") = o’

(while b do ¢,0) — ¢’

https://basics.sjtu.edu.cn/

Commands

Definitions

» definition: (c,0) — o’ iff there is a derivation tree with conclusion
(c,0) — 0.

» equivalence: ¢ ~ ¢’ iff Vo,o'.({c,0) = o' < (c',0) = o)

» big-step semantics: Internal computation is omitted.

» missing rigour: derivation trees

https://basics.sjtu.edu.cn/

Commands

An Example

while —(M = N) do
if M<N

then N.=N-M

else M:=M-N

https://basics.sjtu.edu.cn/

Commands

Another Example

while true do skip

https://basics.sjtu.edu.cn/

Commands

Question
What if there is no o’ such that (c,0) — o' ?

https://basics.sjtu.edu.cn/

Summary

» a simple imperative language IMP
» a first look at operational semantics

» rules and derivations

https://basics.sjtu.edu.cn/

Exercise
Let X, Y be locations (i.e., program variables). Let the state o be given
by o(X) =3 and o(Y) = 5. Solve the following problems through

(a) For a= X — 1, determine the integer n such that (a,o) — n.

(b) For b=Y — X < 2, determine the truth value t such that
(b,o) — t.

(c) Forc=if Y — X <2 then Y := X — 1 else skip , determine the
state ¢’ such that (c,0) — o’.

https://basics.sjtu.edu.cn/

Topic

» equivalence of commands through derivations
» one-step operational semantics

» mathematical induction over derivations

https://basics.sjtu.edu.cn/

Equivalence of Commands

textbook, Page 19 — 24

https://basics.sjtu.edu.cn/

Equivalence of Commands

Definition
» definition: {(c,o) — o’ iff there is a derivation tree with conclusion
(c,o) — 0.

» equivalence: ¢ ~ ¢’ iff Vo,o'.({c,0) = o' < (c',0) — o’)

https://basics.sjtu.edu.cn/

Equivalence of Commands

» w = while b do c;

> w~if b then c; w else skip

https://basics.sjtu.edu.cn/

Equivalence of Commands

» w = while b do c;

» for all states o, o”,
(w,0) — o' iff (if b then c; w else skip,c) — o’.

https://basics.sjtu.edu.cn/

Equivalence of Commands

Proof
» (w,0) — o implies (if b then c; w else skip, o) — o’.

https://basics.sjtu.edu.cn/

Equivalence of Commands

» (w,0) — o' implies (if b then c; w else skip,o) — o.

> : (b,o) — false

» from the rule for while-loop:

(b,0) — false
(w,0) = o

» thus:

(b,0) — false (skip,0) — o
(if b then c; w else skip,c) — o

https://basics.sjtu.edu.cn/

Equivalence of Commands

» (w,0) — o’ implies (if b then c; w else skip, o) — ¢’

> : (b,0) — true

» from the rule for while-loop:

(b,o) — true {(c,0) — " (w,0") — o’

(w,o) = o’

» it follows that:

(c,o0) = " (w,0") = o
(c;w,0) = o

https://basics.sjtu.edu.cn/

Equivalence of Commands

» (w,0) — o implies (if b then c; w else skip, o) — o’.

> : (b,0) — true
» it follows that:

(c,o) = " (w,0") — o’
(c;w,0) = o

» hence:

(c,o0) = " {w,0") = o

(b,c) — true (c;w,0) = o

(if b then c; w else skip,0) — o’

https://basics.sjtu.edu.cn/

Equivalence of Commands

» (if b then c; w else skip, o) — o’ implies (w,0) — o’.

>

(b,o) — false (skip,0) — o
(if b then c; w else skip,c) — o

(b,o) — true {(c;w,o0) — o’
(if b then c; w else skip,o) — o’

https://basics.sjtu.edu.cn/

Equivalence of Commands

» (if b then c; w else skip, o) — o’ implies (w,o) — o.

>

(b,c) — false (skip,o) — o
(if b then c; w else skip,0) — o

(b,0) — false
(w,0) > o

https://basics.sjtu.edu.cn/

Equivalence of Commands

» (if b then c; w else skip, o) — o’ implies (w,0) — o’.

>

(c,o) = " (w,0") = o’

(b,0) — true (c;w,0) = o

(if b then c; w else skip,o) — o’

(b,o) — true {(c,0) = o” (w,0") = o’
(while b do ¢,0) — ¢

https://basics.sjtu.edu.cn/

Small-Step Operational Semantics

textbook, Page 24 — 26

https://basics.sjtu.edu.cn/

One-Step Operational Semantics

Motivation
» Full-step operational semantics ignores internal execution.

» Single-step execution are important in parallel environments.

https://basics.sjtu.edu.cn/

One-Step Operational Semantics

Arithmetic Expressions
» big-step semantics: {a,0) = n

» small-step semantics: {(a,0) —1 (a’,0)

https://basics.sjtu.edu.cn/

One-Step Operational Semantics

Arithmetic Expressions

<307U> —1 <36’0—>
<30+31,0'> —1 <36+31,U>
(a1,0) —1 (a1, 0)
(n+ a1,0) —1 (n+ aj, o)
(p=m+n)

(n+m,o) =1 {(p,o)

https://basics.sjtu.edu.cn/

One-Step Operational Semantics

Commands
» big-step semantics: {c,0) — o’

» small-step semantics: {(c,0) —1 {c’,0”)

https://basics.sjtu.edu.cn/

One-Step Operational Semantics

Commands

(a,0) —1 (d',0)

(X :=a,0) =1 (X:=2,0) ("¢ 2)

(a,0) =1 (n,o)

X =a.0) o1 0fx] €%

https://basics.sjtu.edu.cn/

One-Step Operational Semantics

Commands

{c1,0) =1 {q,0")

(c1;0,0) =1 (cf; 2, 0")

<C17 0> —1 o

(c1; c2,0) =1 (2, 07)

https://basics.sjtu.edu.cn/

One-Step Operational Semantics

Question
What about if-branches and while-loops?

https://basics.sjtu.edu.cn/

Chapter 3

Some principles of induction

https://basics.sjtu.edu.cn/

Principles of Induction

textbook, Page 27 — 38

https://basics.sjtu.edu.cn/

Principles of Induction

mathematical induction
structural induction

induction on derivation trees

vvyVvVyy

well-founded induction

https://basics.sjtu.edu.cn/

Mathematical Induction

Description
> P: a property (or predicate, assertion, formula) over natural numbers

» illustration: if P(0) and P(n) = P(n+ 1) for all natural numbers n,
then it holds that P(n) for all natural numbers n.

» formal statement:

[P(0) & VYn e N.(P(n) = P(n+1))] = Vn € N.P(n)

https://basics.sjtu.edu.cn/

Mathematical Induction

Proof
» P={neN|P(n)}CN;
» Pisan inductiveset: 0 € Pandne P=n+1¢€ P,
» N is the smallest inductive set: N C P;
» P =N: ie., Vne N.P(n);

https://basics.sjtu.edu.cn/

Mathematical Induction

Course-of-Values Induction
> target: Vn.P(n);
variant form: Q(n) :=Vk < n.P(k);
equivalence: Vn.P(n) is equivalent to Vn.Q(n);
base step: Q(0) is vacuously true;
the induction step: Q(n) = Q(n+ 1) for all n;
the induction step: (Vk < n.P(k)) = P(n) for all n;

vvyVvyyvyy

Question
Where do we require that P(0) holds?

https://basics.sjtu.edu.cn/

Well-Founded Induction

Definition
> A: aset
» < C Ax A: a binary relation on A
The relation < is well-founded if:
» there is no infinite descending sequence ... <a, < ...<a; <3y in A;
» well-foundedness implies irreflexibility: Va € A.a 4 a.

https://basics.sjtu.edu.cn/

Well-Founded Induction

Minimal Elements
> A: aset
> < C Ax A: a binary relation on A
» (C A: asubset of A
» u € Q: an element of Q

The element v is a minimal element in Q if Vv € Q. (v A u).

Proposition

The relation < is well-founded iff any nonempty subset @ C A has a
minimal element.

https://basics.sjtu.edu.cn/

Well-Founded Induction

Proposition
> A: aset
» <: a binary relation on A
The relation < is iff any nonempty subset @ C A has a

minimal element.
Proof for “<"(by contradiction)

» Suppose that < is not well-founded.
» There exists an infinite sequence ... <a, <...<a; < a.

» The set {ag, a1,...,an,...} does not have a minimal element.

https://basics.sjtu.edu.cn/

Well-Founded Induction

Proposition

> A: aset
» <: a binary relation on A

The relation < is iff any nonempty subset @ C A has a
minimal element.

Proof for “=" (by contradiction)

» Suppose that there exists a nonempty subset @ C A having no
minimal elements, i.e., Vu € Q.3v € Q.v < u.

» Then starting from any up, one can construct a sequence ug, s, - . -

of infinite descending elements in A.

https://basics.sjtu.edu.cn/

Well-Founded Induction

Statement
» <: a well-founded binary relation on a set A
> P: a property on elements of A (a subset of A)
» the principle:

Va € A.P(a) iff Va € A. [(Vb=< a.P(b)) = P(a)]

Proof for “=
Straightforward.

https://basics.sjtu.edu.cn/

Well-Founded Induction

Statement
» <: a well-founded binary relation on a set A
> P: a property on elements of A (a subset of A)
> .

Va € A.P(a) iff Va e A. [(Vb=< a.P(b)) = P(a)]

Proof for “<" (by contradiction)
» Suppose that 3a.—P(a) and define Q :={a € A| -P(a)}.

» @ is nonempty and hence has a minimal element a*.
> (Vb=<a*.b¢ Q), and hence (Vb < a*.P(b)).
» From (Vb= a*.P(b)) = P(a*), we have P(a*).

https://basics.sjtu.edu.cn/

Well-Founded Induction

Example

» A=N, <={(n,n+1) | n € N}: mathematical induction
» A=N, <={(m,n) € Nx N | m< n}: course-of-value induction

https://basics.sjtu.edu.cn/

Structural Induction

Motivation
» mathematical induction: inductive proofs on natural numbers

P structural induction: inductive proofs on syntactic structures

https://basics.sjtu.edu.cn/

Structural Induction

Arithmetic Expressions
» Aexp: the set of all arithmetic expressions
> <. ag < ap iff ag is an immediate syntactical child of a;

» P: a property on arithmetic expressions
>

Va € Aexp. [(Vb < a.P(b)) = P(a)] implies Va € Aexp.P(a)

https://basics.sjtu.edu.cn/

Structural Induction

Arithmetic Expressions
» bases step: P holds at atomic arithmetic expressions n, X.

» inductive step: if P holds at arithmetic expressions ag, a;, then P
also holds at ag + a;,a9 — a1, a0 X a1.
» consequence: P holds at all arithmetic expressions.

https://basics.sjtu.edu.cn/

Structural Induction

Example
For all arithmetic expressions a, states ¢ and integers m, m’,

(a,0) > mA(a,0) > m =m=m".

https://basics.sjtu.edu.cn/

Structural Induction

The Inductive Proof
» base step: (n,0) = n, (X,0) = o(X)

» inductive step:
<30a0> — N, <3170> — m

(a0 + a1,0) — ng + m

https://basics.sjtu.edu.cn/

Structural Induction

Boolean Expressions
> Vb,o,t, t'.[((b,o) = t & (b,o) = t')=>t=1] .

https://basics.sjtu.edu.cn/

Structural Induction

Proposition
Ve,o,0',0" . [({c,0) = o' & {c,0) = ") =0 =0"] .

Question
Can we prove this proposition through structural induction?

https://basics.sjtu.edu.cn/

Question

Proposition
Ve,o,0", 0" [({c,0) = o' & {¢c,0) = ") = 0" =0"] .

Rules for While Loops

(b,c) — false
(while bdo c,0) = ¢

(b,0) — true, {(c,0) — o”, (while bdo c,0”) = o’

(while b do c,0) — o/

https://basics.sjtu.edu.cn/

Induction on Derivation Trees

> A: the set of all derivation trees (or derivations)
> <: rp<n iff rp is a proper sub-derivation tree of ry

» well-founded induction:

Vr e A [(Vr' < r.P(r")) = P(r)] implies Vr € A.P(r)

https://basics.sjtu.edu.cn/

Induction on Derivation Trees

Rule Instance (X/y)

> X: premise (a finite set of elements)

> y: conclusion (a single element)

https://basics.sjtu.edu.cn/

Induction on Derivation Trees

Axiom Instances: 0)/y

y

Other Rule Instances: {x1,...,x,}/y

https://basics.sjtu.edu.cn/

Induction on Derivation Trees

Derivation Trees
> R: a set of rule instances
» y: an element

An R-derivation of y is

> either a rule instance (0/y)
» or ({d1,...,d,}/y) such that

» ({x1,...,xa}/y) is a rule instance
> each d; is a (smaller) R-derivation of x;

https://basics.sjtu.edu.cn/

Induction on Derivation Trees

Notations
> R: a set of rule instances
» d: an R-derivation
» y: an element

Then we write
» dlFg y: dis an R-derivation of y.
» |- y: dIFg y for some derivation d.
» dIF y,IF y: omission of R

https://basics.sjtu.edu.cn/

Induction on Derivation Trees

Notations
> R: a set of rule instances
» d: an R-derivation
» y: an element
Then we have
> (0/y)IFry if (0/y) €R

> ({d1,...,dn}/y) IFry if ({x1,...,x,}/y) € R and
i g X1, dy kR X,

https://basics.sjtu.edu.cn/

Induction on Derivation Trees

The Well-Founded Relation on Derivation Trees
» d,d’: derivations
d’ < d if d’ is a proper sub-derivation of d.

https://basics.sjtu.edu.cn/

Induction on Derivation Trees

Proposition
» Ve,0,0', 0" [({c,0) = 0’ & (c,0) = ") =o' =0"] .
» P(d):=Vc,0,0",0". [(dIF{c,0) = o' N{c,0) = 0") =o' =0"]
» the goal: Vd’' < d.P(d’) implies P(d)

https://basics.sjtu.edu.cn/

Induction on Derivation Trees

> Ve,0,0', 0" [({c,0) = 0’ & (c,0) = ") =o' =0"] .
P base step:

(a,0) = m
(skip,0) — o (X :=a,0) = o[m/X]

» inductive step:

(b,0) — true (c,0) — " (while b do c¢,0") — o’
(while b do c¢,0) — o’

https://basics.sjtu.edu.cn/

Program Termination

A Variant of Euclidean’s Algorithm

while —-(M = N) do
if M<N
then N.=N-M
else M:=M-N

https://basics.sjtu.edu.cn/

Program Termination

A Variant of Euclidean’s Algorithm

Euclid =
while -(M = N) do
if M<N
then N:=N-M
else M:=M—-N

Termination Property
Vo.[(o(M) > 1A0(N)>1)= (Jo’.(Euclid, o) — o’)]

https://basics.sjtu.edu.cn/

Program Termination

Termination Property
Vo.[(e(M) > 1A0(N)>1)= (3o’.(Euclid, o) — o')]

Proof
> Ai={oceX|o(M)>1A0(N)>1}.
» o < o’ iff the followings hold:
1. o(M) < o'(M) and o(N) < o'(N);
2. o #£0;

> P(c):=3o'.(Euclid, o) — o' .
» our goal: prove Vo € A.P(0) by

Vo € A.[(Vo' < o.P(c)) = P(0)]

https://basics.sjtu.edu.cn/

Well-founded Induction

Proof
» P(c):=3o'.(Euclid, o) — o' .
» our goal: prove Vo € A.P(0) by

Vo € A [(Vo! <0.P(c)) = P(0)]

» Suppose that Vo' <o.P(0’).
> Case o(M) = a(N):

(=M = N, o) — false
(Euclid, o) — o

https://basics.sjtu.edu.cn/

Well-founded Induction

Proof
» P(o):= 3o’ .(Euclid, o) — o’ .
> our goal: prove Vo € A.P(c) by
Vo € A [(Vo' <0.P(d")) = P(0)]
» Suppose that Vo' <o.P(0’).
> Case o(M) # o(N):
(if M<Nthen N:=N—-Melse M:=M— N,o) = "

where

s {a [o(N) = o (M)/N] if () = o(M)
olo(M)—o(N)/M] otherwise

and 0’ < 0;

https://basics.sjtu.edu.cn/

Well-founded Induction

Proof
» P(c):=3o'.(Euclid, o) — o’ .
Prove Vo € A.[(Vo' < 0.P(d")) = P(0)].
Suppose that Vo' < o.P(0”).
Case o(M) # o(N):
> (=(M = N),o) — true;
> (if M < Nthen N:=N— Melse M:=M— N,o) = ¢” and
o’ < o;
» (Euclid,o”) — o’ for some o’;

» Conclusion: (Euclid, o) — o’

vyy

https://basics.sjtu.edu.cn/

Summary

> equivalence reasoning using rules
» small-step semantics
» principles of induction

» mathematical induction
» induction on derivation trees
» well-founded induction

> proving program property through induction
» proving program termination through induction

https://basics.sjtu.edu.cn/

Exercise 1

Problem
Consider the command

¢ = while X <100do X :=X +2

where X is a location (program variable). For each initial state o,
determine through induction principle the state o’ such that (c,o) — ¢’
and verify your answer.

https://basics.sjtu.edu.cn/

Exercise 2

Problem
Consider the command

¢ = while (X >0A Y >0) do
if bthenY =Y -1
else (X =X-1;Y:=2a)

where X, Y are locations (program variables), b is an arbitrary boolean
expression and a is an arbitrary arithmetic expression. Prove through
well-founded induction that the program always terminates, no matter
what the initial state is and what b, a are. (Hint: Use lexicographic
ordering)

https://basics.sjtu.edu.cn/

Chapter 4

Inductive definitions

https://basics.sjtu.edu.cn/

Topics

» rule induction

» inductive definitions

https://basics.sjtu.edu.cn/

Rule Induction

textbook, Page 42 — 51

https://basics.sjtu.edu.cn/

Rule Induction

Rule Instances (X /y)

> E: a set of elements
» X C E: premise (a finite set of elements)

» y € E: conclusion (a single element)

https://basics.sjtu.edu.cn/

Rule Induction

Axiom Instances: 0)/y

Non-axiom Rule Instances: {xi,...,x,}/y

https://basics.sjtu.edu.cn/

Rule Induction

Recall: Derivation Trees
» E: a set of elements
> R: a set of rule instances
> y € E: an element
An R-derivation of y is
> either a rule instance (0/y)
» or ({d1,...,dn}/y) such that

» ({x1,...,xn}/y) is a rule instance
» each d; is a (smaller) R-derivation of x;

https://basics.sjtu.edu.cn/

Rule Induction

Recall: Notations
» R: a set of rule instances
» d: an R-derivation
» y: an element

Then we denote
» dlFg y: dis an R-derivation of y.
» |- y: dIFg y for some derivation d.
» dIF y,IF y: omission of R

https://basics.sjtu.edu.cn/

Rule Induction

Recall: Properties

> R: a set of rule instances
» d: an R-derivation
» y: an element
Then we have:
> (0/y)IFry if (0/y) € R;

> ({di,...,dn}/y) IFry if ({x1,...,x}/y) € R and
dilFr x1,. .., dy IFR Xp;

https://basics.sjtu.edu.cn/

Rule Induction

Notation

> E: a set of elements

> R: a set of rule instances
We define Iz :={y € E |IFr y}.

https://basics.sjtu.edu.cn/

Rule Induction

The Principle

> £ a set of elements
> R: a set of rule instances
> Ir={y €E|lry}
» P: a predicate over I
Then we have that Vx € Iz.P(x) iff

Y(X/y) € R[(X C Ig & ¥x € X.P(x)) = P(y)] -

https://basics.sjtu.edu.cn/

Rule Induction

The Principle

V(X/y) € R.[(X Clgr & Vx € X.P(x)) = P(y)]

> base step: X =) (axioms)
» inductive step: X # ()

https://basics.sjtu.edu.cn/

Rule Induction

Theorem
> E: a set of elements
» R: a set of rule instances
> Ir={y€E|lry}
» P: a predicate over I
Then we have that Vx € Iz.P(x) iff

V(X/y) e R.[(X Clgr & Vx € X.P(x)) = P(y)] .

https://basics.sjtu.edu.cn/

Rule Induction

Closedness
» R: a set of rule instances

> @: a set of elements

We say that Q is closed under R (or R-closed) if

V(X/y)ER(XCQR=yeQ) .

https://basics.sjtu.edu.cn/

Rule Induction

Proposition
> R: a set of rule instances
> @: a set of elements
Then we have:
» /i is R-closed;
» if Qis R-closed, then Iz C Q.

Proof
» from definition of /5

» by induction on derivation trees:

P(d):=Vy.[dIFry = y € Q]

https://basics.sjtu.edu.cn/

Rule Induction

Theorem
» E: a set of elements
» R: a set of rule instances
> Ir={y€E|rry}
» P: a predicate over Ig
Then we have that Vx € z.P(x) iff

Y(X/y) € R.[(X C Ig & ¥x € X.P(x)) = P(y)] -

Proof
> Q:={xelr|P(x)}and QC Ig;
> Q@ is R-closed and I C Q;
> /g = Q and Vx € Ig.P(x).

https://basics.sjtu.edu.cn/

Rule Induction

Example: Induction on Derivation Trees
> Ve,o,0', 0" [({c,0) = 0’ & (c,0) = ") =o' ="].
> Va,o,n',n".[({a,0) = n' & (a,0) = n")=n"=n"].
> Vb,o,t' t". [({(b,o) = t' & (byo) = t"") =t =1t"].
We define:
> Pi(c,0,0"):=Vo".[(c,0) = 0" = ="].
> Py(a,o,n'):=Vn".[{(a,0) = n" = n" =n"].
> Pi(b,o,t') =Vt [(byo) = t" =1t =1t"].
> P:=("Aexp” = P;) & ("Bexp" = P,) & (“Com" = P3)
(i.e., we aggregate all the three cases)

https://basics.sjtu.edu.cn/

Rule Induction

Special Rule Induction

» general rule induction: a property for all elements

» special rule induction: a property for a part of elements

https://basics.sjtu.edu.cn/

Rule Induction

Special Rule Induction
» R: a set of rule instances
» A C Igr: a subset
> @: a predicate over I
Then we have that Va € A.Q(a) iff

V(X/y) ER[XClr&yecA&(¥x e XNAQX))) = Q)] .

https://basics.sjtu.edu.cn/

Rule Induction

Special Rule Induction
We have that Va € A.Q(a) iff

V(X/y) ERIXClr&yecA& (VxeXNAQX))) = QW) -

Proof
> P(x):=x€ A= Q(x) and Va € Ig.P(a) & Va € A.Q(a);
> Vx € Ig.P(x) iff V(X/y) € R.[(X CIg & Vx € X.P(x)) = P(y)] ;

> V(X/y) €
RIXCIr&VYxeX(xEA= QX)) = (y€A= Q)] ;

> Y(X/y)ER[(XCIlr&VXxEXNAQKX) = (ycA= Q)] ;
> V(X/y)ER[(XCIlr&yeA&VYxe XNAQK)) = Qy)] ;

https://basics.sjtu.edu.cn/

Rule Induction

Example

> Y: a location (program variable)
Then Ve, 0,0 [(Y & loc(c) & (c,0) — o') = a(Y) =d'(Y)].

Proof
> A:={{c,0) = o' | Y &€loc(c)}.
> Q(c,0,0"):=0(Y)=d(Y).
> Y{c,0) = o' € A Q(c,o,0").
> V(X/y) ER[(XClr&y€eA& (Vx € XNAQKX))) = Qy)]

https://basics.sjtu.edu.cn/

Rule Induction

Proof
> A:={{c,0) = o' | Y &€loc(c)}.
> Q(c,0,0"):=0c(Y)=d(Y).
> Y{c,o) = o' € A. Q(c,o,0”).
> V(X/y)eR[(XClr&yeA& (Vxe XNAQ(X))) = Q)

(a,0) = m
(skip, o) — o (X:=a,0) = o[m/X]

(b,c) — true (c,o0) = " (while b do c,0") — o’
(while b do ¢,0) — o’

https://basics.sjtu.edu.cn/

Rule Induction

Another Example

» w := while true do skip
We prove that Vo,o'.(w,c) /4 o'

Proof
> A:={(c,0,0") | (c,0) = o/ & c =w};
» (@ := false;

> A=) Vae A Q(a);
> V(X/y) ER[(XCIr&y A& (Vx e XNAQKX))) = Q(y)]

https://basics.sjtu.edu.cn/

Rule Induction

Proof
» w := while true do skip
> A:={(c,0,0") | (c,0) = 0 & c=w};
> (@ := false;
> A=) Vac A Qa);
> V(X/y)eR[XClp&yeA& (¥x e XNAQKX))) = Qy)]

(b,c) — true (c,o0) = o” (while b do c,0”) — o’
(while b do ¢,0) — o’

https://basics.sjtu.edu.cn/

Inductive Definitions

textbook, Page 39 — 40

https://basics.sjtu.edu.cn/

Inductive Definitions

Intuition
> A: a nonempty set
» h:A— A: afunction
> a € A: an initial element

There is an infinite sequence ag, a1, ... such that ag = a and
ant1 = h(an).

https://basics.sjtu.edu.cn/

Inductive Definitions

The Recursion Theorem
> A: a nonempty set
» h:A— A: afunction
> a € A: an initial element

There exists a unique function : N — A such that (0) = a and
f(n+1) = h(f(n)).

https://basics.sjtu.edu.cn/

Inductive Definitions

The Proof Sketch
» T: the set of all functions g : {0,...,n} — A such that
> g(0) =a
> g(k+1) = h(g(k)) forall 0 < k < n;
> existence: f:={(n,d)eNxA|3ge T.g(n)=2a"}
> for all n, there is g € T such that g(n) = a for some a € A;
» for all n, there exists a unique a € A such that (n, a) € f;

» uniqueness: for f, g : N — A, if £(0) = g(0) = a, f(n+1) = h(f(n))
and g(n+ 1) = h(g(n)), then we have that f = g.

https://basics.sjtu.edu.cn/

Inductive Definition

Application
» the set of all IMP programs
> the set of all derivation trees

https://basics.sjtu.edu.cn/

Inductive Definitions

Derivation Trees
> R: a set of rule instances
Then we have
> Do :={(X/y) € R| X = 0}
> de D, iff
> either d € Dy,

> ord={di,...,d,}/y for some di,...,d, € D, and
(x1,..-,Xn)/y € R such that d; is rooted at x; (1 < i< n)

» D:=,D»

https://basics.sjtu.edu.cn/

Inductive Definitions

Definition of /g
» E: a set of elements
> R: a set of rule instances where all elements are from E
Then we have
> R:2E 5 2F: R(B):={y e E|3XCB.(X/y)e R}
> AC B= R(A) C R(B)

Proposition

» /i is R-closed;
» if Qis R-closed, then I C Q.

https://basics.sjtu.edu.cn/

Inductive Definitions

Proposition
» |r is R-closed;
» if Qis R-closed, then I C Q.

Proof
» our goal: Ig is R-closed.
> (X/y)e Rand X C Ig
» X C A, for some n
> yc A1 Clg

https://basics.sjtu.edu.cn/

Inductive Definitions

Proposition
» /i is R-closed;
» if Qis R-closed, then I C Q.

Proof
» our goal: if Q is R-closed, then Iz C Q.
» proof by induction on n: A, C Q

https://basics.sjtu.edu.cn/

Inductive Definitions

The Example Again (textbook, Page 39)

» w := while true do skip
We prove that Vo, o’ (w,0) 4 o'

Proof (by Contradiction)

» Suppose that 30,0’ (w,0) — o’.

» (w,0,0’) € A, for some n.

> Let n* be the least such that (w,o,0’) € A,+ for some w, o, 0.
» n* > 0and (w,0,0") € Ape_1.
>

Contradiction to the minimality of n*.

https://basics.sjtu.edu.cn/

Inductive Definitions

Well-Founded Recursion (Chapter 10.4)

> B: aset

» <: a well-founded binary relation on B

» for be B: <71{b}:={b € B|b <b}

» for BB CBandf:B— C: f|B': B' — C is defined by

fI1B" :={(b,f(b)) | be B'}

https://basics.sjtu.edu.cn/

Inductive Definitions

Well-Founded Recursion (Chapter 10.4)
» B, C: sets
> <: a well-founded binary relation on B
> <~Up}:={b €B|b <b}
> B :={(b,f(b)) | be B}
Then for any function
F:{(b,h)|beB,h:<{b} - C} = C

there exists a unique function f : B — C such that

Vb € B.f(b) = F(b, f[<"1{b}).

https://basics.sjtu.edu.cn/

Inductive Definitions

The loc Function
loc(skip) =0
= a) = {X}

¢(co; c1) = loc(cg) U loc(cy)

v

oc(if b then ¢ else c;) := loc(cp) U loc(cr)

4
>
>
> while b do ¢) :=loc(c)

(X
oc(
(
oc(

https://basics.sjtu.edu.cn/

Summary

» rule induction
» inductive definitions

» end of operational semantics (Chapter 2 to Chapter 4)

https://basics.sjtu.edu.cn/

Exercise 3

Problem
Consider w := while X <1000 do X := (2 x X) + 1. Determine the set
of all states o such that 30’.(w, o) — ¢’, and prove that

» VYo e M.30" (w,0) = d;
» Vo € E\M.Vo' . (w,c) /4 o'

https://basics.sjtu.edu.cn/

Chapter 5

The denotational semantics of

IMP

https://basics.sjtu.edu.cn/

Topics

Denotational Semantics
» complete partial orders
» continuous functions
» a least-fixed-point theorem

» rigorous definition for denotational semantics

https://basics.sjtu.edu.cn/

Denotational Semantics: An Informal View

Textbook, Page 55 — Page 61

https://basics.sjtu.edu.cn/

Motivation

Denotational Semantics
» a functional viewpoint for programs

» programs as input-output transformers

https://basics.sjtu.edu.cn/

Motivation

Equivalence over Commands

» p, cp: two commands

c~c iff Vo,0.((co,0) = 0" & (c1,0) = ')
iff {(0,0") | (co,0) = o'} ={(0,0") | {c1,0) = o'}

https://basics.sjtu.edu.cn/

Motivation

» c is represented by {(c,0") | {(c,0) — o'}

» commands as partial functions from inputs to outputs

https://basics.sjtu.edu.cn/

Motivation

The Mathematical Layout
> arithmetic expressions a: Afa] : X — Z

» boolean expressions b: B[b] : £ — {true, false}
» commands c: Cc]: X =X

https://basics.sjtu.edu.cn/

Arithmetic Expressions

Definition through Well-Founded Recursion

» A[n](c) := n for any state o;
A[X](¢) := o(X) for any state o;
Alag + a1](0) := Alao](c) + Ala:] (o) for any state o;
Alao — a1] (o) := Alao] (o) — A a1] (o) for any state o;
Alag x a1](0) := Alao] (o) x Ala1](o) for any state o;

vvyyy

https://basics.sjtu.edu.cn/

Boolean Expressions

Definition through Well-Founded Recursion
> B[true](o) := true;
> B[false](c) := false;

https://basics.sjtu.edu.cn/

Boolean Expressions

Definition through Well-Founded Recursion

>

w%:ama:{”“

false

false

q%<amg:{““

if Afao](c0) = A[a1](c)
if Afao](0) # Ala:](0)

if Afao](0) < A[ai1](o)
if Afao](co) > Afai](o)

https://basics.sjtu.edu.cn/

Boolean Expressions

Definition through Well-Founded Recursion
> B[-b](0) := =B[b](0)
» Blbo A bi](0) := B[bo]|(0) & B[b:1](o)
> Blbo V bi](0) := B[bo](0) or B[b:] (o)

https://basics.sjtu.edu.cn/

Denotational Semantics

Exercise
Prove by structural induction that for all arithmetic expressions a and
boolean expressions b, A[a]] and B[b] are indeed functions.

https://basics.sjtu.edu.cn/

Commands

Skip and Assignment
» Clskip] :={(c,0) | c € X};
> CIX = a] := {(0, 0 [A[a](0)/X]) | o € T};

https://basics.sjtu.edu.cn/

Commands

Sequential Composition
> Clco; c1] := Clei] o Cleo];

https://basics.sjtu.edu.cn/

Commands

Conditional Branch
» C[if b then ¢, else ¢;] is the union of the following two sets:
» {(0,0") | B[b](c) = true and (0,0") € C[c]}
» {(0,0") | B[b](c) = false and (o,0’) € C[c1]}

https://basics.sjtu.edu.cn/

Commands

While Loop
» w = while b do ¢;
» How??

https://basics.sjtu.edu.cn/

Commands

A First Attempt
» w = while b do ¢;
» w ~ if b then c; w else skip;
>

Clw] = {(o,) | B[b](c) = false}U
{(c,0") | B[b](c) = true and (o, 0") € C[w] o C[c]}

https://basics.sjtu.edu.cn/

Commands

The Problem
>

c[w] = {(o,0) | B[b](c) = false}U
{(0,0") | B[b](c) = true and (o,0") € C[w] o C[c]}

» C[w] is not recursively defined.

https://basics.sjtu.edu.cn/

Commands

The Fixed-Point Phenomenon
» w = while b do c;
>

Clw] = {(e,0) | B[b](c) = false}u
{(e,0") | B[b](c) = true and (o, c") € C[w] o C[c]}

» C[w] should be a solution to the following set equation:

R ={(o,0) | B[b](c) = false}u
{(c,0") | B[b](c) = true and (c,0") € RoC[c]}

https://basics.sjtu.edu.cn/

Commands

The Fixed-Point Phenomenon
» w = while b do ¢;

» C[w] should be a solution to the following set equation:

R = {(o,0) | B[b](0) = false}U
{(c,0") | B[b](c) = true and (0,0"') € RoC[c]}

» Does any solution R work ?
» Theset R={(0,0)| o € L} is a solution when ¢ = skip.
» However, we desire C[w] = () when ¢ = skip and b = true.
» What do we desire about C[w] ?

» The set R = {(0,0) | 0 € £} contains too much information.
» C[w] should be the solution with the least information.

https://basics.sjtu.edu.cn/

Complete Partial Orders

Textbook, Page 68 — Page 70

https://basics.sjtu.edu.cn/

Complete Partial Orders

Motivation
» a partial order to compare elements
» a complete property in infinitely ascending sequences
» a fundamental characterization with least fixed points

https://basics.sjtu.edu.cn/

Complete Partial Orders

Recall: Partial Orders
A partial order is an ordered pair (P,C) such that P is a set and C is a
binary relation C C P x P satisfying the following conditions:

» (reflexibility) Vp € P.p C p;
» (transitivity) Vp,q,r e P.[[pPEq& qC r)=pLCr];
> (antisymmetry) Vp,g € P.[(pC g & g C p) = p =q].

https://basics.sjtu.edu.cn/

Complete Partial Orders

Upper Bounds

» (P,C): a partial order

> X: asubset of P (i.e., that satisfies X C P)
p € Pis an upper bound of X if Vg € X.q C p.

Least Upper Bounds

p € P is a least upper bound (in short, lub) of X if
» pis an upper bound of X, and
» for all upper bounds g of X, pC g

Exercise
For any X C P, X has at most one least upper bound.

https://basics.sjtu.edu.cn/

Complete Partial Orders

Least Upper Bounds

p € P is a least upper bound (in short, lub) of X if
» pis an upper bound of X, and
» for all upper bounds g of X, pC g

Notation
» The least upper bound of X (if exists) is denoted by | |X.
> If X ={d1,...,dp}, then dy U---Ud,:=||X.

https://basics.sjtu.edu.cn/

Complete Partial Orders

w-Chains
» (P,C): a partial order
An w-chain in P is an infinite sequence dgy, d1,...,d,,... in P such that

dbCdC---CdC....

Complete Partial Orders (CPOs)

(P,C) is a complete partial order (cpo) if for any w-chain
HEAME---Cd,C...
in P, the least upper bound

Lnew dn = LHdn | n € w} =[{do, d, ... dn,. . }

exists in P.

https://basics.sjtu.edu.cn/

Complete Partial Orders

Least Elements
> (P,C): a partial order
p € Pis a least element if Vg € P.p C q.

Exercise
Show that the least element, if exists, is unique.

CPOs with Bottom
> (P,C): a cpo
(P,C) is a cpo with bottom if P has a (unique) least element Lp.

https://basics.sjtu.edu.cn/

Complete Partial Orders

Set Inclusion

> A: aset
> D =24
> C

={(X,Y)eDxD|XCY}

Exercise

Verify that (D,) is a cpo with bottom.
» | hew An=U,An given Ag CA; C ...
> 1lp=10

https://basics.sjtu.edu.cn/

Complete Partial Orders

Partial Functions

» B, C: sets

» D:={F|F:B—~C}

» C:={(F,G)e DxD|FC G}

Exercise
Verify that (D,C) is a cpo with bottom.

» | pew Fn=U, Fngiven [CF C ...

» (important!) |, Fn is a function!
> 1p=10

https://basics.sjtu.edu.cn/

Complete Partial Orders

Intervals
» D :=[0,00)U {co}
> C={(x,y)eDxD|x<y}

Exercise
Verify that (D,C) is a cpo with bottom.

P | Jew Xn =sup, X, if xo <xq <L
> 1,=0

https://basics.sjtu.edu.cn/

Complete Partial Orders

Intervals
» D:=]0,1)
> C={(x,y)eDxD[x<y}

Exercise
Is (D,C) a cpo (with bottom) ?

https://basics.sjtu.edu.cn/

Complete Partial Orders

Real Numbers
> D:=R
> C.={(x,y)€eDxD|x<y}

Exercise
Is (D,C) a cpo (with bottom) ?

https://basics.sjtu.edu.cn/

Continuous Functions

Textbook, Page 71 — Page 72

https://basics.sjtu.edu.cn/

Monotonic Functions

Definition
» (D,Cp) and (E,Cg): partial orders
A function f : D — E is monotonic if

Vd,d' € D.[d Cp d' = f(d) Cg £(d)]

Example
> partial order: (R, <)

» f(x) =2-xis a monotonic function.

https://basics.sjtu.edu.cn/

Continuous Functions

Definition
» (D,Cp) and (E,Cg): cpo's
A function f : D — E is if the followings hold:
» { is monotonic;
» for all w-chainsdy T di C---C d,C ... in D, we have that

I_lney.; f(d") =f (I—lnew d")

Example
» the cpo: ([0,1],<)

» f(x) =2-xis a continuous function.

https://basics.sjtu.edu.cn/

Continuous Functions

Definition
» (D,Cp) and (E,Cg): cpo's
A function f : D — E is if the followings hold:

» f is monotonic;
» for all w-chainsdg C d; C---C d,C ... in D, we have that

[_lnew f(d") =f (I_Inew d”)

Question
Can one construct a monotonic function which is not continuous?

https://basics.sjtu.edu.cn/

Fixed Points

Definition
» (D,Cp): a partial order
» f:D — D: a function
An element d € D is:
» a fixed point of f if f(d) = d;
» a prefixed point of f if f(d) C d,

https://basics.sjtu.edu.cn/

Fixed Points

The Fixed-Point Theorem
Suppose

> (D,Cp): a cpo with bottom Lp
» f:D — D: a continuous function
» IpCpf(Lp)Cp---Cp f(Lp)Cph ...
> fix(f) =, "(LD)
Then
> fix(f) is a fixed point of f: f(fix(f)) = fix(f)
» fix(f) is the least prefixed point of f: f(d) E d = fix(f) C d
» fix(f) is the least fixed point of f: f(d) =d = fix(f) C d

https://basics.sjtu.edu.cn/

Fixed Points

Proof

> fix(f) =, f"(LD)

> fix(f) is a fixed point of f: f(fix(f)) = fix(f)

F(fix(f))

f(l_lnEw fn(J‘D))
|_|n€w fn+1(LD)
Unew " (L) U Lp
Unew 7"(Lb)

fix(f)

https://basics.sjtu.edu.cn/

Fixed Points

Fixed-Point Theorem: Proof
> fix(f) ==, F"(LD)
fix(f) is the least prefixed point of f: f(d) C d = fix(f) C d
d: a prefixed point (i.e., f(d) C d)
1pCd
f'(Lp) Ed = " (Lp) Cf(d)Cd
v (F(Lp) C d)

>
| 2
>
| 4
>
> fix(f) = |, F"(Lp) C d

https://basics.sjtu.edu.cn/

Denotational Semantics: Formal Definition

Textbook, Page 55 — Page 61

https://basics.sjtu.edu.cn/

Recall: Denotational Semantics

» commands as partial functions from inputs to outputs
> c is represented by the partial function {(co,0’) | {(c,0) — ¢'}.

https://basics.sjtu.edu.cn/

Denotational Semantics

Recall: The Mathematical Layout
> arithmetic expressions a: Afa] : X — N

» boolean expressions b: B[b] : £ — {true, false}
» commands c: Cc]: X =X

https://basics.sjtu.edu.cn/

Arithmetic Expressions

Recall: Definition through Well-Founded Recursion
» A[n](c) := n for any state o;

A[X](¢) := o(X) for any state o;

Alag + a1](0) := Alao](c) + Ala:] (o) for any state o;

Alao — a1] (o) := Alao] (o) — A a1] (o) for any state o;

Alag x a1](0) := Alao] (o) x Ala1](o) for any state o;

vvyyy

https://basics.sjtu.edu.cn/

Boolean Expressions

Recall: Definition through Well-Founded Recursion
> B[true](o) := true;
> B[false](c) := false;

https://basics.sjtu.edu.cn/

Boolean Expressions

Recall: Definition through Well-Founded Recursion
>

B) true if Afao](0) = Afai](o)

Blao = a1](0) :== {false if Afao](o) # Ala1](o)

true if Afao](0) < Ala1](0)

Blao < ai](0) :== {false if Afao](o) > Afa:](o)

https://basics.sjtu.edu.cn/

Boolean Expressions

Recall: Definition through Well-Founded Recursion
> B[-b](0) := ~B[b](0)
> Blbo A by](0) := Blbo](c) & B[b:](0)
> Blbo V bi](0) := B[bo](0) or B[b:] (o)

https://basics.sjtu.edu.cn/

Commands

Recall: Assignment and Skip
» Clskip] :={(c,0) | c € X};
> C[X :=a] :={(o,0[A[a](c)/X]) | c € L};

https://basics.sjtu.edu.cn/

Commands

Recall: Sequential Composition
> Clco; c1] := Clei] o Cleo];

https://basics.sjtu.edu.cn/

Commands

If Branch
» C[iif b then ¢ else ¢;] is the union of the following two sets:
» {(0,0") | B[b](c) = true and (0,0") € C[co] };
> {(0,0") | B[b](c) = false and (o,0") € C[c1]}

https://basics.sjtu.edu.cn/

Commands

While Loop
» w = while b do ¢;
» w ~ if b then c; w else skip;
>

Clw] = {(o,) | B[b](c) = false}U
{(c,0") | B[b](c) = true and (o, 0") € C[w] o C[c]}

https://basics.sjtu.edu.cn/

Commands

The Fixed-Point Phenomenon
» w = while b do c;
>

Clw] = {(e,0) | B[b](c) = false}u
{(e,0") | B[b](c) = true and (o, c") € C[w] o C[c]}

» C[w] should be a solution to the following set equation:

R ={(o,0) | B[b](c) = false}u
{(c,0") | B[b](c) = true and (c,0") € RoC[c]}

https://basics.sjtu.edu.cn/

Commands

The Fixed-Point Phenomenon
» w = while b do ¢;
>

Clw] = {(e,0) | B[b](c) = false}U
{(c,0") | B[b](c) = true and (c,c") € C[w] o C[c]}

> Define [: (£ = ¥) — (£ — X) by

[(F):={(o,0) | B[b](c) = false}u
{(o,0") | B[b](c) = true and (c,0") € F o C[c]}

> r(Cw]) = Cw].

https://basics.sjtu.edu.cn/

Commands

The Fixed-Point Phenomenon
» w = while b do c;
» DefinelNn: (X -~ %)= (X —X) by
['(F):={(o,0) | B[b](c) = false}U
{(o,0") | B[b](c) = true and (o,0") € F o C[c]}

> ((X — X),Q): the complete partial order
» [a continuous function for ((X — X), Q)

Exercise
» ((X —X),Q)is a complete partial order.
» [is a continuous function for ((X — X), Q).

https://basics.sjtu.edu.cn/

Commands

The Fixed-Point Phenomenon
» w = while b do c;
» Defineln: (X =~ %)= (X —X) by
F(F):={(o,0) | B[b](c) = false}U
{(c,0") | B[b](c) = true and (o,0") € F o C[c]}
» ((X — X),Q): the complete partial order

» [a continuous function for ((X — X), C)

Definition for C[w]

> Clw] = fix(T) = Upew M(L) = Upe, T(0);

https://basics.sjtu.edu.cn/

Commands

The Intuition
» w = while b do c;
> (X —X)— (X —X)isgiven by
M(F):={(o,0) | B[b](c) = false}U
{(o,0") | B[b](c) = true and (o,0") € F o C[c]}

> Clw] == fix(") = Upeo, (L) = Upew, T"(0);

Example

» w = while true do skip
> Clw] =0

https://basics.sjtu.edu.cn/

Commands

Theorem

For all commands ¢, C[c] is a partial function from X to ¥.

Proof

By structural induction.

https://basics.sjtu.edu.cn/

Summary

» complete partial orders
» continuous functions
» a fixed-point theorem
» denotational semantics

https://basics.sjtu.edu.cn/

Exercise

Problem 1
Let D be a non-empty set and (D — D) be the set of all

from D to D. Prove that the partial order (D — D), C) (i.e.,
the set of partial functions ordered by set inclusion) is a complete partial

order with bottom.

https://basics.sjtu.edu.cn/

Exercise

Problem 2
» Prove that (N, >) is a cpo.
> Prove that (P(N)\{0},C) is a cpo.
» Determine whether the function F : P(N)\{0} — N given by

F(A) := “the minimal number in A"

is a continuous function from (P(N)\{0}, C) to (N, >). Prove your
answer.

https://basics.sjtu.edu.cn/

Topics

» equivalence with operational semantics
» Knaster-Tarski's Fixed-Point Theorem

» the bottom element

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

Textbook, Page 61 — 68

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

Denotational Semantics: Pros
> an elegant definition through fixed-point theory

» an operational-independent definition through partial functions

Key Question

» Does it really meet with operational semantics?

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

Equivalence Statement
» Ala] ={(o,n) €e ¥ X Z| (a,0) — n}.
» B[b] = {(o,t) € T x {true, false} | (b,c) — t}.
> C[c] = {(0,0") €T X T | (c,0) = o'}

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

Arithmetic Expressions
Prove by structural induction that

Va € Aexp.Vo € X.¥n € Z.(A[a](¢c) = n< (a,0) — n)

https://basics.sjtu.edu.cn/

Recall: Operational Semantics

Numbers and Locations

(n,o) = n (X,0) = a(X)

» rules without premise: axioms

» n, X,o: metavariables

https://basics.sjtu.edu.cn/

Recall: Operational Semantics

Arithmetic Operations

(ao,a>—>n0, <31,0'>—>n1 <30,0‘>—>n0, <31,0'>—)n1

(a0 + a1,0) = ng + m (a0 — a1, 0) = ng — ny

<ao,0'> — Ng, <21,0'> — N

<ao X 31,J> — Ng -+ N

» ng, N, ag, ai,o: metavariables

https://basics.sjtu.edu.cn/

Recall: Denotational Semantics

Definition through Well-Founded Recursion

» A[n](c) := n for any state o;
A[X](¢) := o(X) for any state o;
Alag + a1](0) := Alao](c) + Ala:] (o) for any state o;
Alao — a1](0) := Alao] (o) — Afa1] (o) for any state o;
Alag x a1](0) := Alao] (o) x Ala1](o) for any state o;

vvyyy

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

Boolean Expressions
Prove by structural induction that

Vb € Bexp.Vo € L.Vt € {true, false}. (B[b](c) =t < (b,0) — t)

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

Commands
We need to prove that

Ve € ComVo,0' € £.((0,0") € C[c] & (c,0) = o)

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

Commands: One Direction

Ve € ComVo,0’' € X.((c,0) = o' = (0,0") € C[c])

Proof

By special rule induction:
> A:={(c,0,0") | {c,0) — o'}
» Q(c,0,0") :=(0,0") € C[c]
» Then we have that Va € A.Q(a) iff

Y(X/y) ERJXClr&y e A& (VxeXNAQ(X)) = Q)] -

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

Atomic Commands

>
(a,0) = m

(skip,c) = o (X :=a,0) = o[m/X]

» C[skip](c) =0
> CIX = al(0) = o [A[a](0)/X]

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

Sequential Composition

>
(co,0) = o, (c1,0") — o

(co; c1,0) = o

» Clco; a] =C[ca] o Cle]

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

[f-Branch

>
(b,o) — true, (co,0) — o’

(if b then ¢ else ¢;,0) — o’

(b,o) — false, (c1,0) — o’
(if b then ¢ else ¢;,0) — o’

» C[if b then ¢ else ¢] is the union of the following two sets:
» {(0,0") | B[b](c) = true and (o,0") € C[co]};
» {(0,0") | B[b](c) = false and (c,0") € C[a]};

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

While Loops

>
(b,c) — false

(while bdo c,0) — ¢

(b,o) — true, (c,o) — ¢, (while b do c¢,c") — ¢

(while b do c¢,0) — o’

» w = while b do c;
>

Clw] = {(o,0) | B[b](c) = false}U
{(o,0") | B[b](c) = true and (o, 0") € C[w] o C[c]}

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

Commands: The Other Direction

Ve € Com.Vo,o' € £.((0,0") € C[c] = (c,0) = ')

Proof

By structural induction on c.

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

Atomic Commands

>
(a,0) &> m

(skip,o) = o (X :=a,0) = o[m/X]
> C[skip](c) =0
> C[X = a](0) = o [A[a](o)/X]

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

Sequential Composition

» Clco; a1] =C[cr] o Cleo]
>

(co,0) — o (c1,0") = o
(co; c1,0) — o

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

If-Branch
» C[if b then ¢, else ¢;] is the union of the following two sets:
» {(0,0") | B[b](c) = true and (0,0") € C[co]};
> {(0,0") | B[b](c) = false and (o,0") € C[ci]};

(b,o) — true (co,0) = o’
(if b then ¢, else ¢;,0) — o’

(b,c) — false (c1,0) = o
(if b then ¢, else ¢;,0) — o’

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

While Loops
» w = while b do ¢;
> Define [: (£ =) — (£ —) by

[(F):={(o,0) | B[b](c) = false}u
{(o,0") | B[b](c) = true and (c,0") € F o C[c]}

> ((X — X),Q): the complete partial order

» [a continuous function for ((X — X), Q)

> Clw] = fix(T) = Upew M(L) = Upew T(0);
> :Vn e NY(o,0') € T"(0).(w,0) = o’

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

While Loops
» w = while b do c;
> C[[W]] = le(r) = l_lnEw rn(L) = UnEw rn(@)'
> the goal: Vn € NV(o,0’) € T"(0).{w, o) — o’

» the approach: an extra induction on n that
Vo,0' € £.((0,0") € Cc] = (c,0) = o)

implies
V(o,0") e I"(0).(w,0) — o’

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

Base Step: n =0
» w = while b do c;
» Clw] = fix(l) = ||
> 10(0) =10
> Y(o,0") € I%0).(w,0) = o

new T(1) = Unew T(0);

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

Inductive Step: n>1

: w = while b do ¢;

r10) := {(0,0) | B[b](c) = false}U
{(c,0") | B[b](c) = true and (c,0’) € T"(0) o C[c]}

> : to prove ¥(o,0’) € I"1(0).(w,) — o’ under the main
induction hypothesis for C[c].

> : from the rules

(b,c) — false
(while bdo c,0) — ¢

(b,o) — true, {c,0) — ¢”, (while b do c,c”) — ¢’
(while b do ¢,0) — o’

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

While Loops
> w = while b do ¢, C[w] =, "(?)
» Y(o,0").((0,0") € C[c] = (c,o) — ¢') implies

Vn e NY(o,0") € I"(0).Aw,0) = o’

» Y(o,0").((0,0") € C[c] = (c,o) — ¢') implies

V(o,0").((0,0") € C[w] = (w,0) = o)

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

What have we proved 7
» Vc e ComVo,o’ € X.((c,0) = o' = (0,0") € C[c])
(rule induction)
» Vc e ComVo,0’ € X.((0,0") € Clc] = (c,0) — 0’)
(structural induction)
» Vc e ComVo,0’ € X.((c,0) = o' & (0,0") € C[c])

https://basics.sjtu.edu.cn/

Equivalence with Operational Semantics

Impact

» the equivalence between the semantics

» the legitimacy of least fixed points

https://basics.sjtu.edu.cn/

Knaster-Tarski's Fixed-Point Theorem

Textbook, Page 74 — 75

https://basics.sjtu.edu.cn/

Knaster-Tarski's Fixed-Point Theorem

» an alternative fixed-point theorem

» do not require: complete partial order
» do not require: continuity prerequisite
> require: (greatest) lower bound

https://basics.sjtu.edu.cn/

Knaster-Tarski's Fixed-Point Theorem

Recall: Upper Bounds
» (D,C): a partial order
» X: asubset of D (i.e., X C D)
» y: an element in D
Then y is an upper bound for X if it holds that Vx € X.x C y.

https://basics.sjtu.edu.cn/

Knaster-Tarski's Fixed-Point Theorem

Lower Bounds
» (D,C): a partial order
» X: asubset of D (i.e., X C D)
> y: an element in D
Then y € D is a lower bound for X if it holds that Vx € X.y C x.
Greatest Lower Bounds
We say that y is a (unique) greatest lower bound for X if we have:
» y is a lower bound;
» for all lower bounds z for X, it holds that z C y.
» notation: []X for y

https://basics.sjtu.edu.cn/

Knaster-Tarski's Fixed-Point Theorem

Complete Lattices

» (D,C): a partial order
(D,C) is a complete lattice if [] X exists for every X C D.
Some Special Elements

» the least element: L :=[]D such that Vx € D, | C x
> the greatest element: T :=[]0 such that Vx € D,x T T

https://basics.sjtu.edu.cn/

Knaster-Tarski's Fixed-Point Theorem

Complete Lattices
» (D,C): a partial order
(D,C) is a complete lattice if [] X exists for every X C D.

Exercise
Every X C D has a least upper bound.

> YV:={yeD|VxeXxCy}
> X =Y

https://basics.sjtu.edu.cn/

Knaster-Tarski's Fixed-Point Theorem

Terminology

P |east upper bound: supremum

P greatest lower bound: infimum

https://basics.sjtu.edu.cn/

Knaster-Tarski's Fixed-Point Theorem

Examples
» (N, <) is not a complete lattice.
> ([0,1], <) is a complete lattice.
» (2P, C) is a complete lattice for any set D.

https://basics.sjtu.edu.cn/

Knaster-Tarski's Fixed-Point Theorem

Notation
> (D,C): a complete lattice
» f: D — D: a monotonic function
> Z:={deD|f(d)=d}

Then:
> the Ifp(f) is the least element of Z if it exists:
Ifp(f) € Z & Vd € Z.Ifp(f) C d
> the gfp(f) is the greatest element of Z if it
exists:

gp(f) € Z & Vd € Z.d C gip(f)

https://basics.sjtu.edu.cn/

Knaster-Tarski's Fixed-Point Theorem

Theorem Statement

» (D,C): a complete lattice

» f: D — D: a monotonic function (not necessarily continuous)
Then:

> ifp(f) = [H{d € D | f(d) C d};

> gfp(f) = {d € D[d C 7(d)}.

https://basics.sjtu.edu.cn/

Knaster-Tarski's Fixed-Point Theorem

Theorem Statement
> Ifp(f) =[1{d € D | f(d) C d};

Proof
> d :=[{d € D|f(d)C d}.
» f(d')C f(d) C d for all d € D such that f(d) C d.
> f(d')C d' and f(d') € {d € D | f(d) C d}
> f(d')=d'

https://basics.sjtu.edu.cn/

Tarski's Fixed-Point Theorem

Theorem
> gfp(f) = Ll{d € D | d C f(d)}.

Proof
> d":=|{deD|dCf(d)}
> d C f(d)Cf(d"”) for all d € D such that d C f(d).
> J" T f(d")and f(d") € {d € D|dC f(d)}
> f(d//) — d//

https://basics.sjtu.edu.cn/

Tarski's Fixed-Point Theorem

Question
Can we replace complete partial orders by complete lattices in our
denotational semantics?

https://basics.sjtu.edu.cn/

The Bottom Element L

Textbook, Page 72 — 73

https://basics.sjtu.edu.cn/

The Bottom Element L

The CPO X |
» |: an element for non-termination
> >, =XuU{l}
> C.={(L,0)|]cex}u{(d,d)|deX, }

Exercise
Verify that (X ,,C) is a cpo with bottom.

https://basics.sjtu.edu.cn/

The Bottom Element L

The CPO X
» |: an element for non-termination
> Y =XuU{l}
> C:={(L,0)|ocexr}u{(d,d)|dex,}

1-1 correspondence
» F:%¥ — ¥: a partial function
> F': ¥ =Y ,: F'(0) = L whenever F(o) is undefined.
» the partial order: F' C G’ iff F'(0) E G'(0) for all 0 € X.
» o property: FC Giff FFE G’
> an exercise: (X — X1),C) is a cpo with bottom.

https://basics.sjtu.edu.cn/

Summary

» equivalence with operational semantics
» Naster-Tarski's Fixed-Point Theorem

» the bottom element

https://basics.sjtu.edu.cn/

Exercise 5

Problem 1
» D, E,F: cpo's (with their implicit ordering relations)
» f:D — E and g : E — F: continuous functions
Prove that the function go f : D — F is continuous.

https://basics.sjtu.edu.cn/

Exercise 5

Problem 2

Let (D, Ep) and (E, Cg) be complete partial orders (cpo’s) with bottom
elements L p, L g respectively. Consider the partial order (D x E, C)
defined through lexicographic ordering, i.e., for all

(d,e),(d’,e’) € D x E we have (d,e) C (d’, ¢’) iff it holds that either
dCpd and d# d’, or d = d’ and e Cg ¢'. Determine whether

(D x E, C) is always a cpo with bottom or not, and prove/disprove
your answer. You don’t need to prove that (D x E, C) is a partial order.

Note: Please write out the main points of the proofs as complete as
possible.

https://basics.sjtu.edu.cn/

Chapter 5

The axiomatic semantics of

S
IMP

https://basics.sjtu.edu.cn/

Topics

Axiomatic Semantics
» logical specifications for programs
» partial correctness assertions

» proof rules for partial correctness assertions

https://basics.sjtu.edu.cn/

Axiomatic Semantics: An Intuition

Textbook, Page 77 — 78

https://basics.sjtu.edu.cn/

Axiomatic Semantics: An Intuition

A Simple Example
Consider the command (program) c as follows:
5:=0;
N:=1;
while ~(N=101) do (S:=S+N; N:=N+1)

https://basics.sjtu.edu.cn/

Axiomatic Semantics: An Intuition

A Simple Example
Consider the command (program) c as follows:
S:=0;
N:=1;
while -(N=101) do (S:=S+N; N:=N+1)

Our Goal
For any 0,0’ € &, {c,0) — o implies ¢/(S) = Zi(fl k = 5050 .

https://basics.sjtu.edu.cn/

Axiomatic Semantics: An Intuition

The First Part
{true} $:=0; N:=1 {S=0AN=1}

https://basics.sjtu.edu.cn/

Axiomatic Semantics: An Intuition

The Loop Body
{5 =k A—(N =101)}
S=S+N; N:=N+1
{5=205 K
The Whole While-Loop
{s=0 k)
while -(N=101) do (S:=S+N; N:=N+1)

{(S=S1kAN=101}

https://basics.sjtu.edu.cn/

Axiomatic Semantics: An Intuition

Putting Together
{true} S:=0; N:=1 {S=0AN=1}
{§ =25 K}
while =(N=101) do (S:=S+N; N:=N+1)
(=N kAN=101}

> (Szzlk\/:_llk/\/v:101)=>5:Zi°:°1k:5050

https://basics.sjtu.edu.cn/

Axiomatic Semantics: An Intuition

The Logical Layout
» c: a command
> A, B: logical formulas

Then the assertion {A}c{B} means that
for all states o that satisfy A, if (c,o) — o' then ¢’ satisfies B.

https://basics.sjtu.edu.cn/

Axiomatic Semantics: An Overview

Textbook, Page 78 — 80

https://basics.sjtu.edu.cn/

Axiomatic Semantics

Partial Correctness Assertions
» A, B: logical formulas
» o = A: o satisfies A
» c: a command

A partial correctness assertion is of the form {A}c{B}, meaning

Vo,0' e X.((c EAN(c,0) = d')=0" EB) .

Terminology

» A: precondition
» B: postcondition

https://basics.sjtu.edu.cn/

Axiomatic Semantics

Partial Correctness Assertions
> A, B: logical formulas
> o | A: o satisfies A
» ¢: a command

A partial correctness assertion is of the form {A}c{B}, meaning

Vo,0' e Z.((c EAN{c,0) = 0)=d EB) .

The Core of the Axiomatic Semantics
» logical properties for input-output relationships
» no guarantee of termination

https://basics.sjtu.edu.cn/

Axiomatic Semantics

An Example

» ¢ := while true do skip
> {true}c{false}

Question
Does {true}c{false} hold?

https://basics.sjtu.edu.cn/

Axiomatic Semantics

Total Correctness Assertions
> A, B: logical formulas
» c: a command
Then [A]c[B] means that
> Vo,0' e X.((c EAN{c,0) = o' = ') E B),
> VoeX.[cEA= 30 €. ((c,0) =)]

Observation
total correctness = termination + partial correctness

https://basics.sjtu.edu.cn/

Axiomatic Semantics

The Bottom Element
» _L: the fresh element for non-termination.
» Cc := L if c does not terminate on the initial state o.
> Clc](L) := L.
» | E A for all logical formulas A.

https://basics.sjtu.edu.cn/

Axiomatic Semantics

Definition with the Bottom Element
A partial correctness assertion {A}c{B} means equivalently that

VoeX.(c EA=C[c](0) =B) .

https://basics.sjtu.edu.cn/

Axiomatic Semantics

The Central Question

How to build the axiomatic semantics (i.e. {A}c{B})?

https://basics.sjtu.edu.cn/

Axiomatic Semantics

The Road Map

» a formal language for logical formulas

» a collection of rules for partial correctness assertions

https://basics.sjtu.edu.cn/

An Assertion Language Assn

Textbook, Page 80 — 86

https://basics.sjtu.edu.cn/

An Assertion Language Assn

Informal Description

> first-order logical formulas

» satisfaction defined over states

https://basics.sjtu.edu.cn/

An Assertion Language Assn

Example: Primality
> Prime:=X>0A-(3i.3.(i=2A]>2AX =1ix]))
» X: a location (program variable)
» j,j: integer variables
» o = Prime iff ¢(X) is a prime number.

Observation
» locations, arithmetic expressions, propositional logical operators
> integer variables
> universal/existential quantification

https://basics.sjtu.edu.cn/

An Assertion Language Assn

Extended Arithmetic Expressions Aexpv

az=n| X | i| a+a | aa—a |a xa

» n: an integer
> X: a location

» i: an integer variable (from Intvar)

https://basics.sjtu.edu.cn/

An Assertion Language Assn

Examples
> X+Y -3
> (i x)+ k

> X+ (ixY)+5—(4x))

Integer Variables
Why do we include integer variables?
» more expressibility for organizing logical properties

» more ability for representing unknown initial values

https://basics.sjtu.edu.cn/

An Assertion Language Assn

Extended Boolean Assertions Assn

A = true | false | ag =2 | ap <2 |
Ag N Ar | Ao V AL | -A | Ao = Ag |
ViA | 3iA

» a9, a;: extended arithmetic expressions from Aexpv
» j: an integer variable from Intvar
> A,V,—: logical connectives from propositional logic

» V. 3: quantifiers from first-order logic

https://basics.sjtu.edu.cn/

An Assertion Language Assn

Extended Boolean Assertions Assn

A = true | false | ag =2, | ap <3 |
Ag N Ar | AoV AL | -A | Ay = Ax |
Vi.A | JilA

Satisfaction Relation |=: An Intuition

A state o satisfies an assertion A € Assn (written as o = A) if A is true
when all locations X in A is replaced by o(X).

https://basics.sjtu.edu.cn/

An Assertion Language Assn

Satisfaction Relation =: Main Issues

» quantifiers

> integer variables

Important Points

» free/bound variables
> substitution

» interpretations

https://basics.sjtu.edu.cn/

An Assertion Language Assn

Free and Bound Variables
» free variables: integer variables not associated with quantifiers
» bound variables: integer variables associated with quantifiers
» notation: FV(=)

Free and Bound Variables: Examples
> Ji(k=1ixI);
> (i+100 <77)AVi.(j+1=i+3)

https://basics.sjtu.edu.cn/

Free and Bound Variables

Definition through Well-Founded Recursion

All integer variables in extended arithmetic expressions are free:
> FV() = FV(X) := 0;

FV(i) = {i);

FV(ao + a1) := FV(ap) U FV(a1);

FV(ag — a1) :== FV(ag) U FV(a1);

FV(ag x a1) :== FV(ap) U FV(a1).

vvyyy

https://basics.sjtu.edu.cn/

Free and Bound Variables

Definition through Well-Founded Recursion
Quantified integer variables are removed from free variables:
> FV(true) = FV/(false) := 0);
» FV(ap=a1) = FV(ap < a1) := FV(ap) U FV(a1);
> FV(Ao x A1) = FV(Ay) U FV(A7) for xe {A,V,=};
> FV(-A) = FV(A)
> FV(Vi.A) = FV(3i.A) = FV(A)\ {i}.

https://basics.sjtu.edu.cn/

Free and Bound Variables

Definitions

> A: an assertion from Assn

» . an integer variable that appears in A
Then:

» iisfreein Aif i € FV(A).

> jis boundin Aif i ¢ FV(A).

> Ais closed if FV(A) = 0.

https://basics.sjtu.edu.cn/

Free and Bound Variables

Examples
> FV(i=1)={i}
> FV(Vi.(i x i >0))=0;
> FV(i=1VVi(ixi>0))=/{i};

https://basics.sjtu.edu.cn/

Substitution

Informal Description

> a2 € Aexp: an arithmetic expression
> j: an integer variable
> A: an assertion such that i € FV(A)

Then Ala/i] is the assertion obtained by substituting all free occurrences
of i in A by a.

https://basics.sjtu.edu.cn/

Substitution

Definition: Extended Arithmetic Expressions
> nla/i] .= n;
> Xla/i]:=X;
> jlafi)i=jifj# i
> jla/i] :=aifj=1i;
> (ap X a1)[a/i] := a0 [a/i] x a1 [a/i] for e {+,—, x};

https://basics.sjtu.edu.cn/

Substitution

Definition: Extended Boolean Assertions Assn
> true[a/i] := true;
> false[a/i] := false;
> (30 = a1) [a/i] = a0 [a/i] = o [3/];
> (a0 < a1)[a/] i= a0 [a/i] < o [a/]
> (Ag ™ Ap)[a/i] := Aola/i] x A1 [a/i] for me {A,V,=};
> (=AY [a/i] = —(Ala/i]);

https://basics.sjtu.edu.cn/

Substitution

Definition: Extended Boolean Assertions Assn
Universal Quantification:

> (Vj.A)[a/i] == Vj.(Ala/i]) if j # i;
> (Vj.A)[a/i] == VA ifj=i;

Existential Quantification:

> (35.A)[a/i] :==3Fj.(Ala/i]) if j #1;
> (3j.A)[a/i] == Fj.Afj = i;

https://basics.sjtu.edu.cn/

Substitution

Examples
> (Jj.i=j+1)[X/i]l=F.X=j+1;
> (F.i=j+1)[X/]=Fi=j+1,
> (Fi=j+ 1) [X+j/i] =7

https://basics.sjtu.edu.cn/

Interpretation

Definition
> An is a function / : Intvar — Z which assigns an
integer to each integer variable.
» An interpretation instantiates every integer variable.
Substitution

noifj=i
I(j) otherwise

(IIn/MU) = {

https://basics.sjtu.edu.cn/

Semantics of Assertions Assn

Definition over Extended Arithmetic Expressions

» [: an interpretation
> o: a state
Then we have:
> Av[n](l,0) = n;
> Av[X](/,0) = o(X);
> Av[i](l,o) = 1(i);
> Avfag X ai](/,0) := Av[ao](l,0) x Av[a](/, o) for
xe {+,—, x}

Exercise
For all (unextended) arithmetic expressions a € Aexp, it holds that

Vo, 1. (A[a](e) = Av[a](/,0)) .

https://basics.sjtu.edu.cn/

Semantics of Assertions Assn

The Satisfaction Relation |=

> o: a state
» /. an interpretation
» A: an assertion from Assn
Defining o =/ A (“o satisfies Ain I"):
> it always holds that o =/ true;
> it always does not hold that o |= false;

https://basics.sjtu.edu.cn/

Semantics of Assertions Assn

The Satisfaction Relation |=

> o: a state
» /. an interpretation
» A: an assertion from Assn
Defining o =/ A (“o satisfies A in I"):
> o ! (a9 = a1) iff Av[ao](/,0) = Av[ai](/,0);
> o =/ (a0 < a1) iff Av[ao](/,0) < Av[ai](/,0);

https://basics.sjtu.edu.cn/

Semantics of Assertions from Assn

The Satisfaction Relation |=

> o: a state
» /. an interpretation
> A: an assertion from Assn
Defining o =/ A (“o satisfies A in I"):
» o = (AAB)iffo = Aand o ' B;
> o=/ (AVB)iffo = Aoro ' B;
> o = A iff (not o =/ A);
> o = (A= B) iff (not o ' A) or o = B;

https://basics.sjtu.edu.cn/

Semantics of Assertions from Assn

The Satisfaction Relation |=

> o: a state
» /. an interpretation
> A: an assertion from Assn
Defining o =/ A (“o satisfies A in I"):
> o |/ Vi.Aiff for all integers n, o =17/ A;
> o |=' Ji.A iff there exists an integer n such that o ="/ A;

https://basics.sjtu.edu.cn/

Semantics of Assertions from Assn

The Satisfaction Relation |=

> o: a state

» /. an interpretation

» A: an assertion from Assn
Defining o =/ A (“o satisfies A in I"):

» | = Afor all assertions A € Assn.

Notation
“not o |:’ A" by “o bélA”

https://basics.sjtu.edu.cn/

Semantics of Assertions from Assn

Exercise
For all (unextended) boolean expressions b € Bexp, states o € ¥ and
interpretations /, it holds that

» B[b](c) = true iff o =’ b, and
> B[b](c) = false iff o b'b.

https://basics.sjtu.edu.cn/

Semantics of Assertions from Assn

Exercise
For any extended arithmetic expression a € Aexpv, interpretation / and

state o, it holds that
Av[a](! [n/i],0) = Av[a[n/]](], o)
for all integers n and integer variables i.

Exercise
> o ' Vi.Aiff o | A[n/i] for all integers n.
» o =/ 3i.Aiff o ! Aln/i] for some integer n.
> - prove by induction on the structure of A that o =/l"/1 A
iff o =/ Aln/i]

https://basics.sjtu.edu.cn/

Semantics of Assertions from Assn

Extension of Assertions
» A: an assertion in Assn

» /. an interpretation
> Al={ocecx, |ockE A}

Validity for Assn
> Ais valid: = A iff for all interpretations / and all states o, o =/ A.

https://basics.sjtu.edu.cn/

Partial Correctness Assertions

Textbook, Page 87 — 89

https://basics.sjtu.edu.cn/

Partial Correctness Assertions

Definition
A partial correctness assertion is of the form

{Ate{B}

where A, B € Assn and ¢ € Com.

Satisfaction Relation =

» /. an interpretation

» o: an element in ¥ |
We define that o =/ {A}c{B} iff (¢ E' A= C[c](0) ' B).

https://basics.sjtu.edu.cn/

Partial Correctness Assertions

Satisfaction Relation |=

» /. an interpretation
» o: an element in ¥ |
We define that o =/ {A}c{B} iff (¢ E! A= C[c](0) E' B).

Validity
> Define that =/ {A}c{B} iff Vo € £, .0 ' {A}c{B} .
> Define that = {A}c{B} iff VI. ' {A}c{B} .
» The partial correctness assertion {A}c{B} is valid if = {A}c{B} .

https://basics.sjtu.edu.cn/

Partial Correctness Assertions

Validity
We have = {A}c{B} holds iff for all interpretations | and all
states o, If o satisfies A in | and the execution of ¢ terminates
in ¢’ from o, then o' satisfies B in |.

Recall: Validity for Assn
> Ais valid: = A iff for all interpretations / and all states o, o =/ A.

https://basics.sjtu.edu.cn/

Partial Correctness Assertions

Validity: Examples
> {i < X}X := X+ 1{i < X} is valid.
> {i < X}X =X —1{i < X} is not valid.

Validity and Extension Sets

» = A= B iff A/ C B for all interpretations /.
> = {A}c{B} iff C[c](A") C B’ for all interpretations /.

https://basics.sjtu.edu.cn/

Proof Rules for Partial Correctness Assertions

Textbook, Page 89 — 93

https://basics.sjtu.edu.cn/

Proof Rules

Motivation
» Manual validation of the validity = {A}c{B} is tedious.
> Rules for deriving the validity = {A}c{B} makes the task easier.

https://basics.sjtu.edu.cn/

Proof Rules

Hoare Rules
» rules for each type of commands
» derivation trees built from rule instances

» correctness for each rule

https://basics.sjtu.edu.cn/

Hoare Rules

Skip

{A}skip{A}

https://basics.sjtu.edu.cn/

Hoare Rules

Assignment

{Bla/XI)X = 2(B}

https://basics.sjtu.edu.cn/

Hoare Rules

Sequencing

{AYco{C}, {C}ai{B}
{A}co; ci{B}

https://basics.sjtu.edu.cn/

Hoare Rules

Conditional Branch

{AAb}cp{B}, {AA-b}ci{B}
{A}if b then ¢, else c;{B}

https://basics.sjtu.edu.cn/

Hoare Rules

While Loop

{ANb}c{A}
{Alwhile b do c{A A —b}

» A: the loop invariant

https://basics.sjtu.edu.cn/

Hoare Rules

Consequence

EA= A, {A}c{B}, EB =B
{A}c{B}

https://basics.sjtu.edu.cn/

Hoare Rules

The Proof System

» proofs as derivation trees
» theorems as conclusions
> notation for theorems: F+ {A}c{B}

https://basics.sjtu.edu.cn/

Summary

» extended arithmetic and boolean assertions
» partial correctness assertions

» a proof system from Hoare rules

https://basics.sjtu.edu.cn/

Topics

Axiomatic Semantics
» soundness of Hoare rules
» examples for using Hoare rules
» a start with completeness of Hoare rules

https://basics.sjtu.edu.cn/

Soundness of Hoare Rules

Textbook, Page 91 — 93

https://basics.sjtu.edu.cn/

Soundness and Completeness of Hoare Rules

Soundness

F {A}c{B} implies = {A}c{B}.

Completeness

= {A}c{B} implies - {A}c{B}.

https://basics.sjtu.edu.cn/

Soundness of Hoare Rules

Soundness

F {A}c{B} implies = {A}c{B}.

Proof: Rule Induction
Prove that every rule is sound, i.e., the conclusion always holds if all the
premises hold.

https://basics.sjtu.edu.cn/

Soundness of Hoare Rules

Properties of Substitution

P> a, ap: extended arithmetic expressions in Aexpv
» X: a location (program variable)

Then for all interpretations / and states o,

Avlao [a/X]1(1; o) = Av[a] (1, o [Av[a](1,0)/X])

Proof

By structural induction on ag.

https://basics.sjtu.edu.cn/

Soundness of Hoare Rules

Properties of Substitution
» B: an extended boolean assertion from Assn
» X: a location (identifier)
» a: an arithmetic expression from Aexp

Then for all interpretations / and states o, we have

o =" Bla/X] iff o [A[a](0)/X] E' B

Proof

By structural induction on B.

https://basics.sjtu.edu.cn/

Soundness of Hoare Rules

Soundness

F {A}c{B} implies = {A}c{B}.

Proof: Rule Induction

Prove that for every rule instance, if all the extended boolean assertions
and partial correctness assertions in its premises are valid, then so is its
conclusion.

https://basics.sjtu.edu.cn/

Soundness of Hoare Rules

Skip

{A}skip{A}

» (skip,o) = o
>» o' A=oE A
> = {A}skip{A}

https://basics.sjtu.edu.cn/

Soundness of Hoare Rules

Assignment

{Bla/X]}X = a{B}

» (a,0) = n

» (X :=a,0) = o[n/X]

> o = Bla/X]iffo[n/X] E' B
> = {Bla/X]}X := a{B}

https://basics.sjtu.edu.cn/

Hoare Rules

Sequencing

{AreofC}, {C}a{B}
{A}co; ci{ B}

» (co;c,0) — o

» (cy,0) = o, {c1,0") = o’

> from = {Alco{C}: o E' A= o" ! C
» from = {C}c{B}: 0" ' C=0o'E'B
» o ='A= o' B

> = {A}cy; ai{B}

https://basics.sjtu.edu.cn/

Hoare Rules

Conditional Branch

{ANb}co{B}, {AA-b}c{B}

{A}if b then ¢, else ¢;{B}

> o = (AADb) = Clo](o) E' B

> o = (AA-b) = Cla](0) E' B

» o =/ A= C[if b then ¢; else c,|(c) =' B
» = {A}if b then ¢, else ¢;{B}

https://basics.sjtu.edu.cn/

Hoare Rules

While Loop

{AA b}c{A}

{A}while b do c{A A —b}

» w = while b do c;
> (w,0) 20,0 = A

» Case 1:
(b,c) — false

(w,o0) = o

> o' -b
> o = AN b,

https://basics.sjtu.edu.cn/

Hoare Rules

While Loop

{ANb}c{A}
{A}while b do c{A A —b}

» w = while b do ¢;
> (w,0) =o', o = A
> (a nested induction on derivation trees):

(b,c) — true,{c,0) = o’ (w,c") = o

(w,0) = o

» o = A from the main induction hypothesis
» o' =/ A A —b from the nested induction hypothesis

https://basics.sjtu.edu.cn/

Hoare Rules

Consequence

A=A {A}c{B}, EB =B
{Atc{B}

> (c,o) =o', o= A

> o = A from E A= A

> o ! B from = {A'}c{B'}
» o' = B from = B = B

https://basics.sjtu.edu.cn/

Soundness of Hoare Rules

Soundness

F {A}c{B} implies = {A}c{B}.

https://basics.sjtu.edu.cn/

Hoare Rules: Examples

Textbook, Page 93 — 96

https://basics.sjtu.edu.cn/

Hoare Rules: Examples

S:=0;

N:=1:;

while —(N =101) do
S=S5+N;
N:=N+1

https://basics.sjtu.edu.cn/

Hoare Rules: Examples

{true} implies {0 =0}

5:=0;
{§ =0} implies {S=0A1=1}
N:=1:

{S=0AN=1} implies {2xS=N-(N—1)}
while —(N =101) do
{2xS=Nx(N-1)A=(N=101)} implies
{2x(S+N)=Nx (N+1)A-=(N=101)}
S=S5+N,;
{2x S=(N+1)x NA—=(N=101)} implies
{2xS=(N+1)x N}
N:=N+1
{2xS=Nx(N-1)}
{2xS5=Nx(N—-1)A—=(=-N=101)} implies
{S = 5050}

https://basics.sjtu.edu.cn/

Hoare Rules: Examples

P:=0;

C:=1;

while C <N do
P=P+M,;
C=C+1

https://basics.sjtu.edu.cn/

Hoare Rules: Examples

{1 <N}
P:=0; {1<NAP=0}
Ci=1; {1I<NAP=0AC=1)

{(P=Mx(C-1)AC<N+1}

while C <N do
{P=Mx(C—1)AC<N+1IACLN}
P=P+M,;, {P=MxCAC<N+1AC<N}
C=C+1 {P=Mx(C-1)AC<N+1}

{P=Mx(C-1)AC<N+1A-(C<N)}
{P=M x N}

https://basics.sjtu.edu.cn/

Hoare Rules: Examples

while =(Y =0) do
Y =Y -1;
X =2xX

https://basics.sjtu.edu.cn/

Hoare Rules: Examples

{iZ0ANY=iAnX=1}
{Xx2Y=2"AY >0}

while (Y =0) do
{Xx2Y =2"AY >0A-(Y =0)}
Yi=Y-1; {Y>0A2x X x2Y =2}
X:=2xX {X:-2Y =2"AY >0}

(X-2¥=2AY>0AY =0}
{x=27}

https://basics.sjtu.edu.cn/

Hoare Rules: Examples

while —(X <0) do
Y =XxY;
X=X-1

https://basics.sjtu.edu.cn/

Hoare Rules: Examples

{X=nAn>0AY =1}
{YxXI=nAX>0}

while X >0 do
{YxXI=nAX>0AX>0}

Y =XXxY;
{YxXI'=nl-XAX>0AX >0}
X =X-1

{Y x X! =nlAX >0}

(Y xXI=nl AX>0A=(X>0)}
{Y =nl}

https://basics.sjtu.edu.cn/

Hoare Rules: Examples

while —(Y =0) do
(while even(Y) do X:=XxX; Y:=Y/2);
Z=7ZxX;
Y:=Y-1

https://basics.sjtu.edu.cn/

Hoare Rules: Examples

{X=mAY=nAZ=1An>0}
{Y>0Am"=ZxX"}
while —(Y =0) do
(Y>0Am"=Zx XY A=Y =0)}
(while even(Y) do
{Y>0Am"=ZxXYA=(Y =0)Aeven(Y)}
X:=XxX; {Y>0Am"=2ZxXY?A=(Y =0)Aeven(Y)}
Y =Y/2 {Y>0Am =Zx XY A=(Y =0)});
{Y>0Am"=ZxXYA=(Y =0)A—even(Y)}
Z:=ZxX; {Y>0Am"=ZxXY"2A~(Y =0)A-even(Y)}
=Y -1{Y>0Am=2ZxX"}
{Y>0Am"=ZxXYAY =0}
{m" =2}

https://basics.sjtu.edu.cn/

Hoare Rules: Examples

while -(M = N) do
if M<N then
N=N-M
else
M=M-N

https://basics.sjtu.edu.cn/

Hoare Rules: Examples

{M=mAN=nA1<mA1l<n}
{ged(M, N) = ged(m, n)}

while —-(M = N) do
{gcd(M, N) = ged(m, n) A=(M = N)}
if M<N then
{gcd(M, N) = ged(m, n) A (l\/l N)YAM < N}
NN {aed(M.) = sed(m.)
else

{gcd(M, N) = ged(m, n) A=(M = N) A=(M < N)}
M:=M—-N {gcd(M, N) = ged(m,n)}
{gcd(M, N) = ged(m, n)}

H_|

{gcd(M, N) = gcd(m,n) A M = N}
{N = ged(m, n)}

https://basics.sjtu.edu.cn/

Exercises

Problem
Consider the command ¢ to be

Z =X X=Y;Y =7.

with locations X, Y, Z. Prove through Hoare rules that the partial
correctness assertion

{X=iANY=}{X=jAY=1i}

is valid, where i, j are integer variables.

https://basics.sjtu.edu.cn/

Exercises

Problem
Let ¢ be the command while X < 100 do X := X + 2 with location X.

Prove through the Hoare rules that
E{X<100A(F.X=2xi+1)}c{X =101}

where / is an integer variable.

https://basics.sjtu.edu.cn/

Chapter 7

Completeness of the Hoare
rules

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Effective Proof Systems
A proof system is effective if there exists an algorithm such that
» upon an input rule instance, then the algorithm outputs “yes”,

» otherwise the algorithm outputs “no” or does not terminate.

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Consequence

A=A {A}c{B}, EB =B
{Atc{B}

Problem
» How to check = A= A" and |= B’ = B?

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Godel's Incompleteness Theorem

There is no effective proof system for Assn such that the theorems
coincide with valid assertions in Assn.

Corollary

There is no effective proof system for partial correctness assertions such
that its theorems are precisely the valid partial correctness assertions.

Proof
E B iff = {true}skip{B}.

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Corollary
There is no effective proof system for partial correctness assertions such
that its theorems are precisely the valid partial correctness assertions.

Proof (by contradiction)

> E {true}c{false} iff c diverges (does not terminate) on all states.

» Theset {c | Vo € £.Cc = L} is not (or
) (Textbook, Appendix A).

Corollary
The proof system of Hoare rules is not effective.

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Relative Completeness

The Hoare rules are relatively complete if = {A}c{B} implies
F {A}c{B} for all parital correctness assertions {A}c{B}.

Theorem
The proof system of Hoare rules is relatively complete.

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Weakest Preconditions
» motivation: F {A}cy; ci{B}
» approach: an extended boolean assertion C such that - {A}c{C}
and - {C}c{B}

Question
Does such C really exist?

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Weakest Preconditions
» c: a command
» B: an extended boolean assertion
» [: an interpretation

Then we define the weakest precondition wp'[c, B] by

wplle, B] = {o € £1 | c[() &' B}

https://basics.sjtu.edu.cn/

Weakest Precondition

Weakest Preconditions
> wp'lc, B] = {0 € . | c[c](0) K B}
> = {A}c{BY} iff A C wp'[c, B]

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Weakest Precondition: Qur Goal

For every c, B, there exists A € Assn such that A = wp/[c, B] for every
interpretation /.

Corollary
> o = {AYc{B)iffo = A = A
> = {A}c{B}iff A = A

https://basics.sjtu.edu.cn/

Summary

vvyyvYyy

soundness of Hoare rules
examples for Hoare rules
relative completeness

weakest preconditions

https://basics.sjtu.edu.cn/

Topics

» relative completeness of Hoare rules

» a proof for Godel's Incompleteness Theorem

https://basics.sjtu.edu.cn/

Relative Completeness of Hoare Rules

Textbook, Page 100 — 110

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Weakest Preconditions
» c: a command
» B: an extended boolean assertion
» [: an interpretation

Then we define the weakest precondition wp'[c, B] by

wplle, B] = {o € £1 | c[() &' B}

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Definition: Expressiveness

The set Assn of extended boolean assertions is if for every
command ¢ and extended boolean assertion B, there exists A € Assn
such that A’ = wp'[c, B] for all interpretations /.

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Theorem
Assn is expressive.

Proof

» by structural induction on commands c:

VB € Assn.3w|c, B] € Assn.VI.(w[c, B]' = wp'[c, B])

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Proof: Skip
» ¢ = skip;
> wlc, B] := B;
>

o € wp![skip, B]

iff C[skip](o) E' B
iff okE='B
iff e wc,B]

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Proof: Assignment

» = X:i=a;
> wlc, B] ;= Bla/X];
>

o€ wp'[X:=a,B] iff C[X:=a](0) ' B
iff o [Aa](0)/X] E' B
iff o' Bla/X]
iff oewlc,B]

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Proof: Sequential Composition
» c= co;0
» wlc, B] :== w[c, w[c, B]];
>

o€ wp'[a;c,B] iff Cleo;a](o) E' B
i clel(Clol) = B
iff Clco](o) € wp'[c1, B]
iff Clco](o) = wlei, B]
iff o € wp'[co,w[cy, B]]
iff o e wlco, wlc, B]]
iff o wc,B]

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Proof: Conditional Branch
» ¢ = if bthen ¢ else ¢ ;
» wlc,B] = (bAw[c, B])V (=bAw[cy, B]) ;

>
ocwp'lc,B] iff
iff
iff
iff

iff
iff

(B[b](c) = true & C[c](0) E' B)

or (B[b](c) = false & C[c,](c) ' B)
(0 E' b& o € wp'[co, B])

or (0 = =b & o € wp'[c1, B]))

(c ' b& o = w[e, B])

or (0 £ =b & o ! w[ci, B]))

o= (bAw[co, B]) V (=b A w[ci, B])
o = wlc, B]

o e wlc,B]

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Proof: While Loop
» ¢ = while bdo ¢ ;
» C[c](o) ' B iff it holds that

Vk > 0Voo,..., 00 € Z.(
[a =09 &
VO<i<k(oj='b&
Clc' (o) = 0is1)
]

= ox = bV (=bAB)

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Proof: While Loop

» difficulty: translation into an assertion in Assn
» solution: Chinese Remainder Theorem

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Chinese Remainder Theorem

» my,...,m,: positive relatively-prime natural numbers
(i-e., (mj, mj) =1 whenever i # j)
Then for any integers a, ..., a, there exists a natural number x such
that x = a; (mod m;) forall i=1,... n.
Proof
Fori=1,...,n, defirlne M; = Hﬁéi m;. Then m; and M; are relatively
prime. Thus we can find through the an integer b;

such that b; - M; = 1 (mod m;). Define

= (Spese) ¢ (e f1)

Then x satisfies the conditions in the statement of the theorem.

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

The Godel's Predicate
> amod b: the of a divided by b
The Godel's predicate 3 over natural numbers is defined by:

B(a,b,i,x):= x=(amod (14 (1+41)-b)) .

Exercise
> Give an assertion in Assn that expresses x = (a mod b).

» Prove that 3 can be expressed in Assn.

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Lemma
For any sequence ng, ..., n, of natural numbers there are natural
numbers n, m > 0 such that

V0 < j < kVx.(B(n,m,j,x) < x=n;j)

Proof
Define m := (max{k, no,...,n,})! and p; ;=14 (1 + i) - m for
i=0,..., k.

» po,..., Pk are relative primes.

» ni<pjfori=0,... k.
By Chinese Remainder Theorem, there exists a natural number n such
that n = n; (mod p;) for i =0,..., k. From 0 < n; < p;,
(n mod p;) = n;.

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

The Predicate F

Flx,y):=x>0&32>0[(x=2-z2=y = 2)
& (x=2-z+1=y=-z-1)]

Properties:
> (F(Xay) and x is even) = y = %;
» (F(x,y) and x is odd) = y = _XT_l 1

» a bijection between natural numbers and integers

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

The Predicate A+
B (n,m,j,y) == 3x.(B(n, m, j,x) A F(x,y))
Lemma

For any sequence ng, ..., ni of integers, there are natural numbers
n,m > 0 such that for all 0 <j < k and all integers y we have

ﬁi(na mv.jvy) <y = n; .

https://basics.sjtu.edu.cn/

Godel’s Predicate

Lemma
For any sequence ng, ..., nix of integers, there are natural numbers
n,m > 0 such that for all 0 <j < k and all integers y we have

GE(n,moj,y) &y =nj .
Proof
Construct the sequence ny, ..., n, such that F(n}, n;) holds for all

0 <j < k. From the previous lemma for 3, there exist natural numbers
n,m > 0 such that

V0 <j < k.Vx. (8(n7 m,j,x) & x = nj’)

Then the result follows from that (F(x,y) & x = n’) =y =n.

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Proof: While Loop
» ¢ = while bdo ¢ ;
» C[c](o) ' B iff it holds that

Vk > 0Voo,..., 00 € Z.(
[a =09 &
VO<i<k(oj='b&
Clc' (o) = 0is1)
]

= ox = bV (=bAB)

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Proof: While Loop

» / locations (program variables): X := (Xy, ..., X/)

» cncoding: each o; as an integer vector 5, = (sj1,...,Si)
Clc](o) E' B iff it holds that

Vk > 0.¥5%, ..., 5.(
[cE'X=5%&
Yo <i<k(E"b[5/X] &
E' (wd, X = 5.1] A —w[c, false]) [5,/X])
]

=" (bVv B) [5/X]

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Proof: While Loop
Clc](o) E' B iff o ! w]c, B] where

wlc, B] :=

Yk >0N¥ny, my,..., ng, my > O.(
[(Aj=s 5% (i m;,0,X)) A
V0 < i < k(Y7 (Niey BE (. myivy;) = b[7/X]) A
(Y7, Z U1 (BE (g, mjs i, i) A BE (g mys i+ 1, 7)) =
(W[[c’,)_(= Z] A —w[c’, false]) [)7/)_(]]))
]
= (V7-(Nj=y 8% (nj, mj k, 7)) = (bV B) [7/X])

)

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Theorem (Expressiveness)

For every command ¢ and extended boolean assertion B, there exists
A € Assn such that A’ = wp/[[c, B] for all interpretations /.

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Lemma
For any command ¢ and assertion B € Assn, if w[c, B] is any assertion

satisfying that w[c, B]' = wp'[c, B] for all I, then - {w[c, B]}c{B}.
Proof

By structural induction on c.

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Proof: Skip
» ¢ = skip;

{A}skip{A}

> w(c,B]' = wp'[c, B] for all I;
> o = wlc, B] iff o = B;

> = wlc, B] & B;

> F{wle, B]}c{B};

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Proof: Assignment
> c= X:i=g;

{Bla/XT}X = 2(B}

> wlc, B]' = wp'[c, B] for all I;
>

cewle,B]) iff oecwp[X:=a,B]
iff C[X:=a](o) E' B
iff o[A[a](o)/X] E' B
iff o' Bla/X]

> E wlc, B] & Bla/X] and hence + {w]c, B]}c{B}

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Proof: Sequential Composition

» c= co;¢1 ;
) {AYo{CY, {Cher{B)
{A}co; ci{B}

> wlc, B])' = wp'[c, B] for all I;
>

oew[c,B]) iff oecwp[co;ci,B]
f Cleo;a](0) E' B
i clal(Clel(o) =' B
i Cleol(o) ' wles, B]

i
iff o€ wlco, w[ci, B]]'

=

= =

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Proof: Sequential Composition

> c= cp;c1;
{Aeo{C} , {C}a{B}
{A}co; ci{B}
> E wlc, B] & w[c, w[c, B]]
> = {w[c,B]}c{B}
» = {wlco, w[cy, B]]}co{w(ci, B]}
> = {wfc, wlci, B]]}c{B}
> = {w[c, B]}c{B}

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Proof: Conditional Branch
» c = if bthen ¢ else ¢; ;

{ANb}c{B}, {AAN-b}ci{B}
{A}if b then ¢ else ¢, {B}

> w(c,B]' = wp'[c, B] for all I;
>

o =" wle,B] iff o€ wp[c,B]
iff (B[b](c) = true & C[c](0) E' B)
or (B[b](c) = false & C[c,](c) ' B)
iff (0 ='b& ol wlw,B])
or (0 ' =b & o = w[c;, B])
iff o =" (bAw[co,B])V (=bAw[ci,B])

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Proof: Conditional Branch
» ¢ = if bthen ¢ else ¢ ;

{ANb}c{B}, {AAN-b}ci{B}
{A}if b then ¢, else c;{B}

> = wlc, B] & [(bAw]c, B]) V (=b A w[c, B])]

> = {w[c, B]}co{B} and F {w[c, B]}c1{B}

> = (w]c, B] A b) = w]co, B]

> = (w[c, B] A =b) = wlc, B]

> F {w[c, B] A b}co{B} and F {w[c, B] A =b}ci{B}
> - {wlc, B}c{B}

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Proof: While Loop
» ¢ = while b do ¢/;
> A:=wlc, BJ;
We show that
> = {AA b} {A};
» = (AA-b) = B.
Then we have
» = {AA b}c’{A} from the induction hypothesis;
» {A}c{A A =b} from the while-loop rule;
> — {A}c{B} from the consequence rule;

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Proof: While Loop
» ¢ = while b do ¢’;

> A:=wlc, BJ;
We show that = {A A b}c’{A}. The reasoning is as follows.
> o= AADb
» o = w[c,B]and o ! b
» Clc](oc) E' Band o = b
» C[c] = C[if b then ¢’; c else skip]
> Clc/;c](0) E' B
> Cle](Clc](o) ' B
> wc, B]' = wp'[c, B];
> C[cl(o) E' wlc, Bl(= A)
> = {AN Db} {A}

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Proof: While Loop
» ¢ = while b do ¢/;
> A:=wlc, BJ;
We show that = (A A =b) = B. The reasoning is as follows.
> o = AN-b
» Clc](o) E' Band o = —b
» C[c] = C[if b then ¢’; c else skip]
» Cc =0 and o ' B
> o=/ (AAN-b) = B
» =(AAN-b)= B

https://basics.sjtu.edu.cn/

Completeness of Hoare Rules

Theorem (Relative Completeness)
For any partial correctness assertion {A}c{B}, = {A}c{B} implies
F{A}c{B}.
Proof
> Suppose that = {A}c{B}.
> We have b {w[c, B]}c{B} where w[c, B]' = wp![c, B] for all
interpretations /.
> By the consequence rule and = A = w(c, B], we obtain

- {A}e{B}.

https://basics.sjtu.edu.cn/

Proving Godel's Incompleteness Theorem

Textbook, Page 110 — 112

https://basics.sjtu.edu.cn/

Godel’s Incompleteness Theorem

Theorem
The set {A € Assn |[|= A} is not

Proof (by Contradiction)
» Suppose that {A € Assn ||= A} is recursively enumerable.

» For each command ¢, construct the assertion

A= w]c, false] [6/)_(]

> ¢ does not terminate on the input 0 iff = A.

» However, the set of all those c's is known to be not recursively
enumerable (, Appendix A).

https://basics.sjtu.edu.cn/

Godel’s Incompleteness Theorem

Godel’s Incompleteness Theorem

There is no effective proof system for Assn such that its theorems
coincide with the valid assertions in Assn.

Proof (by Contradiction)

> Suppose that there is an effective proof system for Assn.

» By enumerating the set of all proofs (derivation trees), the set
{A € Assn |= A}

would become recursively enumerable.

https://basics.sjtu.edu.cn/

Summary

> relative completeness of Hoare rules
» a proof for Godel's Incompleteness Theorem

» finishing all of the operational, denotational and axiomatic semantics
for imperative programs

https://basics.sjtu.edu.cn/

Exercise

Problem

Let ¢ be the command while X < 100 do X := (2 x X) + 1 with location
X. Calculate the weakest precondition wp![c, B] where the postcondition
B = X > 150 and the interpretation / is dummy (i.e., of no use) here.

https://basics.sjtu.edu.cn/

Exercise

Problem
Let ¢ be the following command:

while N <M do

[L:=1,;
while 2x L xN<M do L:=2x1L;
K=K+ L;

M:=M — (L x N)]
Prove through the Hoare rules that = {A}c{B} where
» the precondition AisM=mAM>0AN>1AK =0, and
» the postcondition Bis m= (K x N)+ MAO< MAM < N, and
> mis an integer variable.

https://basics.sjtu.edu.cn/

Chapter 8

Introduction to domain theory

https://basics.sjtu.edu.cn/

Domain Theory

» advanced constructions on complete partial orders (cpo's)

» a meta-language for complete partial orders

https://basics.sjtu.edu.cn/

Topics

» advanced constructions on complete partial orders (cpo’s)

https://basics.sjtu.edu.cn/

Complete Partial Orders

https://basics.sjtu.edu.cn/

Complete Partial Orders

Recall: Partial Orders
A partial order is an ordered pair (P,C) such that P is a set and C is a
binary relation C C P x P satisfying the following conditions:

» (reflexibility) Vp € P.p C p;
» (transitivity) Vp,q,r e P.[[pPEq& qC r)=pLCr];
> (antisymmetry) Vp,g € P.[(pC g & g C p) = p =q].

https://basics.sjtu.edu.cn/

Complete Partial Orders

Recall: Upper Bounds

> (P,C): a partial order

» X: asubset of P (i.e., that satisfies X C P)
p € P is an upper bound of X if Vg € X.q C p.

Recall: Least Upper Bounds

p € P is a least upper bound (in short, lub) of X if
» pis an upper bound of X, and
» for all upper bounds g of X, pC g

https://basics.sjtu.edu.cn/

Complete Partial Orders

Recall: Least Upper Bounds

p € P is a least upper bound (in short, lub) of X if
» pis an upper bound of X, and
» for all upper bounds g of X, pC g

Recall: Notation
» The least upper bound of X (if exists) is denoted by | |X.
> If X ={d1,...,dp} then dy U---Ud,:=||X.

https://basics.sjtu.edu.cn/

Complete Partial Orders

Recall: w-Chains
» (P,C): a partial order

An w-chain in P is an infinite sequence dgy, d1,...,d,,... in P such that
dCdC---CdC....

Recall: Complete Partial Orders (CPOs)

(P,C) is a complete partial order (cpo) if for any w-chain
HEAME---Cd,C...
in P, the least upper bound

Lnew dn = LHdn | n € w} =[{do, d, ... dn,. . }

exists in P.

https://basics.sjtu.edu.cn/

Complete Partial Orders

Recall: Least Elements

» (P,C): a partial order
p € Pis a least element if Vg € P.p C q.
Recall: CPOs with Bottom

> (P,E): acpo
(P,C) is a cpo with bottom if P has a (unique) least element Lp.

https://basics.sjtu.edu.cn/

Complete Partial Orders

Recall: Set Inclusion

> A: aset
> D:.=2A
> C

={(X,Y)eDxD|XCY}

https://basics.sjtu.edu.cn/

Complete Partial Orders

Recall: Partial Functions
> B, C: sets
» D:={F|F:B—~C}
» C:={(F,G)e DxD|FCG}

https://basics.sjtu.edu.cn/

Complete Partial Orders

Monotonic Functions
» (D,Cp) and (E,Cg): partial orders
A function f : D — E is monotonic if

vd,d' € D.[d Cp d’' = f(d) Ce f(d')]

https://basics.sjtu.edu.cn/

Continuous Functions

Definition
» (D,Cp) and (E,Cg): cpo's
A function f : D — E is continuous if the followings hold:
» f is monotonic;
» for all w-chainsdy Cdi C---C d,C ... in D, we have that

[_lnew f(d,,) =f (I_lnew d”)

https://basics.sjtu.edu.cn/

Fixed Points

Definition
» (D,Cp): a partial order
» f:D — D: a function
An element d € D is:
» a fixed point of f if f(d) = d;
» a prefixed point of f if f(d) C d,

https://basics.sjtu.edu.cn/

Complete Partial Orders

The Fixed-Point Theorem
» (D,Cp): a cpo with bottom Lp
» f:D — D: a continuous function
» IpCpf(Lp)Cp---Cp "(Lp)Cph ...
> fix(f) = [, "(LD)
Then
> fix(f) is a fixed point of f: f(fix(f)) = fix(f)
> fix(f) is the least prefixed point of f: f(d) C d = fix(f) C d
> fix(f) is the least fixed point of f: f(d) =d = fix(f) C d

https://basics.sjtu.edu.cn/

Complete Partial Orders

Isomorphisms
» (D,Cp) and (E,Cg): cpo's
A continuous function f : D — E is an isomorphism if

» fis a 1—1 correspondence;
> Vd,d' € D.[dCp d' & f(d) Cg f(d')]

https://basics.sjtu.edu.cn/

Complete Partial Orders

Exercise
» D, E,F: cpo's (with their implicit ordering relations)
» f:D— E and g: E — F: continuous functions
Then:

» the identity function Idp : D — D (such that Idp(d) = d for all
d € D) is continuous;

» the function go f : D — F is continuous.

https://basics.sjtu.edu.cn/

Constructions on CPQO's

https://basics.sjtu.edu.cn/

Discrete CPO's

]

BASICS@SJTU

o -

https://basics.sjtu.edu.cn/

Discrete CPQO's

Discrete CPO's
A is a partial order (D, C) such that C is the identity
relation on D, i.e., C = {(d,d) | d € D}.

Exercise
Prove that the discrete cpo (D, C) above is indeed a cpo.

https://basics.sjtu.edu.cn/

Discrete CPQO's

Exercise
» D: a discrete cpo
» E: acpo
Prove that any function f : D — E is continuous.

https://basics.sjtu.edu.cn/

Product CPO's

]

BASICS@SJTU

DA 51713

https://basics.sjtu.edu.cn/

Product CPQO'’s

Cartesian Product Dy X -+ x Dy
» Dy,...,Dx: cpo's
» D; X --- x Dy: the Cartesian product of Dy,..., Dy,

(dl,...,dk)EDlx-“XDk iffdiED;fOFizl,...

Then the product cpo (D, L) is given by:
» D:=D; x--- X Dy;
» (di,....d) C(di,....,dp)iff i Cdl fori=1,...,k

https://basics.sjtu.edu.cn/

Product CPQO'’s

Exercise
For any w-chain

(dl,Oa"'7dk,0) E (dl,la"'adk,l) E E (dl,nw";dk,n) E

in Dy x --- x Dy, we have

I_lnew(dl,n, L} dk,n) = (I_lnEw dl,na ctt I_lnew dk,n)'

Proposition
Dy x --- x Dy is a cpo.

https://basics.sjtu.edu.cn/

Product CPQO'’s

The Projection Function
» Di,...,Dx: cpo's

» D; x --- x Dyg: the Cartesian product of Dy, ..

Define the projection functions

TFiZD1X-~-XD/<—)D/(i:1,...

by
Tl',‘(dl7 ey dk) = d,'.

Exercise
Prove that each 7; is continuous.

., Dy

https://basics.sjtu.edu.cn/

Product CPQO'’s

Tupling Function

» £ Di,...,Dx: cpo’s

» fi: E— D (i=1,...,k): continuous functions
Define the tupling function

<f1,...,fk>ZE—>D1><'~'><Dk

by

https://basics.sjtu.edu.cn/

Product CPQO'’s

The Continuity of (fi,..., f)

For any w-chain
eeCel -

we have

(i,) (Unewen) = (Alldnew €n)s
= (l_lnew fl(en)v

= Llnew(fl(en)’
|—|n€w<f1 """

Ce, C...

ey fk(l_]new e,,))
ooy Upew f(en))

BN D)

https://basics.sjtu.edu.cn/

Product CPQO'’s

Exercise
» Di,...,D,E1, ..., Ex: cpo's
» fi:D; — E; (i=1,...,k): continuous functions

Define the function
fixeooXfe:Dy X+ - XD — Ey X+ X Eg

by
fi X oo X fk(dla"'?dk) = (fl(dl)avfk(dk))

Prove that f; x --- X f is continuous.

https://basics.sjtu.edu.cn/

Product CPQO'’s

Lemma
» E Di,...,Dx: cpo’s
» h: E — Dy x---x Dg: a function

Then h is continuous iff for i =1,..., k, the functions mjoh: E — D;
are continuous.

Proof

“=": From compositionality of continuous functions.

“<": For all e € E,

h(e) = (m(h(e)), ..., me(h(e)))
= (moh(e),...,mo h(e))
= (moh,...,mo h)(e)

https://basics.sjtu.edu.cn/

Product CPQO'’s

Lemma
» E Di,...,Dy: cpo’s
» f:D; x---x Dy — E: a function

Then f is continuous iff for all 1 </ < k and all elements
dyy . dimg,diga, ..o, di
we have that the function h; : D; — E defined as
dw— f(dy,...,di1,d, div1,. .., dk)

is continuous.

https://basics.sjtu.edu.cn/

Product CPQO'’s

Proposition
» E: acpo
» e,m (n€w, me w): elements of the cpo E
» e, m C ey whenever n < n’ and m < m’
Then we have that
» The set {e,m | n,m € w} has a (unique) least upper bound.

U e Ut e - LU e = L e

n,mew ncw mew mew ncw ncw

https://basics.sjtu.edu.cn/

Product CPQO'’s

Proposition
» e, m (n€w,mée w): elements of the cpo E
» e,m C ey Whenever n < n’ and m < m’
Then we have that
» The set {e, n | n,m € w} has a (unique) least upper bound.

> Unmenm =Un(Um enm) = Un(Un €n.m) = L, enn

Proof
> Un,mew €n,m = |—|n,new €n,n;
> I_ln,me €n,m = Llnew(l_lmew en,m);
> |—|n,m€w €n,m = I_lmew(l_lnew en,m);

https://basics.sjtu.edu.cn/

Product CPQO'’s

Lemma
» E Di,...,Dy: cpo’s
» f:D; x---x Dy — E: a function

Then f is continuous iff for all 1 </ < k and all elements
dyy . dimg,diga, ..o, di
we have that the function h; : D; — E defined as
dw— f(dy,...,di1,d, div1,. .., dk)

is continuous.

https://basics.sjtu.edu.cn/

Product CPQO'’s

Proof
"=": Straightforward.

": The monotonicity is straightforward. For the rest of the proof, we
take k = 2. Consider any w-chain

(%0, %0) E -+ E (Xn, ¥n) E - ..

in D; x Dy. Then

f(l_ln(xn;)/n)) = f(l_ln X"’|_|m Ym)
= L, L ym)
= U, U Fxn, ym)
= Uaf(xasyn)

https://basics.sjtu.edu.cn/

Function Space

]

BASICS@SJTU

DA 534713

https://basics.sjtu.edu.cn/

Function Space

Definitions
» D, E: cpo's
» [D—E]:={f|f:D — E is continuous.}.
> For f,g € [D—E], f T g iff Vd € D.f(d) T g(d).

https://basics.sjtu.edu.cn/

Function Space

Theorem
([D—E], C) is a complete partial order.

Proof

Consider any w-chain
hCHE ---CEfE...

in ([D—E], C). Then the least upper bound | | . f, is given by:

new

(Unew f)(d) := e, (f2(d)) for all d € D.

We still need to prove that | | f, € [D—E].

new

https://basics.sjtu.edu.cn/

Function Space

Theorem
([D—E], C) is a complete partial order.

Proof (Continued)

We still need to prove that | | . f, € [D—E]. For any w-chain

ncw

dCdl---CdyC...

in D, we have that

Unew M Umew dm) =

https://basics.sjtu.edu.cn/

Function Space

Bottom Element
» D,E: cpo's
» [D—E]:={f|f:D — E is continuous.}.
» For f,g € [D—E] f C giff Vd € D.f(d) C g(d).
If E has a bottom element Lg, then [D—E] also has a bottom element

given by:
Lip—g)(d) == Lg forall d € D.

https://basics.sjtu.edu.cn/

Function Space

Powers
If D is a discrete cpo, then [D—E] is a power, denoted by EP.

https://basics.sjtu.edu.cn/

Function Space

Application
» D,E: cpo's
Define apply : ([D—E] x D) — E by:

apply(f,d) := f(d) for all f € [D—E],d € D.

Theorem
The function apply is continuous.

https://basics.sjtu.edu.cn/

Function Space

Theorem
The function apply is continuous.

Proof

apply is continuous in its first argument:
» monotonicity;
» consider any w-chain L, C---C f, C ... in [D—E];

> appl(L, s d) = (U, 72)(d) = L (Fa(d)) = L, appi(fs, d).-

apply is continuous in its second argument:
» monotonicity;
» considerany dg C ---C d, C ... in D;

> apply(fo, L, dn) = f(Ld, dn) = L»(F(dn)) = LI, appIA(F, dn).

https://basics.sjtu.edu.cn/

Function Space

A-Notation

> X.,Y: sets

» f: X — Y: afunction

> e: an expression representing f (e.g., e = x+ 1 and f(x) = x + 1)
Then we denote also by Ax € X.e the function f.

Examples
> Ax € w.(x 4+ 1): the function f(x) = x +1
> Ax € R.sinx: the function f(x) = sinx

https://basics.sjtu.edu.cn/

Function Space

Currying

» D E F: cpo's

» g:F x D — E: a continuous function
Define the function curry(g) : F — [D—E] by:

curry(g) := Av € F.(A\d € D.g(v,d))

Theorem
» Forall veF, curry(g)(v) € [D—E].

» curry(g) is continuous.

https://basics.sjtu.edu.cn/

Function Space

Theorem
» Forall veF, curry(g)(v) € [D—E].

Proof
» curry(g)(v) = Ad € D.g(v,d);

» g is continuous in its second argument.

https://basics.sjtu.edu.cn/

Function Space

Theorem

» curry(g) is continuous.

Proof
» monotonicity;

» Consider any w-chain vg C vy C --
de D,

(curry(g)(, va))(d) =

> curry(g)(Ln vin) = Ly (curry(g)(va))

https://basics.sjtu.edu.cn/

]

BASICS@SJTU

o -

https://basics.sjtu.edu.cn/

Lifting

Definition
» D: acpo
» |: afresh bottom element
» |—|: a copy function on D such that
> foralld,d’ €D, d=d < |d| = |d'];
> |d] # L forall d € D;
Then we define the lifted cpo D by:
» D, :={|d]|deD}u{Ll};
» forall dj,d; € D, d} C dy iff
> either df = L,
» ordy=|do],di = |di] and do Ep d.

https://basics.sjtu.edu.cn/

Lifting

Definition
We define the lifted cpo D by:
> D, ={|d]|deD}u{l};
» for all df,d; € D, d} C dy iff
> either df = L,
> ordy = |do],di = |di] and do Cp di.

Exercise
» D, is a cpo with bottom.
» |—]: D — D, is continuous.

https://basics.sjtu.edu.cn/

Lifting

The Operator (—)*
» D: acpo
» |: a fresh bottom element
» E: a cpo with the bottom element 1 g
» f:D — E : a continuous function
Define * : D, — E by:

F(d') = f(d) if d’=|d] forsome d e D
" | Le otherwise (i.e. d' = 1)

Then () £* is continuous.

https://basics.sjtu.edu.cn/

Lifting

Continuity of (—)*

> . straightforward by definition;

> HCAC---CfC...: an w-chain in [D—E]
Consider any d' € D :

> if d' = 1, then (e, £)*(d") = (Upeo (F))(d) = Le;

> if d = |d], then

(Unew)7(d") = (Unew 7)(d)
= Lnew(fn(d))
= Uneo((f)*(d)
(Unew (f))(d")

Thus (I_lnew f"')* = I_lnGw(f")*'

https://basics.sjtu.edu.cn/

Lifting

“let” Notation
» D: acpo
» |: afresh bottom element
» E: a cpo with the bottom element 1 g
» f:D — E : a continuous function
» A\x € D.e: a lambda notation for f

Define
let x <= d'.e .= (Ax € D.e)*(d’) ford" € D, .

https://basics.sjtu.edu.cn/

Lifting

Abbreviation
> Jet x; <= c1.(let xo <= (- (let xi < ck. €) --+))
> Jet x; <= Cp, -0, Xk <= Ck. €

https://basics.sjtu.edu.cn/

Lifting

Truth Values

» T = {true, false};

> V:TxT—T: the (from the truth table);
Define vV, : T, xT; — T, by:

x1 V1 X :=lett) <= xq,th < Xg.Lfl \Y tgj

https://basics.sjtu.edu.cn/

Lifting

Arithmetic Operations

X1 +1 X = let m < X1, Ny <= X2.|_n1 + n2J

https://basics.sjtu.edu.cn/

Sums (Disjoint Unions)

[m]

BASICS@SJTU

DA 555/713

https://basics.sjtu.edu.cn/

Sums (Disjoint Unions)

Definition
» Di,...,Dg: cpo's
> iny,...,ing: 1-1 that make disjoint copies

Define Dy + - - - + Dy to be the cpo as follows:

» the underlying set is the disjoint union
{inl(dl) | d € Dl} J---u {ink(dk) | dy € Dk};
> dy C dy iff
31 < i < k.3d{,d5.(dy = ini(d;) & do = ini(d5) & dj Cp. db)
Exercise

» Dy +---+ Dy is a cpo.
» each in; : D;j — Dy + -+ + Dy is continuous.

https://basics.sjtu.edu.cn/

Sums (Disjoint Unions)

Combination of Continuous Functions

» E.Di,...,Dy: cpo’s

> fi:D; — E (i=1,...,k): continuous functions
Define [f1,...,f] : D1+ -+ Dx — E by

[fl, ey fk](l'n,'(d,')) = f,(d,) for all i and d; € D;.
Exercise

» [f,..., 1] is a continuous function.

» The map (fi,...,f) — [f,...,] is continuous.

https://basics.sjtu.edu.cn/

Sums (Disjoint Unions)

Conditional Branches
> T = {true, false} = {true} + {false}
» E: acpo
» e, e elements in E
> A\xj.e : {true} — E
> Axp.e : {false} — E
> cond(t, e1, &) = [Axq.e1, Axp.e](t)
>
er if t =true
e, if t = false

cond(t, ey, e) = {

https://basics.sjtu.edu.cn/

Sums (Disjoint Unions)

Conditional Branches
> T = {true, false} = {true} + {false}
» £ a cpo with bottom 1 g
>

e if b= |true]
(b— e | e):=lett<« b.cond(t,e,e) =q e if b= false]
lg ifb=1

https://basics.sjtu.edu.cn/

Sums (Disjoint Unions)

Case Construction
» E.Dy,...,Dy: cpo’s
» d: an element in Dy + --- + Dy
> Mx.ei: D — E (i=1,...,k): continuous functions
| 4

case d of inj(x1).e1 |
ink(xk).ek

> [)\xl.el, ey /\xk.ek](d)

https://basics.sjtu.edu.cn/

Summary

Advanced Constructions for CPO’s
» discrete cpo's

product cpo’s

>
» function space
> lifting

>

sums (disjoint unions)

https://basics.sjtu.edu.cn/

Topics

» a meta-language for cpo's and continuous functions

https://basics.sjtu.edu.cn/

A Metalanguage

https://basics.sjtu.edu.cn/

A Metalanguage

Motivation
» an programming-language-like syntax for continuous functions

» guaranteed continuity from the syntax

https://basics.sjtu.edu.cn/

A Metalanguage

A-Notation
» D, E: cpo's
> x: a variable representing an element in D
> e: an expression that represents an element in E (e.g. x + 1)

We use the notation
Ax € D.e (or simply Ax.e)

for the function h: D — E such that h(d) := e[d/x] for all d € D.

https://basics.sjtu.edu.cn/

A Metalanguage

A Notation

» Dy, D, E: cpo's

P e: an expression with variables x, y
We write

> Az € Dy x Dy.(e[mi(2)/x,m2(2)/y])

> Ax,y) € Dy x Dy.e

» A\x € D,y € Dye

> \x,y.e

https://basics.sjtu.edu.cn/

A Metalanguage

Continuity of Expressions
» D, E: cpo's
P> e: an expression representing an element in £
» x: a variable ranging over elements from D

The expression e is continuous in the variable x if the function
MxeDe:D— E

is continuous no matter which values the other free variables take.

https://basics.sjtu.edu.cn/

A Metalanguage

Continuity of Expressions
» D, E: cpo’s
P> e: an expression representing an element in £

Then e is continuous in its variables if e is continuous in all its variables.

https://basics.sjtu.edu.cn/

A Metalanguage

The Roadmap

» expressions for continuous functions

» recursive construction

https://basics.sjtu.edu.cn/

A Metalanguage

Variables
Each single variable x is continuous in its variables.

Proof
» Ax.x (the identity function)
» Ay.x (y # x) (a constant function)

https://basics.sjtu.edu.cn/

A Metalanguage

Constants
are continuous in their variables since they represent
constant functions.

Examples
» a bottom element Lp of a cpo D
truth values true, false
projections functions 7;'s

>
>
» function application apply
> the operator (—)*

>

https://basics.sjtu.edu.cn/

A Metalanguage

Tupling
> Fi,...,Ex: cpo's
» ¢ (1 <i<Kk): expressions for elements of E;
> (e1,...,ex): the tuple expression for elements of E; X -+ x Ej

Then the expression (ey, ..., ex) is continuous in its variables iff every e;
is continuous in its variables.

Proof

For all variables x, we have

(e1,...,ex) is continuous in x
Ax.(e1, ..., ex) is continuous
m; o (Ax.(er,...,ex)) is continuous for all i

Ax.e; is continuous for all /

(I A

e; is continuous in x for all /

https://basics.sjtu.edu.cn/

A Metalanguage

Application
» K: a constant continuous function (e.g., m;, apply)
P e: an expression

Then the expression K(e) is continuous in its variables if the expression e
is continuous in its variables.

Proof

For all variables x, we have:

K(e) is continuous in x
Ax.K(e) is continuous
K o (Ax.e) is continuous

Ax.e is continuous

rnr o

e is continuous in x

https://basics.sjtu.edu.cn/

A Metalanguage

Application
> e, e two expressions

Then the expression e;(e>) is continuous in its variables if both e, e, are
continuous in their variables.

Proof
We have that e;(e) = apply(e1, e2), a composition of tupling and apply.

https://basics.sjtu.edu.cn/

A Metalanguage

A-Abstraction
» D,E: cpo's
P e: an expression that represents an element in £
> y: a variable
Then Ay.e is continuous in its variables if the expression e is continuous
in its variables.
Proof
For in all variables x, we have:

» if x =y then Ax.)\y.e is a constant function;

https://basics.sjtu.edu.cn/

A Metalanguage

A-Abstraction
» D,E: cpo’s
> e: an expression that represents an element in E
> y: a variable

Then the expression \y.e is continuous in its variables if the expression e
is continuous in its variables.

Proof
> if x # y then

AX.Ay.e is continuous

< curry(Ax, y.e) is continuous
< Ax,y.e is continuous
& e is continuous in X,y

https://basics.sjtu.edu.cn/

A Metalanguage

A-Abstraction
> e, e expressions
> e 06 = Ax.(ee))

Then e; o e is continuous in its variables if both e, e; are continuous in
their variables.

https://basics.sjtu.edu.cn/

A Metalanguage

let-Construction
» D: acpo
» £: a cpo with bottom
P> ¢ a expression representing an element in D
P e,: a expression representing an element in E
Then the expression
let x < e1.e

is continuous in its variables if both e;, e, are continuous.

Proof
We have let x < e1.ep = (Ax.e)*(e1).

https://basics.sjtu.edu.cn/

A Metalanguage

case-Construction
» E.Dy,...,Dy: cpo's
P> e: an expression representing an element in Dy + - -+ + Dy
> e1,..., 6 expressions representing elements in £

Then the case expression

case e of iny(x1).e |

ine(Xxk)-ex
is continuous if all e, ey, ..., e, are continuous.

Proof

The case expression is defined to be [Axj.eq, ..., Axk.ec](e).

https://basics.sjtu.edu.cn/

A Metalanguage

Fixed-Point Operator

» D: a cpo with a bottom element L

» fix: [D—D] — D: the least-fixed-point operator f — fix(f)
Then fix is a continuous function (i.e. fix € [[D—D]—D]).

Proof
We have

fix = e (M -£(L))

where
MLEMA(LDC---CAf(LC... .

is an w-chain of continuous functions in [[D—D]—D] ().

https://basics.sjtu.edu.cn/

Inductive Construction of Continuous Expressions

Fixed-Point Operator
» D: a cpo with a bottom element L
» fix: [D—D] — D: the least-fixed-point operator f — fix(f)
P> e: an expression representing an element in D

We define px.e := fix(Ax.e) .

Proposition
The fixed-point expression px.e is continuous in its variables if e is
continuous in its variables.

https://basics.sjtu.edu.cn/

Summary

A Metalanguage for Continuous Functions

» variables

» constants

» tupling

» application

» \-abstraction

» [et-construction

» case-construction
>

fixed-point operator

https://basics.sjtu.edu.cn/

Exercise

Problem

» D: a cpo with a bottom element L

» fix: [D—D] — D: the least-fixed-point operator f > fix(f)
Prove that fix is a continuous function (i.e. fix € [[D—D]—D]).

https://basics.sjtu.edu.cn/

Chapter 8

Languages with higher types

https://basics.sjtu.edu.cn/

Topics

Typed Languages
» a functional programming language
P cager operational semantics

» |azy operational semantics

https://basics.sjtu.edu.cn/

A Basic Functional Language

Textbook, Page 183 — 186

https://basics.sjtu.edu.cn/

A Basic Functional Language

Types

The types 7 are generated from the grammar:

To=int | T | oD

» int: the basic type for integers

» 7 % 75: product type for ordered pairs
(e.g., type int x int for integer pairs (0,1),(—1,2),...)
» 71 — 75: function type from 71 to ™
(e.g., type int — int for functions from integers to integers)

https://basics.sjtu.edu.cn/

A Basic Functional Language

Variables
» Var = {x,y,...}: a set of variables
> type(x): the uniquely-fixed type for the variable x

We write x : T to stress that type(x) = 7.

https://basics.sjtu.edu.cn/

A Basic Functional Language

Terms

The terms t are generated from the grammar:

t =

x (variables)

n (integer constants)

t1 Xt (x€ {4+, —, x}) (arithmetic operations)
if t; then t; else t,

(t1, ta) (ordered pairs)

fst(t) (first entry of ordered pairs)
snd(t) (second entry of ordered pairs)
Ax.t (A\-abstraction)

(t1) (function application t1(t2))

let x < t; in ty (let-notation & [t1/x]))
recy.(Ax.t) (recursion)

https://basics.sjtu.edu.cn/

A Basic Functional Language

Example
> x:int
> y:int —int
“Legal" Terms:
> Ax.(x+1)
> (Ax.(x+1),2)
> (Ax.(x+1)2)
> recy.(Ax.if x then 1 else x x (y (x —1)))

https://basics.sjtu.edu.cn/

A Basic Functional Language

Example
> x:int
“lllegal™ Terms
> (Ax.x)+1
> (Ax.x) + (Ax.(x + 1))

https://basics.sjtu.edu.cn/

Typing Rules

Variables

(type(x) = 7)

https://basics.sjtu.edu.cn/

Typing Rules

Arithmetic Operations

t :int, & :int

7, _
n:int (nez) t; op tp :int (op € {, =, x})

https://basics.sjtu.edu.cn/

Typing Rules

Conditional Branch

to:int, ty: 7, tb: T

if t; then t{ else t, : 7

https://basics.sjtu.edu.cn/

Typing Rules

Products

t1:7'1, tr 1 7o t:7T1 %7 t:71 %7
(tl, l'2) 1T kT fSt(t) I T Sl’ld(t) 1T

https://basics.sjtu.edu.cn/

Typing Rules

Functions

x:7, t:T 7T =T, T
Ax.t:7 =T (th o) : 7

https://basics.sjtu.edu.cn/

Typing Rules

“Let” Notation

X:T, t1 1711, 1T

letx<=tint:n

https://basics.sjtu.edu.cn/

Typing Rules

Recursion

YT, AX.t:iT
recy.(Ax.t) : 7

https://basics.sjtu.edu.cn/

Typing Rules

Typable Terms

> A term tis typable if t : 7 for some type .

> A term t is uniquely typable if t : 7 for some unique type 7.
(i.e., t: 71 and t : 7, implies 71 = 72)

Exercise
Every typable term is uniquely typable.

https://basics.sjtu.edu.cn/

Free Variables FV(—)

Definition through Well-Founded Recursion

>

vVvyVvyvVvyVvyYVYyYyvyy

FV(n) =0,

FV(x) = {x}

FV(ty op) := FV(t1) U FV(t);

FV(if ty then t; else) := FV/(t)) U FV(t1) U FV(t);
FV((t1, t2)) = FV((t1 t)) := FV(t1) U FV(t2);
FV(fst(t)) = FV(snd(t)) := FV/(t);

FV(Ax.t) :== FV(t) \ {x};

FV(let x < t; in tp) := FV(t1) U (FV(t2) \ {x});
FV(recy.(Ax.t)) := FV(Ax.t) \ {v}.

https://basics.sjtu.edu.cn/

Free Variables FV(—)

Closed Terms
A term t is closed if FV(t) =0.

https://basics.sjtu.edu.cn/

Free Variables FV(—)

Substitution
> t: aterm
» s: a closed term
» x: a free variable in t

Then we have
> t[s/x]: the term obtained from substituting all free occurrences of x
by sin t
> t[si/xi,...,Sk/x]: the term obtained from substituting all free
occurrences of x; by closed terms s; (1 </ < k)int

https://basics.sjtu.edu.cn/

Free Variables FV(—)

Example
> x:int
> t=let x < xin (x+1)
> t[4/x]=let x =4in (x+1)

https://basics.sjtu.edu.cn/

Eager Operational Semantics

Textbook, Page 186 — 188

https://basics.sjtu.edu.cn/

Eager Operational Semantics

Ordered Pairs
> t=(3+1,(Ax.(x+1)4))
How can we evaluate fst(t) eagerly:
> first we evaluate both 3+ 1 and (Ax.(x + 1) 4);

» then the final result is the evaluation from 3 + 1.

https://basics.sjtu.edu.cn/

Eager Operational Semantics

Function Application

> t; = Ax.1;
> t, = (recy.(Ax.(y x)) 4);
> t=(t tp)

How can we evaluate t eagerly:
> first we evaluate both t; and t;
» then the final result is the function application.

https://basics.sjtu.edu.cn/

Eager Operational Semantics

Canonical Forms (Values)

> 7: atype
The set Ct of canonical forms of type 7 is a subset of terms recursively
defined as follows:

> Ct =7

int
> Ct, i=C X CE

T1%*T2 T2

> Cf . ={Mx.t|Ax.t:73 — 72 is closed.}

Exercise
Prove that for any type 7 and term t € Cf, t is closed.

https://basics.sjtu.edu.cn/

Eager Operational Semantics

The Evaluation Relation
> t: a typable closed term with type 7
» c: a canonical term in C}

Then

> t —°¢ c: t evaluates to c in eager operational semantics

https://basics.sjtu.edu.cn/

Evaluation Rules

Canonical Forms

c—tc (ceC)

https://basics.sjtu.edu.cn/

Evaluation Rules

Arithmetic Operations

t; —° n, t —°

op € —, X
(t1 op t2) —* ny op m pe it =)

https://basics.sjtu.edu.cn/

Evaluation Rules

Conditional Branch

th =0, 1 =% ¢
if t; then t; else t, —¢ ¢

to = n b = o
if tg then t; else t, —¢ &

(n#0)

https://basics.sjtu.edu.cn/

Evaluation Rules

Product

t1 =% c, bh =% o
(t1, t2) —* (c1, @)

t —° (Cl, C2) t —° (Cl, C2)

fst(t) = snd(t) —¢

https://basics.sjtu.edu.cn/

Evaluation Rules

Function Application

t = Ax.ty, th =% o, t][a/x] 2 c
(tl tz) —¢ c

https://basics.sjtu.edu.cn/

Evaluation Rules

“Let” Expression

tp =% c, b [Cl/X] —% o

let x < t;inth —¢ ¢

https://basics.sjtu.edu.cn/

Evaluation Rules

Recursion

recy.(Ax.t) —¢ Ax.(t[recy.(Ax.t)/y])

https://basics.sjtu.edu.cn/

Eager Operational Semantics

Proposition
» t: a closed term with type 7
» ¢, c’: canonical forms
Then we have that:
» ift > cand t —=°¢ ¢’ then c = ¢’;
» if t - cthenc: .

Proof

By a simple rule induction.

https://basics.sjtu.edu.cn/

Eager Operational Semantics

Homework
> x:int
> y:int —int
» fact := recy.(Ax. (if x then 1 else x x (y (x — 1))))
» Find the type of fact through the typing rules.
» Evaluate (fact 2) under the eager operational semantics.

https://basics.sjtu.edu.cn/

Lazy Operational Semantics

Textbook, Page 200 — 202

https://basics.sjtu.edu.cn/

Lazy Operational Semantics

» cager semantics: evaluate every sub-term

» |azy semantics: evaluate only necessary sub-terms

https://basics.sjtu.edu.cn/

Lazy Operational Semantics

Terms

t == x (variables)
| n (integer constants)
| t Xt (xe{=,—,x}) (arithmetic operations)
| if to then t; else t,
| (t1,t2) (ordered pairs)
| fst(t) (first entry of ordered pairs)
| snd(t) (second entry of ordered pairs)
| Ax.t (M-abstraction)
| (t1 tp) (function application t1(t2))
| let x < t; in t, (let-notation t; [t1/x]))
|

recy.t (recursion)

https://basics.sjtu.edu.cn/

Typing Rules

Recursion

y:iT, t:T
recy.t: 7T

https://basics.sjtu.edu.cn/

Typing Rules

Typable Terms

> A term t is typable if t : 7 for some type 7.

» A term t is uniquely typable if t : T for some unique type 7.
(i.e., t: 7 and t : 7 implies 71 = 72)

A Simple Exercise
Every typable term is uniquely typable.

https://basics.sjtu.edu.cn/

Terms

Free Variables
> FV(recy.t) := FV(t)\ {v}.
> A term t is closed if FV/(t) = 0.

https://basics.sjtu.edu.cn/

Lazy Operational Semantics

Canonical Forms
> 7: atype
The set C' is recursively defined as follows:
> G = Z;
> Cl .. ={(ti,t) | t1: 71,2 : 72 and ty, t; are closed.};
> CL ., ={At|Ax.t:7 — 7 is closed.}

https://basics.sjtu.edu.cn/

Lazy Operational Semantics

The Evaluation Relation
» t: a closed term with type 7
» c: a canonical term in CF
Then

» t—'c: t evaluates to ¢ in lazy operational semantics

https://basics.sjtu.edu.cn/

Lazy Operational Semantics

Evaluation Rules

» canonical terms:

C[
c—le (ceC)

https://basics.sjtu.edu.cn/

Lazy Operational Semantics

Evaluation Rules

» arithmetic operations:

t1 ! m, t ! no

op € 1+,—, X
tlopt2—>[n10pn2 P {’ ’ }

https://basics.sjtu.edu.cn/

Lazy Operational Semantics

Evaluation Rules
» conditional branch:

t0—>[0 71'1—>[C1
if t; then t; else t, =' ¢

t0—>[n ,t2—>[C2
if t; then t; else t, =' ¢

(n#0)

https://basics.sjtu.edu.cn/

Lazy Operational Semantics

Evaluation Rules
» Product:

t—='(t,), 1 —='a

t—='(t,), b=

fst(t) = c

snd(t) =' ¢

https://basics.sjtu.edu.cn/

Lazy Operational Semantics

Evaluation Rules
» Function Application:

t1 —' Ax.t]] [t/x] —='c
(tl t2)—>[C

https://basics.sjtu.edu.cn/

Lazy Operational Semantics

Evaluation Rules

> “Let” Notation:
tr [tl/X] —le

let x < t;in th ='c

https://basics.sjtu.edu.cn/

Lazy Operational Semantics

Evaluation Rules

» Recursion:
trecy.t/y] —='c

recy.t —'c

https://basics.sjtu.edu.cn/

Lazy Operational Semantics

Proposition
» t: a closed term with type 7
» ¢, c’: canonical terms
Then we have that:
» if t >'cand t ="'’ then ¢ = ¢’;
» if t »'c then c: 7.

Proof.

By a simple rule induction.

https://basics.sjtu.edu.cn/

Summary

Functional Programming Languages
» types and terms
P eager operational semantics
> lazy operational semantics

https://basics.sjtu.edu.cn/

Exercise

Problem
> x:int
> y:int —int
» fact := recy.(Ax. (if x then 1 else x x (y (x — 1))))
» Find the type of fact through the typing rules.
» Evaluate (fact 2) under the eager operational semantics.

https://basics.sjtu.edu.cn/

Topics

» eager denotational semantics
» lazy denotational semantics

https://basics.sjtu.edu.cn/

Eager Denotational Semantics

Textbook, Chapter 11.3

https://basics.sjtu.edu.cn/

Eager Denotational Semantics

An Overview
» terms as functions from environments to values

» cpo's and continuous functions as mathematical backbone

https://basics.sjtu.edu.cn/

Eager Denotational Semantics

Values
> 7: atype
The cpo V} of values associated with the type 7 is recursively defined as
follows:
» Vi, = Z (discrete cpo);
> VE. =V x Vi (product cpo);
> Ve = [VE = (VE)L] (function space);
Question

Why do we incorporate L in the last definition?

https://basics.sjtu.edu.cn/

Eager Denotational Semantics

Environments
» Var: the set of variables

An environment p is a function
p:Var — U{VT‘ | T a type}

such that
Vx € Var.(x: 7= p(x) € V) .

We denote by Env® the set of environments under eager semantics.

https://basics.sjtu.edu.cn/

Eager Denotational Semantics

Intuition
> t: a typable term with type 7
» [t]° : Env® — (V?),: the denotational semantics of t

https://basics.sjtu.edu.cn/

Eager Denotational Semantics

Well-Founded Recursion
> [x]" == Ap.Lp(x)]
» [n]° := Ap.|n]

https://basics.sjtu.edu.cn/

Eager Denotational Semantics

Well-Founded Recursion
> [t1 op 2] = Ap.([t:]°(p) op . [2]°(p))

https://basics.sjtu.edu.cn/

Eager Denotational Semantics

Well-Founded Recursion

> [if to then t; else &) = Ap.cond([to]"(0), [1]° (1), [:]° (1))
» Conditional (Chapter 9.3):

p4) if zZyp = LOJ
cond(zg, z1,22) ==z ifzg=|n]and n#0
1 if Zy = 1

[if to then t; else t]° :=

Ap-(let n <= [to]“(p).[[t2]" (), [t21"(p)1(n))

https://basics.sjtu.edu.cn/

Eager Denotational Semantics

Well-Founded Recursion
> [(tr,)] = Aplet vi = [6]°(p), va <= [L2]°(p): (v, v2) J;
> [fst(t)] := Ap.let v <= [t]°(p).|m1 (V)]
> [snd(t)]° := Ap.let v <= [t]°(p).[m2(v)]

https://basics.sjtu.edu.cn/

Eager Denotational Semantics

Function Update (Chapter 9.3)
> iny: {x} = Var: x— x
» iny:Var\{x} > Var: y—y, y#x

plv/x] = Ay.case y of ini(y1).v |
in(y2).p(y2)

https://basics.sjtu.edu.cn/

Eager Denotational Semantics

Well-Founded Recursion
> [Ax.t]" = Ap.[Av e VEL[t] (p[v/x])] for Ax.t i1 — 7
> [(t1 t2)]° := Ap.let F <= [t1]°(p), v < [t2] (p).F(v)

https://basics.sjtu.edu.cn/

Eager Denotational Semantics

Well-Founded Recursion
> [let x < t1 in 1] = Ap.let v < [t]°(p).[2] (0 [v/x])
> [recy.(Ax.t)]* := Ap.|[uF . (Av.[t]*(plv/x, F/y]))]

https://basics.sjtu.edu.cn/

Eager Denotational Semantics

Lemma
> t: a typable term
> p,p': two environments such that for all x € FV/(t), we have

o) = /(%)
Then we have [t]°(p) = [t]°(p).
Proof

A simple structural induction on t.

https://basics.sjtu.edu.cn/

Eager Denotational Semantics

Substitution Lemma
» s: a typable closed term with type 7
» x: a variable with type 7
» t: a typable term with type 7’/
If [s]°(p) = | v], then we have that:
> t[s/x]:7/;

> [t[s/xI1°(p) = [t]°(p [v/x])
Proof

By structural induction on t.

https://basics.sjtu.edu.cn/

Eager Denotational Semantics

Lemma
> If t : 7, then for all p we have [t]‘(p) € (VF),.

» If c € C¢, then for all p we have [c](p) # L (the bottom element
of (VF).)-

Proof

By structural induction.

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Textbook, Chapter 11.4

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

A First Statement
» t: a closed typable term
» c: a canonical term
Then we may expect that t —°¢ ¢ iff [t](p) = [¢]"(p).

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

A Problem
» t: a closed typable term
» c: a canonical term
[t1°(p) = [c]*(p) = t —* ¢ may not hold.

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

The Correct Theorem
» t: a closed typable term
» c: a canonical term
Then we have:
>t ¢ c implies [£]*(p) = [](p):
» The two eager semantics agree on the convergence of t.

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Operational Convergence

» t: a typable closed term

We say that t is operationally convergent, denoted by t|¢, if it holds that
Jc.t —° c.

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Denotational Convergence

» t: a typable closed term with type 7

We say that t is denotationally convergent, denoted by tl}°, if it holds
that v € VE.[t]°(p) = |v].

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

The Correct Theorem
» t: a closed typable term
» c: a canonical term
Then we have:
> £ = c implies [£]*(p) = [c]*():
> t]Ciff t)°.

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

A Corollary

» t: a closed typable term with type int
Then we have that t —¢ n iff [t](p) = |n].

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

The Correct Theorem
» t: a closed typable term
» c: a canonical term
Then we have:
>t = c implies [£]*(p) = [c]*():
> t]Ciff t°.

Main Task

How can we prove this theorem?

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Lemma
» t: a closed typable term
» c: a canonical term

If t —¢ c then [t]°(p) = [c]°(p) (for any environment p).

Proof.

By rule induction on evaluation of terms.

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

The Rule for fst(—)

t —° (Cl, C2)
fSt(t) —¢

> [t]°(p) = [(c1,)] (p);

> [(c1, @)](p) = let vi <= [c1]*(p), va <= [2](p)-[(v1, v2) |;
> (a1, o)

> |vi| = [al®(p) and [v2] = [e] (p);

> [fst(t)]*(p) = let v <= [t]*(p).|m1(v)] = [v1] = [a] (p).

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

The Rule for Function Application

t1 —° Ax.t], b —=° o, t{[a/x] =°c
(tl tz) —¢ c

> [a]"(p) = [Mx-t]"(p). [t2]"(p) = [c2]*(p) and
[t [e2/x10"(p) = [():

[(t 2)]°(p) = let F<=[t](p), v < [t](p)-F(v)
= let F <= [Dx.t]](p),v < [t2](p).F(v)
= et F < v [g] (p[v/x])], v < [](p)-F(v)
= [u]*(p[v/x]) where [v] = [e](p)
= [t le/x1(p)
= [c](p)

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

The Rule for Recursion

recy.(Ax.t) —¢ Ax.(t[recy.(Ax.t)/y])

> [recy.(\x.t)]*(p) = |F*|;
> F* = pF.(Av.[t] (plv/x, F/y)));

[Ax.t [recy.(Ax.t)/1](p)

ot (p [F*/y])
[t (plv/x, F*/y])]
LF*)

[recy.(Ax.t)]*(p)

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Lemma
» t: a closed typable term
» c: a canonical term
If t —¢ c then [t]°(p) = [c]°(p) (for any environment p).

Corollary

» t: a closed typable term
Then we have that t|® = t}°.

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

The Difficult Part

» t: a closed typable term
Then we have that t|¢ = t]°.

The First Attempt
Structural induction on t.

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

The Case t = (t; 1)

» induction hypothesis: (t1¢ = t1)°) & (&{* = tl°)
Then

>t

> [t](p) = let F < [a]°(p), v < [£](p).-F(v)

>) & tl)°

>t ¢)\X.t{ & th > o

> [t]*(p) = F(v) where F = Au.[t]]*(p[u/x]) and [v] = [e]*(p)

> [t]°(p) =[] (p[v/x]) = [t [e2/X]]*(p)

> t] [c2/x])¢ and t] [c2/x] —=° ¢

> t ¢ ¢

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Question
What's wrong with the proof?

Proof
> ..
t1 —°)\X.t{ & th =°¢ o

t] [c2/x]4¢ and t] [e2/x] —¢ ¢ 77

>
> ...
> [t]°(p) =[] (p[v/x]) = [t [c2/X]]"(p)
>
> t >°c

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Question
What's wrong with the proof?

The Problem
» |t is not guaranteed that t] [c2/x[}¢ = t; [ca/Xx]4¢ .

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Solution
» a stronger induction hypothesis

» a logical relation between values and types

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Logical Relations
> 7: atype
Then we will define:
> <0C VEx C
> <,C (V&) x ClosedTerms

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

The Relation <,

> 7: atype
We define the relation <,C (V£), x Closed Terms by:

d<, tiffyve Ve d=|v] = (et 5 c & v <8 o))

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

The Relations <0C VE x Ct

» ground types:
n <pe n for all integers n

P product types:
(V17 V2) 5:1*7_2 (Cl7 C2) iff %1 §7o_1 1 and Vo 570_2 Co
» function types:

F <o Axctiffvve Vi ce Cv Sy c= F(v) $q, tle/X]

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Lemma

» t: a closed term with type 7
We have that

> Lo, St

» for any d,d’ € (V)L, it holds that
(dCd &d <, t=dS,t);
> foranydy T i C---Cd, C...in (V) it holds that

(Vn.d, Srt) = | dn Sr t

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Lemma
> Lve), St

~T

Proof
By definition:

d<,tiffYve Ve[d=|v|

= (Fe.(t = c & v <2 0))]

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Lemma
> foranydg T dh C---Cd,C...in (V)L it holds that

(Vn.d, S t) = ey, dn Sr 8

Proof (Structural Induction on Types)
base type: 7 = int. Straightforward.

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Lemma
> foranydgCdh C---Cd, C...in (V) it holds that

(Vn.d, Srt) = |, dn So t

Proof (Structural Induction on Types)
function types: 7 =1 — 7.
» Suppose dg Cdi C---Cd, E...in (V5)1

» Suppose that Vn.d, $rr, t
» casy case: Vn.d, = L

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Proof (Structural Induction on Types)
function types: 7 =1 — 7.
» Suppose that dg E dh C ... in (V2

T1—T2

)1 and Vn.dy $Spyr, t
nontrivial case: dn.d, # L and t —° Ax.t'.
from definition: Vn > N.(d, = | Fp] & Fn <2 Ax.t')

>

> " S

> Vn>NV(v,c) e VS x Cf.v < c= Fo(v) S,y tc/X]
» induction hypothesis: (L, Fa)(v) =, (Fa(v)) S ' [c/X]
> V(v,c).v 53 ¢ = (U, Fa)(v) Sr t[c/X]

>

>

|_|n€w dn = IJ-lnEw FnJ 57’1—”’2 t

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Lemma

» t: a typable close term
We have that t||¢ = t]°.

Proof (by Structural Induction)
We prove by structural induction on terms that:
> t:7:aterm

» X3 :7T1,...,Xk . Tk: free variables in t
» s :7T1,...,Sk: Tk closed terms
> v; € V& (1 <i<k): elements such that |v;] $r, s

Then [t] (p[va/x1, - - vii/xk]) S tls1/x1s - - - Sk/Xk]-

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Proof (by Structural Induction)
We prove by structural induction on terms that:

> t:7:aterm

» x1:T1,...,Xc: Tk free variables in t

» s :7T1,...,Sk: Tk closed terms

> v; € V& (1 <i<k): elements such that |v;] <r, s
Then [t] (p[vi/x1, - vii/xk]) S t[s1/x1s - - - Sk /Xk]-

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Proof (by Structural Induction)

> t:7:aterm

» X3 :7T1,...,Xk . Tk: free variables in t

» s :7T1,...,Sk: Tk closed terms

> v; € V(1 <i<k): elements such that |v;] $r, s
Then [t] (p[va/x1, - - vii/xk]) S tls1/x1s - - - Sk/Xk]-

Base Step: t =x and x: 7

» Suppose [v]| <;s.
> D (plv/x) = Lv] S s = x[s/x].

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Proof (by Structural Induction)

» t:7:aterm

» x1:T1,...,Xc: Tk free variables in t

» s :7T1,...,Sk: Tk closed terms

> v; € V& (1 <i<k): elements such that |v;] <r, s
Then [t](p[va/x1; - - vii/xk]) S t[si/x1s - - - Sk /Xk]-

Base Step: t =n

(e}
> n <o

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Proof (by Structural Induction)

> [t] (plva/x1, - -5 vie/xi]) Sr tlsi/xa, - - sie/Xi)-

Inductive Step: t = t; op t,

» Suppose that [[t; op t2]°(p[vi/x1;- -, vi/xk]) = |n].
» Then
> [tl*(plvi/x, ... vie/x]) = [m].

> L] (plvi/xas -5 vie/x]) = [n2].
> n=n op nm.

» By induction hypothesis,

>] Siee tivi/xa, e vie/x]
> 2] Sint t2[vi/x1, ..., Vie/Xk]

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Proof (by Structural Induction)

> [t]°(plvi/x1, - vi/xk]) Sr tlsi/xa, -

Inductive Step: t = t; op t,
» By induction hypothesis,
> [m]| Siee tifvi/xa, - v/ X
> 2] Sine to[vi/x1, - vie/ X
» From the definition of <iy,
> tl[Vl/Xl, e Vk/Xk] —''m
> tg[vl/xl, ey Vk/Xk] —° m

> Hence, t[vi/x1,..., vii/xk] = n.

» Finally, [t]°(p[va/x1,- -, vi/xk]) Sr ts1/xa,

.,Sk/Xk].

...,Sk/Xk].

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Proof (by Structural Induction)

> [t](plva/x1, - - vie/xk]) S t[si/xas - - Sk/Xk]-

Inductive Step: t = if ty then t; else t,

» Suppose that [t] (p[vi/x1,- .-, vk/x]) = |u].
» Then either
> [to]*(p[vi/xa;- - -, vi/x]) = [0].
> [t](plvi/xa;- - vi/xk]) = Lu1].
or
> [t](plvi/x,- -, vk/xk]) = |n] (n > 0).
> [t]*(plvi/xas- -, vie/xk]) = |u2].

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Proof (by Structural Induction)

> [t](plva/x1, - - vie/xk]) S t[si/xas - - Sk/Xk]-

Inductive Step: t = if ty then t; else t,

» Suppose that [t] (p[vi/x1,- .-, vk/x]) = |u].
» Then either
> [to]*(p[vi/xa;- - -, vi/x]) = [0].
> [t](plvi/xa;- - vi/xk]) = Lu1].
or
> [t](plvi/x,- -, vk/xk]) = |n] (n > 0).
> [t]*(plvi/xas- -, vie/xk]) = |u2].

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Proof (by Structural Induction)

> [t] (plva/x1, - - s vie/xi]) Srtlsi/xa, - - sie/Xu)-

Inductive Step: t = (t1, t2)

» Suppose [t] (p[vi/x1,-- -, vk/xk]) = |u] and t1 : 71, t2 : To.
» Then
> [t (plvi/xas -5 vie/xd]) = [un].

> [to]“(plvi/x1s - vie/x]) = [u2].
> u=(u1,uw).

> By induction hypothesis,

> |_U1J 57—1 tl[Sl/Xl,..‘,Sk/Xk];
> LUQJ Sﬁz t‘z[Sl/Xl,...,Sk/Xk].

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Proof (by Structural Induction)

> [t]°(plva/x1, - vie/xk]) Sr tlsi/xas -, sie/xx]-

Inductive Step: t = (t1, tp)
» By induction hypothesis,

> |_U1J NT1 tl[Sl/Xh...,Sk/Xk];
> |_U2J S t2[51/X1,...,$k/Xk].
> By definition,
> ti[si/x1,...,s6/x] = ca and u1 S Nﬂ c;
> tofsi/x1,...,s/xk] =° ¢ and wy 7, .
» Then (u1, tr) <2 (a1, @) and t[s1/xi, ..., sk/xk] =° (c1, &2).

» Finally, [t]°(p[vi/x1,- -, vi/xk]) S t[si/x1, - -5 Sk/Xk]

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Proof (by Structural Induction)

> [t](plva/x1s - - vie/xk]) S t[s1/xas - - -y Sk/Xk]-

Inductive Step: t = fst(t’)

> Suppose that [t]“(p[vi/x1,- -, vk/xk]) = |u] and t' : 71 % 1;
Then [t'] (p[vi/x1,- -+, vi/x«]) = [(u1, u2)] and u = uy;
By induction hypothesis, |(u1, t2)]| Srywr t'[s1/X1, -y Sk/Xk];

>
>
» Hence, t'[s1/x1,...,sk/xk] =° (c1,¢2) and (uy, o) S3,.r, (€1, @2);
» Then, t[si/x1,...,sk/x] = c1 and 1y $2

>

Finally, [t]°(p[vi/x1, -, vi/xk]) So t[s1/x1, - -, Sk/Xk]-

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Proof (by Structural Induction)

> [t] (plvi/x1, - vi/xk]) Sr tlsi/x, -

Inductive Step: t = snd(t’)

By similar proof.

.,Sk/Xk].

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Proof (by Structural Induction)

> [t] (plva/x1, - - s vie/xi]) Sr tlsi/xa, - - sie/Xi)-

Inductive Step: t = Ax.t/ with x: 7, t/ : 7/
> [t (plva/xa, - - vi/x]) = |F].
» Then F = Av e VE[t] (plva/x1, - -, vi/Xk, v/X])
» For any v, c such that v <2 ¢, |v] <; ¢ and
F(v) = [t']"(p[vi/x1s - - - s vik/xk, v/X])
» By induction hypothesis,

[T (plva/xa, - - s vie/ Xk, v/X]) S Hls1/xas - Sk /XK, €/X]

> FS?_HT/)\X.t/[Sl/Xl,...7Sk/Xk]
> |F| S5 tls/xa, - sk/xk]

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Proof (by Structural Induction)

> [t] (plva/x1, - - s vie/xi]) Srtlsi/xa, - - sie/Xu)-

Inductive Step: t = (t; t) with t; : 7/ = 7, th 1 7/

» Suppose that [(t; t2)] (p[vi/x1,- -, vi/xk]) = Lu].
» Then we have

> [t] (plvi/xa,- .., vi/xu]) = [F].

> [t] (plvi/x1, - vi/xk]) = Lv].

> F(v) = |ul.
» By induction hypothesis,

> |_FJ Sﬂ./_ﬂ_ tl[Sl/Xl, .. .,sk/xk].

> LVJ ST/ 1’2[5‘1/X17 c.. ,Sk/Xk].

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Proof (by Structural Induction)

> (] (plva/x1, - - s vie/xi]) Sr tlsi/xa, - - sie/Xi)-

Inductive Step: t = (t; t) with t; : 7/ = 7", tp : 7'/
» By induction hypothesis,

> F| Soor tilsi/xay e, Sk/xk].
> v] Sorotofsi/xay . Sk/xk]
» By definition,
> ti[si/x1,. .., 86/xk] = Ax.ty and F <2, Ax.ti;
> tofsi/x1,...,56/x] =° @ and v <2, 6.
» From F <2, Ax.t{, we have |u| = F(v) <t [e2/x].
» Then, there is ¢ € C! such that t] [c2/x] —° ¢ and u <2 ¢;
> (ty b)[s1/x1,---,S/xk] =° ¢
> Finally, [t]°(p[vi/x1,- -, vi/xk]) S tsi/x1, - -5 Sk/Xk]

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Proof (by Structural Induction)

> [t] (plva/x1, - -5 vie/xi]) Sr tlsu/xa, - - sie/Xi)-

Inductive Step: t = let x <= ty.ty with x : 7q, t; 171, b T
» Suppose that [t] (p[vi/x1,- .-, vk/x]) = |u]
» Then there is u; € V7 such that

> [[1‘1]]2(,0[V1/X17 ey Vk/Xk]) = _UIJ;
> [t] (plvi/xas -y vie/xi][u/x]) = Lul;

» From induction hypothesis, there are canonical forms c;, ¢ such that

> 57 aand tifsi/x, .. s/ xk] = a
> u S?rl ¢ and t2[51/X17...,Sk/Xk][Cl/X] —fc

» Thus, t[s1/x1,...,s¢/xx] —¢ c.

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Proof (by Structural Induction)

> [t] (plva/x1, - - s vie/xu]) Sr tlsu/xa, - - s/ Xk]-

Inductive Step: t = recy.(Ax.t') with x : 7", t' . 7/
» Suppose that [t]“(p[vi/x1, ..., vk/xk]) = |G| for G € V&, ,
> G = puF.(Av.[t'] (p[vi/x1,- s vik/xk, v/x, F/y]))
» G =|lpcw Gn = Uneo, Gn where
> GO = J‘V;//AH_/
> Gopr = A (plvi/x1, - -y ik /XK, v/ X, Go/y])
By induction: for all n, G, <2 (Ax.t")[s/x, t[s/x]/y]

n~or" =71’

Then G <2 (Ax.t")[s/x, t[s/x]/y].

>
> ~T! =T’

> Note that t[si/x1, ..., sc/xk] =° (Ax.t')[s/x, t[s/x]/y].
» Thus, |G| <2, t[si/x1,- -, Sk/Xk].

~T

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Proof (by Structural Induction)
> [[t]]e(p[vl/xla"'7vk/xk]) 57’ t[sl/Xl,-.-,Sk/Xk]_

/

Inductive Step: t = recy.(Ax.t') with x : 7", t': 7
> Go:=Lve, , and Gpi = AV (pV/X, v/x, Ga/y])
» By induction: for all n, G, <2 (Ax.t")[s/x, t[s/x]/y]

n ~r!—r/

> Base Step: Lv:, <7 (Ax.t')[s/x, t[s/x]/y]

o1 T =T
» For all v, c such that v <2, ¢,

Lv (V) ST’ t'[s/x, C/X7 t[S/X]/y].

13
!

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Inductive Step: t = recy.(Ax.t') with x : 77, t' : 7/

>

vVvyYVvyVvVYyyy

Go = Lve, and Gpi1 := AV.[t']*(p[V/X, v/x, Ga/y])
By induction: for all n, G, <2 (Ax.t")[s/x, t[s/x]/y]

ne~orl—T1!
Inductive Step: suppose G, <%, (Ax.t')[s/x, t[s/x]/y].
Then |G, | Srvrr t[s/X].
Consider any v <2, ¢ so that |v]| <;v c.
Note that G,,1(v) = [t']*(p[V/X, v/x, Ga/y]).

By the main induction hypothesis,
Gni1(v) S t'ls/x, c/x, t[s/x]/y].

Grir S0 (Act')[s/x, tls/x1/y].

https://basics.sjtu.edu.cn/

Agreement of Eager Semantics

Corollary

> t:int: a closed term
Then t —° niff [t]°(p) = |n].

https://basics.sjtu.edu.cn/

Lazy Denotational Semantics

Textbook, Chapter 11.7

https://basics.sjtu.edu.cn/

Lazy Denotational Semantics

Values
> 7! atype
The discrete cpo V! of values associated with type 7 is recursively
defined as follows:
> Vi =L
> Vim = (Vi) x (V)1

T1%*T2

> V7El—>7'2 = [(V7E1)J-_>(V7E2)J-]

Question
Why do we have extra 1's?

https://basics.sjtu.edu.cn/

Lazy Denotational Semantics

Environments
» Var: the set of variables

An environment p is a function
p:Var — U{(Vrl)l | T a type}

such that
Vx € Var.(x: 7= p(x) € (VI)1) .

We denote by Env' the set of environments under lazy semantics.

https://basics.sjtu.edu.cn/

Lazy Denotational Semantics

Intuition
> t: a typable term with type 7
» [t]': Env' — (V!).: the denotational semantics of t

https://basics.sjtu.edu.cn/

Lazy Denotational Semantics

Inductive Definition
> [x]" == App(x);
> [n]" == Ap.|n};

https://basics.sjtu.edu.cn/

Lazy Denotational Semantics

Inductive Definition

> [ty op] := Ap.([t]'(0) 0p, [ta]'(0));
>

[[if tp then t; else tzﬂ[=
Ap-cond([to] (), [t1]'(p). [2]'(p));

https://basics.sjtu.edu.cn/

Lazy Denotational Semantics

Inductive Definition
> (1,)] = 2. [([8] (), [22] (0)));
> [fst(t)]' := Ap.let v < [t]'(p).m1(v)
> [snd(t)]' := Ap.let v < [t]'(p).m2(v)

https://basics.sjtu.edu.cn/

Lazy Denotational Semantics

Inductive Definition
> Dxet]' == Ao [Av € (VL) L[t (p[v/x])) for Ax.t i — 7

> [(tr &)]" = Ao.let F < [6]'(p)-F([22] (0))

https://basics.sjtu.edu.cn/

Lazy Denotational Semantics

Inductive Definition
> [let x < t; in] = A\p.[ts]" (p [[[tlﬂ‘(p) /x])
> [recy.t]' := Ap.(uF.[t]'(plF /¥1))

https://basics.sjtu.edu.cn/

Agreement of Lazy Semantics

Operational Convergence

» t: a typable closed term

We say that t is operationally convergent, denoted by t|', if it holds that
det—='e.

https://basics.sjtu.edu.cn/

Agreement of Lazy Semantics

Denotational Convergence

» t: a typable closed term with type 7

We say that t is denotationally convergent, denoted by t|}', if it holds
that 3v € VL[t]'(p) = |v].

https://basics.sjtu.edu.cn/

Agreement of Lazy Semantics

The Theorem
» t: a closed typable term
» c: a canonical term
Then we have:
> t—'c implies []'(p) = [c]'(p):
> t]iff)’

https://basics.sjtu.edu.cn/

Agreement of Lazy Semantics

A Corollary

» t: a closed typable term with type int
Then we have that t —'n iff [t]'(p) = [n].

https://basics.sjtu.edu.cn/

Summary

» eager denotational semantics
» lazy denotational semantics

» agreement of the semantics

https://basics.sjtu.edu.cn/

Special Thanks

Many thanks to Prof. Hongfei Fu for providing the
source file of the presentation slides.

The original version can be downloaded here.

https://basics.sjtu.edu.cn/
https://jhc.sjtu.edu.cn/~hongfeifu/
https://basics.sjtu.edu.cn/~longhuan/teaching/CS7302/0PL.rar

	0 Course introduction
	1 Basic Set Theory
	Set Theory: An Intuitive Description
	The Language of Set Theory
	Axioms for Set Reasoning
	Axioms for Set Construction
	Relations and Functions

	2 Introduction to operational semantics
	A Simple Imperative Language - IMP
	IMP-A Simple Imperative Language
	The Operational Semantics of IMP
	Equivalence of Commands
	Small-Step Operational Semantics

	3 Some principles of induction
	Principles of Induction

	4 Inductive definitions
	Rule Induction
	Inductive Definitions

	5 The denotational semantics of IMP
	Denotational Semantics: An Informal View
	Complete Partial Orders
	Continuous Functions
	Denotational Semantics: Formal Definition
	Equivalence with Operational Semantics
	Knaster-Tarski's Fixed-Point Theorem
	The Bottom Element

	6 The Axiomatic semantics of IMP
	Axiomatic Semantics: An Intuition
	Axiomatic Semantics: An Overview
	An Assertion Language Assn
	Proof Rules for Partial Correctness Assertions
	Soundness of Hoare Rules

	7 Completeness of the Hoare rules
	Completeness of Hoare Rules
	Relative Completeness of Hoare Rules

	8 Introduction to domain theory
	Complete Partial Orders
	Constructions on CPO's
	A Metalanguage

	11 Languages with higher types
	A Basic Functional Language
	Eager Operational Semantics
	Lazy Operational Semantics
	Eager Denotational Semantics
	Agreement of Eager Semantics

	Thanks

