
The Formal Semantics of Programming Languages

Yuxin Deng

East China Normal University

http://basics.sjtu.edu.cn/∼yuxin/

April 1, 2016

Formal semantics of programming languages Y. Deng@ECNU 1

Reading materials

1. Glynn Winskel. The Formal Semantics of Programming Languages:

An Introduction. The MIT Press, 1993.

2. Peter Selinger. Lecture Notes on the Lambda Calculus.

http://www.mathstat.dal.ca/~selinger/papers/lambdanotes.pdf

3. Benjamin C. Pierce et al. Software Foundations.

http://www.cis.upenn.edu/~bcpierce/sf/current/index.html

4. John C. Mitchell. Foundations for Programming Languages. The MIT

Press, 1996.

5. Robert Harper. Practical Foundations for Programming Languages.

http://www.cs.cmu.edu/~rwh/plbook/book.pdf

Formal semantics of programming languages Y. Deng@ECNU 2

Why formal semantics?

• To understand how programs behave

• To build a mathematical model useful for program analysis and

verification

Formal semantics of programming languages Y. Deng@ECNU 3

Three kinds of semantics (1/3)

• Operational semantics: describing the meaning of a programming

language by specifying how it executes on an abstract machine.

Gordon Plotkin

• Denotational semantics: defining the meaning of programming

languages by mathematical concepts.

Christopher Strachey, Dana Scott

• Axiomatic semantics: giving the meaning of a programming construct

by axioms or proof rules in a program logic.

R.W. Floyd, C.A.R. Hoare

Formal semantics of programming languages Y. Deng@ECNU 4

Three kinds of semantics (2/3)

• Operational semantics: very helpful in implementation

• Denotational semantics: provides deep and widely applicable

techniques for various languages

• Axiomatic semantics: useful in developing and verifying programs

Formal semantics of programming languages Y. Deng@ECNU 5

Three kinds of semantics (3/3)

Different styles of semantics are dependent on each other. E.g.

• To show the proof rules of an axiomatic semantics are correct, use an

underlying denotational or operational semantics.

• To show an implementation correct wrt denotational semantics, need

to show the operational and denotational semantics agree.

• To justify an operational semantics, use a denotational semantics to

abstract away from unimportant implementation details so to

understand high-level computational behavior.

Formal semantics of programming languages Y. Deng@ECNU 6

Chapter 1. Basic set theory

Formal semantics of programming languages Y. Deng@ECNU 7

1.1 Logical notation

Let A and B be statements

• A & B: the conjunction of A and B

• A||B: the disjunction of A and B

• A ⇒ B: if A then B

• A ⇔ B: logical equivalence of A and B

• ∃x.P (x): there exists some x such that P (x) holds

• ∃!x.P (x): there exists q unique x such that P (x) holds

• ∀x.P (x): for all x, P (x) holds

Formal semantics of programming languages Y. Deng@ECNU 8

1.2 Sets (1/3)

• {x | P (x)}: specify a set with property P (x)

• Russell’s paradox: R = {x | x 6∈ x} is not a set.

• So we assume all sets in the textbook are properly constructed.

• ∅: the null or empty set

• ω = {0, 1, 2, ...}

Formal semantics of programming languages Y. Deng@ECNU 9

1.2 Sets (2/3)

• Powerset: Pow(X) = {Y | Y ⊆ X}.

• Indexed set: {xi | i ∈ I}.

• Big union: Let X be a set of sets.
⋃

X = {a | ∃x ∈ X.a ∈ x}

• When X = {xi | i ∈ I} for some indexing set I we write
⋃
X as⋃

i∈I xi.

• Big intersection: Let X be a nonempty set of sets.⋂
X = {a | ∀x ∈ X.a ∈ x}

• When X = {xi | i ∈ I} for a nonempty indexing set I we write
⋂
X as⋂

i∈I xi.

Formal semantics of programming languages Y. Deng@ECNU 10

1.2 Sets (3/3)

• Product: X × Y = {(a, b) | a ∈ X & b ∈ Y }.

• More generally, X1 ×X2 × ...×Xn consists of the set of n-tuples

(x1, x2, ..., xn) = (x1, (x2, (x3, ...))).

• Disjoint union:

X0 ⊎X1 ⊎ · · · ⊎Xn = ({0} ×X0) ∪ ({1} ×X1) ∪ . . . ∪ ({n} ×Xn)

• Set difference: X\Y = {x | x ∈ X & x 6∈ Y }

• The axiom of foundation: Any descending chain of memberships

. . . bn ∈ . . . ∈ b1 ∈ b0

must be finite. Thus no set can be a member of itself. It is an

assumption generally made in set theory.

Formal semantics of programming languages Y. Deng@ECNU 11

1.3 Relations and functions (1/3)

• A binary relation between X and Y is an element of Pow(X × Y).

• When R is a relation R ⊆ X × Y , we write xRy for (x, y) ∈ R.

• A partial function from X to Y is a relation f ⊆ X × Y with

∀x, y, y′.(x, y) ∈ f & (x, y′) ∈ f ⇒ y = y′

We write f(x) = y when (x, y) ∈ f for some y and say f(x) is defined,

otherwise f(x) is undefined. Sometimes we write f : x 7→ y or x 7→ y

when f is understood, for y = f(x)

• A (total) function from X to Y is a special partial function such that

∀x ∈ X.∃y ∈ Y.f(x) = y.

• Write (X ⇀ Y) for the set of all partial function from X to Y , and

(X → Y) for the set of all total functions.

Formal semantics of programming languages Y. Deng@ECNU 12

1.3 Relations and functions (2/3)

• Lambda notation To write a function without naming it.

λx ∈ X.e = {(x, e) | x ∈ X}

• Let R ⊆ X × Y and S ⊆ Y × Z be two relations. Their composition is

S ◦R =def {(x, z) ∈ X × Z | ∃y ∈ Y.(x, y) ∈ R & (y, z) ∈ S}

• For functions f : X → Y and g : Y → Z, their composition is the

function g ◦ f : X → Z.

• Each set X is associated with an identity function

IdX = {(x, x) | x ∈ X}.

• A function f : X → Y has an inverse g : Y → X iff g(f(x)) = x for all

x ∈ X and f(g(y)) = y for all y ∈ Y . Then X and Y are said to be in

1− 1 correspondence.

Formal semantics of programming languages Y. Deng@ECNU 13

1.3 Relations and functions (3/3)

• Let R : X × Y and A ⊆ X . The direct image of A under R

RA = {y ∈ Y | ∃x ∈ A. (x, y) ∈ R}

• Let B ⊆ Y . The inverse image of B under R

R−1B = {x ∈ X | ∃y ∈ B. (x, y) ∈ R}

• If R is an equivalence relation on X , then the (R−)equivalence class of

an element x ∈ X is {x}R =def {y ∈ X | yRx}.

• Let R0 = IdX , define Rn+1 = R ◦Rn for all n ≥ 0. The transitive

closure of R is R+ =
⋃

n∈ω Rn+1. The reflexive, transitive closure of R

is R∗ = IdX ∪R+ =
⋃

n∈ω Rn.

Formal semantics of programming languages Y. Deng@ECNU 14

1.3 Georg Cantor’s diagonal argument (1/2)

Theorem 0.1 Let X be any set, X and Pow(X) are never in 1− 1

correspondence.

Proof: Suppose there exists a 1-1 correspondence θ : X → Pow(X). Form

the set Y = {x ∈ X | x 6∈ θ(x)}. Now Y ∈ Pow(X) and is in

correspondence with some y ∈ X , i.e. θ(y) = Y .

• If y ∈ Y then y 6∈ θ(y) = Y .

• If y 6∈ Y = θ(y) then y ∈ Y .

So the correspondence θ does not exist at all. �

Formal semantics of programming languages Y. Deng@ECNU 15

1.3 Georg Cantor’s diagonal argument (2/2)

Theorem 0.2 N and Pow(N) are never in 1− 1 correspondence.

θ(x0) θ(x1) θ(x2) · · · θ(xj) · · ·

x0 0 1 1 · · · 1 · · ·

x1 1 1 1 · · · 1 · · ·

x2 0 0 0 · · · 0 · · ·
...

...
...

...
...

xi 0 1 0 · · · 1 · · ·
...

...
...

...
...

xi 0 1 0 · · · 1 · · ·

In the ith row and jth column is placed 1 if xi ∈ θ(xj) and 0 otherwise.

Formal semantics of programming languages Y. Deng@ECNU 16

Chapter 2. Operational semantics

Formal semantics of programming languages Y. Deng@ECNU 17

2.1 IMP- a simple imperative language

Some syntactic sets in IMP.

• numbers N, consisting of all integer numbers, ranged over by

metavariables n,m

• truth values T={true, false},

• locations Loc, ranged over by X, Y

• arithmetic expressions Aexp, ranged over by a

• boolean expressions Bexp, ranged over by b

• commands Com, ranged over by c

Sometimes we use metavariable which are primed or subscripted, e.g.

X ′, X0 for locations.

Formal semantics of programming languages Y. Deng@ECNU 18

2.1 IMP- a simple imperative language

The syntax of IMPdefined by BNF (Backus-Naur form).

• For Aexp: a ::= n | X | a0 + a1 | a0 − a1 | a0 × a1

• For Bexp: b ::= true | false | a0 = a1 | a0 ≤ a1 | ¬b | b0 ∧ b1 | b0 ∨ b1

• For Com:

c ::= skip | X := a | c0; c1 | if b then c0 else c1 | while b do c

Formal semantics of programming languages Y. Deng@ECNU 19

2.1 IMP- a simple imperative language

The syntax of IMPdefined by BNF (Backus-Naur form).

• For Aexp: a ::= n | X | a0 + a1 | a0 − a1 | a0 × a1

• For Bexp: b ::= true | false | a0 = a1 | a0 ≤ a1 | ¬b | b0 ∧ b1 | b0 ∨ b1

• For Com:

c ::= skip | X := a | c0; c1 | if b then c0 else c1 | while b do c

• From set-theoretic point of view, this notation gives an inductive

definition of the syntactic sets, the least sets closed under the

formation rules.

• Syntactic equivalence ≡. e.g. 3 + 4 6≡ 4 + 3.

Formal semantics of programming languages Y. Deng@ECNU 20

2.2 The evaluation of arithmetic expressions

• The set of states consists of functions σ : Loc → N.

• A configuration is a pair 〈a, σ〉, where a is an arithmetic expression

and σ a state.

• An evaluation relation between pairs and numbers 〈a, σ〉 → n

Formal semantics of programming languages Y. Deng@ECNU 21

2.2 Structural operational semantics

Evaluation of numbers 〈n, σ〉 → n

Evaluation of locations 〈X, σ〉 → σ(X)

Evaluation of sums

〈a0, σ〉 → n0 〈a1, σ〉 → n1 n is the sum of n0 and n1

〈a0 + a1, σ〉 → n

Evaluation of subtractions

〈a0, σ〉 → n0 〈a1, σ〉 → n1 n is the result of subtracting n1 from n0

〈a0 − a1, σ〉 → n

Evaluation of products

〈a0, σ〉 → n0 〈a1, σ〉 → n1 n is the product of n0 and n1

〈a0 × a1, σ〉 → n

Formal semantics of programming languages Y. Deng@ECNU 22

2.2 Derivation tree

〈Init, σ0〉 → 0 〈5, σ0〉 → 5

〈(Init+ 5), σ0〉 → 5

〈7, σ0〉 → 7 〈9, σ0〉 → 9

〈7 + 9, σ0〉 → 16

〈(Init+ 5) + (7 + 9), σ0〉 → 21

Formal semantics of programming languages Y. Deng@ECNU 23

2.2 Equivalence of arithmetic expressions

Two arithmetic expressions are equivalent if they evaluate to the same

value in all states.

a0 ∼ a1 iff ∀σ ∈ Σ ∀n ∈ N. 〈a0, σ〉 → n ⇔ 〈a1, σ〉 → n

Formal semantics of programming languages Y. Deng@ECNU 24

2.3 The evaluation of boolean expressions

〈true, σ〉 → true 〈false, σ〉 → false

〈a0, σ〉 → n 〈a1, σ〉 → n

〈a0 = a1, σ〉 → true

〈a0, σ〉 → n 〈a1, σ〉 → m n 6≡ m

〈a0 = a1, σ〉 → false

〈a0, σ〉 → n 〈a1, σ〉 → m if n is less than or equal to m

〈a0 ≤ a1, σ〉 → true

〈a0, σ〉 → n 〈a1, σ〉 → m if n is not less than or equal to m

〈a0 ≤ a1, σ〉 → false

〈b, σ〉 → true

〈¬b, σ〉 → false

〈b, σ〉 → false

〈¬b, σ〉 → true

〈b0, σ〉 → t0 〈b1, σ〉 → t1 if t is true iff t0 ≡ t1 ≡ true

〈b0 ∧ b1, σ〉 → t

〈b0, σ〉 → t0 〈b1, σ〉 → t1 if t is false iff t0 ≡ t1 ≡ false

〈b0 ∨ b1, σ〉 → t

Formal semantics of programming languages Y. Deng@ECNU 25

2.4 The execution of commands

A (command) configuration is a pair 〈c, σ〉 where c is a command and σ a

state. The execution of commands are defined via relations 〈c, σ〉 → σ′

Notation. Write σ[m/X] for the state satisfying

σ[m/X](Y) =

m if Y = X

σ(Y) if Y 6= X

Formal semantics of programming languages Y. Deng@ECNU 26

2.4 The execution of commands

Atomic commands

〈skip, σ〉 → σ
〈a, σ〉 → m

〈X := a, σ〉 → σ[m/X]

Sequencing
〈c0, σ〉 → σ′′ 〈c1, σ

′′〉 → σ′

〈c0; c1, σ〉 → σ′

Conditionals

〈b, σ〉 → true 〈c0, σ〉 → σ′

〈if b then c0 else c1, σ〉 → σ′

〈b, σ〉 → false 〈c1, σ〉 → σ′

〈if b then c0 else c1, σ〉 → σ′

While-loops

〈b, σ〉 → false

〈while b do c, σ〉 → σ

〈b, σ〉 → true 〈c, σ〉 → σ′′ 〈while b do c, σ′′〉 → σ′

〈while b do c, σ〉 → σ′

Formal semantics of programming languages Y. Deng@ECNU 27

2.4 Big step semantics

To see the semantics just defined is a big step semantics, consider the

following program:

Factorial ≡ Y := 1;

while X > 1 do

{Y := Y ×X ; X := X − 1};

Z := Y

Let σ be a state with σ(X) = 3, what’s the state σ′ such that

〈Factorial, σ〉 → σ′ ? Construct the derivation tree.

Formal semantics of programming languages Y. Deng@ECNU 28

2.4, 2.5 Equivalence of commands

Definition 0.3 c0 ∼ c1 iff ∀σ, σ′ ∈ Σ. 〈c0, σ〉 → σ′ ⇔ 〈c1, σ〉 → σ′

Proposition 0.4 Let w ≡ while b do c with b ∈ Bexp and c ∈ Com.

Then

w ∼ if b then c;w else skip.

Proof: Show that 〈w, σ〉 → σ′ iff 〈if b then c;w else skip, σ〉 → σ′ for all

states σ, σ′. Inspecting the rules with matching conclusions. cf. Page 21. �

Formal semantics of programming languages Y. Deng@ECNU 29

2.6 Small step semantics

For example,

〈a0, σ〉 →1 〈a′0, σ〉

〈a0 + a1, σ〉 →1 〈a′0 + a1, σ〉

〈a1, σ〉 →1 〈a′1, σ〉

〈n+ a1, σ〉 →1 〈n+ a′1, σ〉

〈n+m,σ〉 →1 〈p, σ〉 p is the sume of n and m

〈X := 5;Y := 1, σ〉 →1 〈Y := 1, σ[5/X]〉 →1 σ[5/X][1/Y]

Formal semantics of programming languages Y. Deng@ECNU 30

Chapter 3. Some principles of induction

Formal semantics of programming languages Y. Deng@ECNU 31

3.1 Mathematical induction

The principle of mathematical induction: Let P (n) be a property of the

natural number n. To show P (n) holds for all natural numbers n it is

sufficient to show

• P (n) is true

• If P (m) is true then so is P (m+ 1) for any natural number m.

I.e. (P (0) & (∀m ∈ ω. P (m) ⇒ P (m+ 1))) ⇒ ∀n ∈ ω. P (n) where

• P (0) is the induction basis

• P (m) the induction hypothesis

• (∀m ∈ ω. P (m) ⇒ P (m+ 1)) the induction step.

Formal semantics of programming languages Y. Deng@ECNU 32

3.1 Course-of-values induction

If a property Q’s truth at m+ 1 depends on not just its truth at m but

also its truth at other numbers preceding m as well, we strengthen the

induction hypothesis to be ∀k < m. Q(k). Then

• the basis: ∀k < 0. Q(k) — vacuously true.

• the induction step: ∀m ∈ ω. ((∀k < m. Q(k)) ⇒ (∀k < m+ 1. Q(k)))

— equivalent to ∀m ∈ ω. (∀k < m. Q(k)) ⇒ Q(m)

So as a special form of mathematical induction is course-of-values

induction: (∀m ∈ ω. (∀k < m. Q(k)) ⇒ Q(m)) ⇒ ∀n ∈ ω. Q(n).

Formal semantics of programming languages Y. Deng@ECNU 33

3.2 Structural induction

Let P (a) be a property of arithmetic expression a. To show P (a) holds for

all arithmetic expressions a it is sufficient to show:

• For all numerals m, P (m) holds.

• For all locations X , P (X) holds.

• For all arithmetic expressions a0 and a1, if P (a0) and P (a1) hold then

so does P (a0 + a1).

• Similarly with P (a0 − a1) and P (a0 × a1).

Formal semantics of programming languages Y. Deng@ECNU 34

3.2 Structural induction: an example

Proposition 0.5 For all arithmetic expressions a, states σ and numbers

m,m′, 〈a, σ〉 → m & 〈a, σ〉 → m′ ⇒ m = m′.

Proof: By structural induction on arithmetic expressions a using

induction hypothesis P (a) where

P (a) iff ∀σ,m,m′. (〈a, σ〉 → m & 〈a, σ〉 → m′ ⇒ m = m′)

• a ≡ n: since there is only one rule for evaluating 〈n, σ〉, trivial.

• a ≡ a0 + a1: Again one rule for evaluating 〈a0 + a1, σ〉. So

〈a0, σ〉 → m0 and 〈a1, σ〉 → m1 with m = m0 +m1 and

〈a0, σ〉 → m′
0 and 〈a1, σ〉 → m′

1 with m′ = m′
0 +m′

1. By induction

hypothesis applied to a0, a1 we obtain m0 = m′
0 and m1 = m′

1. Thus

m = m′.

• The remaining cases are similar.

�

Formal semantics of programming languages Y. Deng@ECNU 35

3.3 Well-founded relation

A well-founded relation is a binary relation ≺ on a set A such that there

are no infinite descending chains · · · ≺ ai ≺ · · · ≺ a1 ≺ a0. If a ≺ b then a

is a predecessor of b.

Formal semantics of programming languages Y. Deng@ECNU 36

3.3 Well-founded relation

Proposition 0.6 The relation ≺ on set A is well-founded iff any

nonempty subset Q of A has a minimal element, i.e. an element m with

m ∈ Q & ∀b ≺ m.b 6∈ Q.

Proof: (⇐) Suppose every nonempty subset of A has a minimal element,

but there is an infinite chain · · · ≺ a1 ≺ a0. The set {ai | i ∈ ω} would have

no minimal element, a contradiction.

(⇒) Take any element a0 from Q. Inductively, assume a chain

an ≺ · · · ≺ a0 has been constructed inside Q. If there is b ≺ an with b ∈ Q,

take an+1 = b, otherwise stop the construction. As ≺ is well-founded, the

chain is finite whose least element is minimal in Q. �

Formal semantics of programming languages Y. Deng@ECNU 37

3.3 The principle of well-founded induction

Proposition 0.7 Let ≺ be well founded on set A, and P be a property.

Then ∀a.P (a) iff ∀a ∈ A.((∀b ≺ a. P (b)) ⇒ P (a)).

Proof: (⇒) Trivial.

(⇐) Suppose ∀a ∈ A.((∀b ≺ a. P (b)) ⇒ P (a)) but ¬P (a) for some a ∈ A.

The set {a ∈ A | ¬P (a)} has a minimal element m. Then ∀b ≺ m.P (b) but

¬P (m), contradicting the assumption. �

In mathematics this principle is called Noetherian induction after the

German algebraist Emmy Noether.

Formal semantics of programming languages Y. Deng@ECNU 38

3.3 The principle of well-founded induction

Proposition 0.6 provides an alternative to proofs by well-founded

induction. To show property P holds for every element in a well-founded

set A, it is sufficient to show the subset of counterexamples

{a ∈ A | ¬P (a)} is empty. Suppose it’s nonempty, there is a minimal

element m contradicting the assumption (∀b ≺ m.P (b)) ⇒ P (m).

Formal semantics of programming languages Y. Deng@ECNU 39

3.3 The principle of well-founded induction: an example

Euclid’s algorithm for the greatest common divisor of M,N .

Euclid ≡ while ¬(M = N) do

if M ≤ N then N := N −M else M := M −N

Theorem 0.8 For all states σ,

σ(M) ≥ 1 & σ(N) ≥ 1 ⇒ ∃σ′. 〈Euclid, σ〉 → σ′.

Proof: Let S = {σ ∈ Σ | σ(M) ≥ 1 & σ(N) ≥ 1} and ≺ by

σ′ ≺ σ iff (σ′(M) ≤ σ(M) & σ′(N) ≤ σ(N)) &

¬(σ′(M) = σ(M) & σ′(N) = σ(N)).

Then ≺ is well-founded. Let P (σ) = ∃σ′.〈Euclid, σ〉 → σ′. Suppose

∀σ′ ≺ σ.P (σ′), we show P (σ) with two cases: (i) σ(M) = σ(N), (ii)

σ(M) 6= σ(N). Argue in both cases that 〈Euclid, σ〉 → σ′ for some σ′.

Then conclude ∀σ ∈ S.P (σ) by well-founded induction. �

Formal semantics of programming languages Y. Deng@ECNU 40

3.4 Induction on derivations

A rule instance is a pair X/y with premises X and conclusion y. Usually

we write X/y as
y

if X = ∅, and
x1, · · · , xn

y
if X = {x1, · · · , xn}

Let R be a set of rule instances. An R-derivation of y is either a rule

instance ∅/y or a pair {d1, · · · , dn}/y where {x1, · · · , xn}/y is a rule

instance and di an R-derivation of xi for all 1 ≤ i ≤ n. Write d R y to

mean d is an R-derivation of y.

A derivation d′ is an immediate subderivation of d, written d′ ≺1 d, iff d

has the form D/y with d′ ∈ D. Let ≺ be the transitive closure of ≺1 (≺+
1).

We say d′ is a proper subderivation of d iff d′ ≺ d.

Since derivations are finite, both ≺1 and ≺ are well-founded.

Formal semantics of programming languages Y. Deng@ECNU 41

3.4 Induction on derivations

Theorem 0.9 Let c be a command and σ0 a state. If 〈c, σ0〉 → σ and

〈c, σ0〉 → σ′, then σ = σ1.

Proof: By well-founded induction on the proper subderivation relation ≺.

For any derivation d, let P (d) be the following property

∀c ∈ Com, σ0, σ, σ1 ∈ Σ. d 〈c, σ0〉 → σ & 〈c, σ0〉 → σ1 ⇒ σ = σ1.

Show that ∀d′ ≺ d.P (d′) implies P (d) by inspecting the structure of c. cf.

Page 37. �

Formal semantics of programming languages Y. Deng@ECNU 42

3.4 Induction on derivations

Proposition 0.10 ∀c ∈ Com, σ, σ′ ∈ Σ. 〈while true do c, σ〉 6→ σ′.

Proof: Abbreviate w ≡ while true do c. Suppose the set

{d | ∃σ, σ′ ∈ Σ. d 〈w, σ〉 → σ′} is nonempty. By Proposition 0.6 there is

a minimal derivation d in the form
...

〈true, σ〉 → true

...

〈c, σ〉 → σ′′

...

〈w, σ′′〉 → σ′

〈w, σ〉 → σ′

But this contains a proper subderivation d′ 〈w, σ′′〉 → σ′, contradicting

the minimality of d. �

Formal semantics of programming languages Y. Deng@ECNU 43

3.5 Definition by induction

Definition by well-founded induction, also called well-founded recursion,

e.g.

size(a) =

1 if a ≡ n or X

1 + size(a0) + size(a1) if a = a0 + a1,
...

Formal semantics of programming languages Y. Deng@ECNU 44

Chapter 4. Inductive definitions

Formal semantics of programming languages Y. Deng@ECNU 45

4.1 Rule induction

Viewed abstractly, instances of rules have the form ∅/y or {x1, · · · , xn}/y.

Let R be a set of rule instances, let IR be the set of all elements with a

R-derivation, i.e. IR = {x | R x}.

The general principle of rule induction:

Let IR be defined by rule instances R and P a property. Then

∀y ∈ IR. P (y) iff for all rule instances X/y in R for which X ⊆ IR,

(∀x ∈ X. P (x)) ⇒ P (y).

Formal semantics of programming languages Y. Deng@ECNU 46

4.1 Rule induction

The general principle of rule induction says: for rule instances R we have

∀y ∈ IR. P (y) iff

• for all instances of axioms
y

, P (y) is true, and

• for all rule instances
x1, · · · , xn

y
, if ∀1 ≤ i ≤ n. xi ∈ IR & P (xi) then

P (y) is true.

Formal semantics of programming languages Y. Deng@ECNU 47

4.1 R-closure

A set Q is closed under rule instances R, or R-closed, iff for all rule

instances X/y, we have X ⊆ Q ⇒ y ∈ Q.

Proposition 0.11 With respect rule instances R,

1. IR is R-closed.

2. If Q is an R-closed set, then IR ⊆ Q.

Proof: 1. By definition, if {x1, · · · , xn}/y is a rule instance, then each xi

has derivation di. Combining these di with the rule instance gives a

derivation of y.

2. Each element in IR has a derivation. So we do an induction on the

subderivation relation ≺ to show ∀y ∈ IR. d R y ⇒ y ∈ Q for all

R-derivations d.

�

Formal semantics of programming languages Y. Deng@ECNU 48

4.1 Rule induction

Let P be a property. To show P is true of all elements of IR, define the set

Q = {x ∈ IR | P (x)}, and Proposition 0.11 says it’s sufficient to show Q is

R-closed, i.e. for all rule instances X/y,

(∀x ∈ X. x ∈ IR & P (x)) ⇒ P (y).

Formal semantics of programming languages Y. Deng@ECNU 49

4.2 Special rule induction

Consider the rule for commands
X : Loc a : Aexp

X := a : Com

In general a rule instance may not be homogeneous, then it’s awkward to

directly use rule induction.

The special principle of rule induction:

Let IR be defined by rule instances R and A ⊆ IR. Let Q be a property.

Then ∀a ∈ A. Q(a) iff for all rule instances X/y with X ⊆ IR and y ∈ A,

(∀x ∈ X ∩A. Q(x)) ⇒ Q(y).

Formal semantics of programming languages Y. Deng@ECNU 50

4.2 Special vs. general rule induction

The special principle follows from the general one.

Let Q(x) be a property we are interested in showing is true of all elements

of A. Define property P (x) by

P (x) ⇔ (x ∈ A ⇒ Q(x)). Then (∀x ∈ A. Q(x)) ⇔ (∀x ∈ IR. P (x)).

The general principle says for all rule instance X/y in R,

(∀x ∈ X. x ∈ IR & P (x)) ⇒ P (y)

⇔ (∀x ∈ X. x ∈ IR & (x ∈ A ⇒ Q(x))) ⇒ (y ∈ A ⇒ Q(y))

⇔ ((∀x ∈ X. x ∈ IR) & (∀x ∈ X. (x ∈ A ⇒ Q(x))) & y ∈ A) ⇒ Q(y)

⇔ X ⊆ IR & y ∈ A & (∀x ∈ X. (x ∈ A ⇒ Q(x))) ⇒ Q(y)

⇔ X ⊆ IR & y ∈ A & (∀x ∈ X ∩A. Q(x)) ⇒ Q(y)

Formal semantics of programming languages Y. Deng@ECNU 51

4.3 Rule induction for arithmetic expressions

∀a ∈ Aexp, σ ∈ Σ, n ∈ N. 〈a, σ〉 → n ⇒ P (a, σ, n)

iff

(∀n ∈ N, σ ∈ Σ. P (n, σ, n)

&

∀X ∈ Loc, σ ∈ Σ. P (X, σ, σ(X))

&

∀a0, a1 ∈ Aexp, σ ∈ Σ, n0, n1 ∈ N.

〈a0, σ〉 → n0 & P (a0, σ, n0) & 〈a1, σ〉 → n1 & P (a1, σ, n1)

⇒ P (a0 + a1, σ, n0 + n1)

&

· · ·)

Formal semantics of programming languages Y. Deng@ECNU 52

4.3 Rule induction for boolean expressions

∀b ∈ Bexp, σ ∈ Σ, t ∈ T. 〈b, σ〉 → t ⇒ P (b, σ, t)

iff

(∀σ ∈ Σ. P (false, σ, false) & ∀σ ∈ Σ. P (false, σ, false)

&

∀a0, a1 ∈ Aexp, σ ∈ Σ,m, n ∈ N.

〈a0, σ〉 → m & 〈a1, σ〉 → n & m = n ⇒ P (a0 = a1, σ, true)

&

∀b0, b1 ∈ Bexp, σ ∈ Σ, t0, t1 ∈ T.

〈b0, σ〉 → t0 & P (b0, σ, t0) & 〈b1, σ〉 → t1 & P (b1, σ, t1)

⇒ P (b0 ∧ b1, σ, t0 ∧ t1)

&

· · ·)

Formal semantics of programming languages Y. Deng@ECNU 53

4.3 Rule induction for commands

∀c ∈ Com, σ, σ′ ∈ Σ. 〈c, σ〉 → σ′ ⇒ P (c, σ, σ′)

iff

(∀σ ∈ Σ. P (skip, σ, σ) &

· · ·

&

∀c ∈ Com, b ∈ Bexp, σ ∈ Σ.

〈b, σ〉 → false ⇒ P (while b do c, σ, σ)

&

∀c ∈ Com, b ∈ Bexp, σ, σ′, σ′′ ∈ Σ.

〈b, σ〉 → true & 〈c, σ〉 → σ′′ & P (c, σ, σ′′) &

〈while b do c, σ′′〉 → σ′ & P (while b do c, σ′′, σ′)

⇒ P (while b do c, σ, σ′))

Formal semantics of programming languages Y. Deng@ECNU 54

4.3 Rule induction for commands: an example

Proposition 0.12 Let Y ∈ Loc. For all commands c and states σ, σ′,

(Y 6∈ locL(c) & 〈c, σ〉 → σ′) ⇒ σ(Y) = σ′(Y).

Proof: Let P be the property given by:

P (c, σ, σ′) ⇔ (Y 6∈ locL(c) ⇒ σ(Y) = σ′(Y)). Then use rule induction on

commands to show that

∀c ∈ Com, σ, σ′ ∈ Σ. 〈c, σ〉 → σ′ ⇒ P (c, σ, σ′). �

Formal semantics of programming languages Y. Deng@ECNU 55

4.4 Operators and their least fixed points

A set of rule instances R determines an operator R̂ on sets by

R̂(B) = {y | ∃X ⊆ B. (X/y) ∈ R}.

Proposition 0.13 1. A set B is closed under R iff R̂(B) ⊆ B

2. R̂ is monotonic.

Proof: Directly from definitions. �

Formal semantics of programming languages Y. Deng@ECNU 56

4.4 Operators and their least fixed points

Let A0 = ∅, An+1 = R̂n+1(∅), A =
⋃

n∈ω An.

Proposition 0.14 1. A is R-closed

2. R̂(A) = A

3. A is the least R-closed set.

Proof:

1. Suppose (X/y) ∈ R with X ⊆ A. As X is a finite set, say {x1, · · · , xk},

with X ⊆ A, then ∀1 ≤ i ≤ k. xi ∈ Ani
. Take n bigger than all ni, we

have ∀1 ≤ i ≤ k. xi ∈ An, i.e. X ⊆ An. Then y ∈ R̂(An) ⊆ A.

Formal semantics of programming languages Y. Deng@ECNU 57

4.4 Operators and their least fixed points

2 It’s easy to see that A is R-closed, thus R̂(A) ⊆ A. For the converse,

let y ∈ A. Then y ∈ An for some n > 0. Thus y ∈ R̂(An−1). So there

is some (X/y) ∈ R with X ⊆ An−1 ⊆ A, giving y ∈ R̂(A). Thus

A ⊆ R̂(A).

3 Suppose B is R-closed, then R̂(B) ⊆ B. Show by mathematical

induction that ∀n ∈ ω. An ⊆ B. For the induction step, assume

An ⊆ B. Then

An+1 = R̂(An) ⊆ R̂(B) ⊆ B. Thus, A ⊆ B. �

Formal semantics of programming languages Y. Deng@ECNU 58

4.4 Operators and their least fixed points

• It’s essential in Proposition 0.14 that all rule instances are finitary, i.e.

all premises X are finite sets.

• Parts 1 and 3 of Proposition 0.14 say A = IR.

• Parts 2 and 3 of Proposition 0.14 say IR is the least fixed point of R̂.

Formal semantics of programming languages Y. Deng@ECNU 59

The lambda calculus

Formal semantics of programming languages Y. Deng@ECNU 60

Computability

A question in the 1930’s: what does it mean for a function f : N → N to be

computable?

Informally, there should be a pencil-and-paper method allowing a trained

person to calculate f(n), for any given n.

• Turing defined a Turing machines and postulated that a function is

computable if and only if it can be computed by such a machine.

• Gödel defined the class of general recursive functions and postulated

that a function is computable if and only if it is general recursive.

• Church defined the lambda calculus and postulated that a function is

computable if and only if it can be written as a lambda term.

Church, Kleene, Rosser, and Turing proved that all three computational

models were equivalent to each other.

Formal semantics of programming languages Y. Deng@ECNU 61

The untyped lambda calculus

Def. Assume an infinite set V of variables, denoted by x, y, z.... The set of

lambda terms are defined by the Backus-Naur Form:

M,N ::= x | (MN) | (λx.M)

Alternatively, the set of lambda terms is the smallest set Λ satisfying:

• whenever x ∈ V then x ∈ Λ (variables)

• whenever M,N ∈ Λ then (MN) ∈ Λ (applications)

• whenever x ∈ V and M ∈ Λ then (λx.M) ∈ Λ (lambda abstractions)

E.g. (λx.x) ((λx.(xx))(λy.(yy))) (λf.(λx.(f(fx))))

Formal semantics of programming languages Y. Deng@ECNU 62

Convention

• Omit outermost parentheses. E.g., write MN instead of (MN).

• Applications associate to the left, i.e. MNP means (MN)P .

• The body of a lambda abstraction (the part after the dot) extends as

far to the right as possible. E.g, λx.MN means λx.(MN), and not

(λx.M)N .

• Multiple lambda abstractions can be contracted; E.g., write λxyz.M

for λx.λy.λz.M .

Formal semantics of programming languages Y. Deng@ECNU 63

Free and bound variables

An occurrence of a variable x inside λx.N is said to be bound. The

corresponding λx is called a binder, and the subterm N is the scope of the

binder. A variable occurrence that is not bound is free.

E.g. in M ≡ (λx.xy)(λy.yz), x is bound, z is free, variable y has both a

free and a bound occurrence.

The set of free variables of term M is FV (M):

FV (x) = {x}

FV (MN) = FV (M) ∪ FV (N)

FV (λx.M) = FV (M)\{x}

Formal semantics of programming languages Y. Deng@ECNU 64

Renaming

Write M{y/x} for the renaming of x as y in M .

x{y/x} ≡ y

z{y/x} ≡ z, if x 6= z

(MN){y/x} ≡ (M{y/x})(N{y/x})

(λx.M){y/x} ≡ λy.(M{y/x})

(λz.M){y/x} ≡ λz.(M{y/x}), if x 6= z

Formal semantics of programming languages Y. Deng@ECNU 65

α-equivalence

M = M

M = M ′ N = N ′

MN = M ′N ′

M = N

N = M

M = M ′

λx.M = λx.M ′

M = N N = P

M = P

y 6∈ M

λx.M = λy.M{y/x}

Formal semantics of programming languages Y. Deng@ECNU 66

Substitution

The capture-avoiding substitution of N for free occurrences of x in M , in

symbols M [N/x] is defined below:

x[N/x] ≡ N

y[N/x] ≡ y, if x 6= y

(MP)[N/x] ≡ (M [N/x])(P [N/x])

(λx.M)[N/x] ≡ λx.M

(λy.M)[N/x] ≡ λy.(M [N/x]), if x 6= y and y 6∈ FV (N)

(λy.M)[N/x] ≡ λy′.(M{y′/y}[N/x]), if x 6= y, y ∈ FV (N), and y′ fresh.

Formal semantics of programming languages Y. Deng@ECNU 67

β-reduction

Convention: we identify lambda terms up to α-equivalence.

A term of the form (λx.M)N is β-redex. It reduces to M [N/x] (the

reduct).

A lambda term without β-redex is in β-normal form.

(λx.y)((λz.zz)(λw.w)) −→β (λx.y)((λw.w)(λw.w))

−→β (λx.y)(λw.w)

−→β y

(λx.y)((λz.zz)(λw.w)) −→β y

Formal semantics of programming languages Y. Deng@ECNU 68

Observation

• reducing a redex can create new redexes,

• reducing a redex can delete some other redexes,

• the number of steps that it takes to reach a normal form can vary,

depending on the order in which the redexes are reduced.

Formal semantics of programming languages Y. Deng@ECNU 69

Evaluation

Write ։β for −→∗
β , the reflexive transitive closure of −→β . If M ։β M ′

and M ′ is in normal form, then we say M evaluates to M ′.

Not every term has a normal form.

(λx.x)(λy.yyy) −→β (λy.yyy)(λy.yyy)

−→β (λy.yyy)(λy.yyy)(λy.yyy)

−→β . . .

Formal semantics of programming languages Y. Deng@ECNU 70

Formal definition of β-reduction

The single-step β-reduction is the smallest relation −→β satisfying:

(λx.M)N −→β M [N/x]

M −→β M ′

MN −→β M ′N

N −→β N ′

MN −→β MN ′

M −→β M ′

λx.M −→β λx.M ′

Write M =β M ′ if M can be transformed into M ′ by zero or more

reductions steps and/or inverse reduction steps. Formally, =β is the

reflexive symmetric transitive closure of −→β .

Formal semantics of programming languages Y. Deng@ECNU 71

Programming in the untyped lambda calculus

Booleans: let T = λxy.x and F = λxy.y.

Let and = λab.abF. Then

and TT ։β T

and TF ։β F

and FT ։β F

and FF ։β F

The above encoding is not unique. The “and” function can also be

encoded as λab.bab.

Formal semantics of programming languages Y. Deng@ECNU 72

Other boolean functions

not = λa.aFT

or = λab.aTb

xor = λab.a(bFT)b

if-then-else = λx.x

if-then-else TMN ։β M

if-then-else FMN ։β N

Formal semantics of programming languages Y. Deng@ECNU 73

Natural numbers

Write fnx for the term f(f(. . . (fx) . . .)), where f occurs n times. The bth

Church numeral n̄ = λfx.fnx.

0̄ = λfx.x

1̄ = λfx.fx

2̄ = λfx.f(fx)

. . .

Formal semantics of programming languages Y. Deng@ECNU 74

The successor function

Let succ = λnfx.f(nfx).

succ n̄ = (λnfx.f(nfx))(λfx.fnx)

−→β λfx.f((λfx.fnx)fx)

։β λfx.f(fnx)

= λfx.fn+1x

= n+ 1

Formal semantics of programming languages Y. Deng@ECNU 75

Addition and mulplication

Let add = λnmfx.nf(mfx) and mult = λnmf.n(mf)

Exercises: show that

add n̄m̄ ։β n+m

mult n̄m̄ ։β n ·m

Exercise: Let iszero = λnxy.n(λz.y)x and verify iszero(0) = true and

iszero(n+ 1) = false.

Formal semantics of programming languages Y. Deng@ECNU 76

Fixed points and recursive functions

Thm. In the untyped lambda calculus, every term F has a fixed point.

Proof. Let Θ = AA where A = λxy.y(xxy).

ΘF = AAF

= (λxy.y(xxy))AF

։β F (AAF)

= F (ΘF)

Thus ΘF is a fixed point of F .

The term Θ is called Turing’s fixed point combinator.

Formal semantics of programming languages Y. Deng@ECNU 77

The factorial function

fact n = if-then-else (iszero n)(1̄)(mult n(fact (pred n)))

fact = λn.if-then-else (iszero n)(1̄)(mult n(fact (pred n)))

fact = (λf.λn.if-then-else (iszero n)(1̄)(mult n(f(pred n)))fact

fact = Θ(λf.λn.if-then-else (iszero n)(1̄)(mult n(f(pred n)))

Formal semantics of programming languages Y. Deng@ECNU 78

Other data types: pairs

Define 〈M,N〉 = λz.zMN . Let π1 = λp.p(λxy.x) and π2 = λp.p(λxy.y).

Observe that

π1〈M,N〉 ։β M

π2〈M,N〉 ։β N

Formal semantics of programming languages Y. Deng@ECNU 79

Tuples

Define 〈M1, ...,Mn〉 = λz.zM1...Mn and the ith projection

πn
1 = λp.p(λx1...xn.xi). Then

πn
i 〈M1, ...,Mn〉 ։β Mi

for all 1 ≤ i ≤ n.

Formal semantics of programming languages Y. Deng@ECNU 80

Lists

Define nil = λxy.y and H :: T = λxy.xHT . Then the function of adding a

list of numbers can be:

addlist l = l(λht.add h(addlist t))(0̄)

Formal semantics of programming languages Y. Deng@ECNU 81

Trees

A binary tree can be either a leaf, labeled by a natural number, or a node

with two subtrees. Write leaf(n) for a leaf labeled n, and node(L,R) for a

node with left subtree L and right subtree R.

leaf(n) = λxy.xn

node(L,R) = λxy.yLR

A program that adds all the numbers at the leaves of a tree:

addtree t = t(λn.n)(λlr.add (addtree l)(addtree r))

Formal semantics of programming languages Y. Deng@ECNU 82

η-reduction

λx.Mx −→η M, where x 6∈ FV (M).

Define the single-step βη-reduction −→βη=−→β ∪ −→η and the multi-step

βη-reduction ։βη.

Formal semantics of programming languages Y. Deng@ECNU 83

Church-Rosser Theorem

Thm. (Church and Rosser, 1936). Let ։ denote either ։β or ։βη.

Suppose M , N and P are lambda terms such that M ։ N and M ։ P .

Then there exists a lambda term Z such that N ։ Z and P ։ Z.

This is the Church-Rosser property or confluence.

See Section 4.4 of the λ-calculus lecture notes for the detailed proof.

Formal semantics of programming languages Y. Deng@ECNU 84

Some consequences of confluence

Cor. If M =β N then there exists some Z with M,N ։β Z. Similarly for

βη.

Cor. If N is a β-normal form and M =β N , then M ։β N , and similarly

for βη.

Cor. If M and N are β-normal forms such that M =β N , then M =α N ,

and similarly for βη.

Cor. If M =β N , then neither or both have a β-normal form, and

similarly for βη.

Formal semantics of programming languages Y. Deng@ECNU 85

Simply-typed lambda calculus

Simple types: assume a set of basic types, ranged over by ι. The set of

simple types is given by

A,B ::= ι | A −→ B | A×B | 1

• A −→ B is the type of functions from A to B.

• A×B is the type of pairs 〈x, y〉

• 1 is a one-element type, considered as “void” or “unit” type in many

languages: the result type of a function with no real result.

Convention: × binds stronger than −→ and −→ associates to the right.

E.g. A×B −→ C is (A×B) −→ C, and A −→ B −→ C is A −→ (B −→ C).

Formal semantics of programming languages Y. Deng@ECNU 86

Raw typed lambda terms

M,N ::= x | MN | λxA.M | 〈M,N〉 | π1M | π2M | ∗

Formal semantics of programming languages Y. Deng@ECNU 87

Typing judgment

Write M : A to mean “M is of type A”. A typing judgment is an

expression of the form

x1 : A1, x2 : A2, ..., xn : An ⊢ M : A

The meaning is: under the assumption that xi is of type Ai, for i = 1...n,

the term M is a well-typed term of type A. The free variables of M must

be contained in x1, ..., xn

The sequence of assumptions x1 : A1, x2 : A2, ..., xn : An is a typing

context, written as Γ. The notations Γ,Γ′ and Γ, x : A denote the

concatenation of typing contexts, assuming the sets of variables are

disjoint.

Formal semantics of programming languages Y. Deng@ECNU 88

Typing rules

Γ, x : A ⊢ x : A

Γ ⊢ M : A −→ B Γ ⊢ N : A

Γ ⊢ MN : B

Γ ⊢ M : A×B

Γ ⊢ π1M : A

Γ, x : A ⊢ M : B

λxA.M : A −→ B

Γ ⊢ M : A×B

Γ ⊢ π2M : B

Γ ⊢ M : A Γ ⊢ N : B

Γ ⊢ 〈M,N〉 : A×B Γ ⊢ ∗ : 1

Formal semantics of programming languages Y. Deng@ECNU 89

Typing derivation

x : A → A, y : A ⊢ x : A → A

x : A → A, y : A ⊢ x : A → A x : A → A, y : A ⊢ y : A

x : A → A, y : A ⊢ xy : A

x : A → A, y : A ⊢ x(xy) : A

x : A → A ⊢ λy
A

.x(xy) : A → A

⊢ λx
A→A

.λy
A

.x(xy) : (A → A) → A → A

Formal semantics of programming languages Y. Deng@ECNU 90

Reductions in the simply-typed lambda calculus

β- and η-reductions:

(λxA.M)N −→β M [N/x]

π1〈M,N〉 −→β M

π2〈M,N〉 −→β N

λxA.Mx −→η M

〈π1M,π2M〉 −→η M

M −→η ∗, if M : 1

Formal semantics of programming languages Y. Deng@ECNU 91

Subject reduction

Thm. If Γ ⊢ M : A and M −→βη M ′, then Γ ⊢ M ′ : A.

Proof: By induction on the derivation of M −→βη M ′, and by case

distinction on the last rule used in the derivation of Γ ⊢ M : A. �

Formal semantics of programming languages Y. Deng@ECNU 92

Church-Rosser

The Church-Rosser theorem does not hold for βη-reduction in the

simply-typed λ→,×,1-calculus.

E.g. if x has type A× 1, then

〈π1x, π2x〉 −→η x

〈π1x, π2x〉 −→η 〈π1x, ∗〉

Both x and 〈π1x, ∗〉 are normal forms.

If we omit all the η-reductions and consider only β-reductions, then the

Church-Rosser property does hold.

Formal semantics of programming languages Y. Deng@ECNU 93

Sum types

Simple types:

A,B ::= ... | A+B | 0

Sum type is also known as “union” or “variant” type. The type 0 is the

empty type, corresponding to the empty set in set theory.

Raw terms:

M,N,P ::= ... | in1M | in2M

| case M of xA ⇒ N | yB ⇒ P

| �AM

Formal semantics of programming languages Y. Deng@ECNU 94

Typing rules for sums

Γ ⊢ M : A

Γ ⊢ in1M : A+B

Γ ⊢ M : B

Γ ⊢ in2M : A+B

Γ ⊢ M : A+B Γ, x : A ⊢ N : C Γ, y : B ⊢ P : C

Γ ⊢ (case M of xA ⇒ N |yB ⇒ P) : C

Γ ⊢ M : 0

Γ ⊢ �AM : A

The booleans can be defined as 1 + 1 with T = in1∗, F = in2∗, and

if-then-else MNP = case M of x1 ⇒ N | y1 ⇒ P , where x and y don’t

occur in N and P . The term �AM is a simple type cast.

Formal semantics of programming languages Y. Deng@ECNU 95

Weak and strong normalization

Def. A term M is weakly normalizing if there exists a finite sequence of

reductions M → M1 → ... → Mn such that Mn is a normal form. It is

strongly normalizing if there does not exist an infinite sequence of

reductions starting from M , i.e., if every sequence of reductions starting

from M is finite.

• Ω = (λx.xx)(λx.xx) is neither weakly nor strongly normalizing.

• (λx.y)Ω is weakly normalizing, but not strongly normalizing.

• (λx.y)((λx.x)(λx.x)) is strongly normalizing.

• Every normal form is strongly normalizing.

Formal semantics of programming languages Y. Deng@ECNU 96

Strong normalization

Thm. In the simply-typed lambda calculus, all terms are strongly

normalizing.

A proof is given in the following book: J.-Y.Girard, Y.Lafont, and

P.Taylor. Proofs and Types. Cambridge University Press, 1989.

Formal semantics of programming languages Y. Deng@ECNU 97

Chapter 5. The denotational semantics of IMP

Formal semantics of programming languages Y. Deng@ECNU 98

5.1 Motivation

• Operational semantics is too concrete, built out of syntax, is hard to

compare two programs written in different programming languages.

• E.g. c0 ∼ c1 iff (∀σ, σ′. 〈c0, σ〉 → σ′) ⇔ 〈c1, σ〉 → σ′ iff

{(σ, σ′) | 〈c0, σ〉 → σ′} = {(σ, σ′) | 〈c1, σ〉 → σ′}, i.e. c0 and c1

determine the same partial function on states.

• So we take the denotation of a command to be a partial function on

states.

Formal semantics of programming languages Y. Deng@ECNU 99

5.2 Denotations of Aexp

Define the semantic function A : Aexp → (Σ → N)

A[[n]] = {(σ, n) | σ ∈ Σ}

A[[X]] = {(σ, σ(X)) | σ ∈ Σ}

A[[a0 + a1]] = {(σ, n0 + n1) | (σ, n0) ∈ A[[a0]] & (σ, n1) ∈ A[[a1]]}

A[[a0 − a1]] = {(σ, n0 − n1) | (σ, n0) ∈ A[[a0]] & (σ, n1) ∈ A[[a1]]}

A[[a0 × a1]] = {(σ, n0 × n1) | (σ, n0) ∈ A[[a0]] & (σ, n1) ∈ A[[a1]]}

The “+” on the left-hand side represents syntactic sign in IMP whereas

the sign on the right represents sum on numbers. Similarly for “-”, “×”.

Formal semantics of programming languages Y. Deng@ECNU 100

5.2 Denotations of Aexp

The denotation of arithmetic expressions are actually total functions.

Using λ-notation,

A[[n]] = λσ ∈ Σ. n

A[[X]] = λσ ∈ Σ. σ(X)

A[[a0 + a1]] = λσ ∈ Σ. (A[[a0]]σ +A[[a1]]σ)

A[[a0 − a1]] = λσ ∈ Σ. (A[[a0]]σ −A[[a1]]σ)

A[[a0 × a1]] = λσ ∈ Σ. (A[[a0]]σ ×A[[a1]]σ)

Formal semantics of programming languages Y. Deng@ECNU 101

5.2 Denotations of Bexp

Define the semantic function B : Bexp → (Σ → T)

B[[true]] = {(σ, true) | σ ∈ Σ}

B[[false]] = {(σ, false) | σ ∈ Σ}

B[[a0 = a1]] = {(σ, true) | σ ∈ Σ & A[[a0]]σ = A[[a1]]σ}∪

{(σ, false) | σ ∈ Σ & A[[a0]]σ 6= A[[a1]]σ}∪

B[[¬b]] = {(σ,¬T t) | σ ∈ Σ & (σ, t) ∈ B[[b]]}

B[[b0 ∧ b1]] = {(σ, t0 ∧T t1) | σ ∈ Σ & (σ, t0) ∈ B[[b0]] & (σ, t1) ∈ B[[b1]]}

· · ·

The sign “∧T ” is the conjunction operation on truth values.

Formal semantics of programming languages Y. Deng@ECNU 102

5.2 Denotations of Com

Define the compositional semantic function C : Aexp → (Σ → Σ)

C[[skip]] = {(σ, σ) | σ ∈ Σ}

C[[X := a]] = {(σ, σ[n/X]) | σ ∈ Σ & n = A[[a]]σ}

C[[c0; c1]] = C[[c1]] ◦ C[[c0]]

C[[if b then c0 else c1]] = {(σ, σ′) | B[[b]]σ = true & (σ, σ′) ∈ C[[c0]]} ∪

{(σ, σ′) | B[[b]]σ = false & (σ, σ′) ∈ C[[c1]]}

C[[while b do c]] = fix(Γ)

where

Γ(ϕ) = {(σ, σ′) | B[[b]]σ = true & (σ, σ′) ∈ ϕ ◦ C[[c]]} ∪

{(σ, σ) | B[[b]]σ = false}

Formal semantics of programming languages Y. Deng@ECNU 103

5.2 Denotation of while -loops

Let w ≡ while b do c. Inspired by the equivalence

w ∼ if b then c;w else skip. We should have

C[[w]] = {(σ, σ′) | B[[b]]σ = true & (σ, σ′) ∈ C[[c;w]]} ∪

{(σ, σ) | B[[b]]σ = false}

We want a fixed point of Γ to be the denotation of w. But Γ is the

operator R̂ on sets where R is

R = {
(σ′′, σ′)

(σ, σ′)
| B[[b]]σ = true & (σ, σ′′) ∈ C[[c]]} ∪

{
(σ, σ)

| B[[b]]σ = false}.

Formal semantics of programming languages Y. Deng@ECNU 104

5.3 Equivalence of the semantics

Lemma 0.15 For all a ∈ Aexp, A[[a]] = {(σ, n) | 〈a, σ〉 → n}.

Proof: Define the property P by P (a) =def A[[a]] = {(σ, n) | 〈a, σ〉 → n}

and proceed by structural induction on arithmetic expressions. cf. Page

61. �

Lemma 0.16 For all b ∈ Bexp, B[[b]] = {(σ, t) | 〈b, σ〉 → t}.

Proof: Similar to the proof of Lemma 0.15. cf. Page 62. �

Formal semantics of programming languages Y. Deng@ECNU 105

5.3 Equivalence of the semantics

Lemma 0.17 For all commands c and states σ, σ′,

〈c, σ〉 → σ′ ⇒ (σ, σ′) ∈ C[[c]].

Proof: Let P (c, σ, σ′) =def (σ, σ′) ∈ C[[c]]. Use rule induction for

commands given in Section 4.3.3. cf. Page 64. �

Formal semantics of programming languages Y. Deng@ECNU 106

5.3 Equivalence of the semantics

Theorem 0.18 For all commands c, C[[c]] = {(σ, σ′) | 〈c, σ〉 → σ′}.

Proof: Restate the theorem as: for all commands c,

(σ, σ′) ∈ C[[c]] ⇔ 〈c, σ〉 → σ′.

(⇐): Shown in Lemma 0.17.

(⇒): By structural induction on commands c. In the case

c ≡ while b do c0, show by mathematical induction on n that

∀σ, σ′ ∈ Σ. (σ, σ′) ∈ Γn(∅) ⇒ 〈c, σ〉 → σ′. The base base Γ0(∅) = ∅ is

trivial. For the induction step, assume (σ, σ′) ∈ Γn+1(∅). Then (i) either

B[[b]]σ = true and (σ, σ′′) ∈ C[[c0]], (σ
′′, σ′) ∈ Γn(∅) for some σ′′, (ii) or

B[[b]]σ = false and σ′ = σ. For (i), 〈b, σ〉 → true by Lemma 0.16,

〈c0, σ〉 → σ′′ by structural induction hypothesis, and 〈c, σ′′〉 → σ′ by

mathematical induction hypothesis. So 〈c, σ〉 → σ′. For (ii), 〈b, σ〉 → false

by Lemma 0.16, so 〈c, σ〉 → σ.

�

Formal semantics of programming languages Y. Deng@ECNU 107

5.4 Complete partial orders

A partial order (p.o.) is a set with a binary relation ⊑ which is reflexive,

antisymmetric, transitive.

For a partial order (P,⊑) and subset X ⊆ P , say p is an upper bound of X

iff ∀q ∈ X. q ⊑ p. Say p is a least upper bound (lub) of X iff p is an upper

bound and for all upper bounds q of X , p ⊑ q. Write
⊔
X as the lub of X .

An ω-chain of the partial order is an increasing chain d0 ⊑ d1 ⊑ · · ·. The

partial order is a complete partial order (cpo) if it has lubs for all ω-chains.

(P,⊑) is a cpo with bottom if it’s a cpo with a least element ⊥.

Formal semantics of programming languages Y. Deng@ECNU 108

5.4 Complete partial orders: examples

• Any set ordered by the identity relation forms a discrete or flat cpo

without bottom.

• A powerset Pow(X) of any set X , ordered by ⊆ or ⊇ forms a cpo as

indeed does any complete lattice.

• The two element cpo ⊥ ⊑ ⊤ is called O. Such an order arises as the

powerset of a singleton ordered by ⊆.

• The set of partial functions X ⇀ Y ordered by inclusion, between sets

X, Y , is a cpo.

• Extending the set of natural numbers ω by ∞ and then in a chain

0 ⊑ 1 ⊑ · · · ⊑ n ⊑ · · ·∞

yields a cpo, called Ω.

Formal semantics of programming languages Y. Deng@ECNU 109

5.4 An alternative definition of CPO

If (P,⊑) is a partial order, then a subset X ⊆ P is directed if every finite

X0 ⊆ X has an upper bound in X .

• Every directed set is nonempty, since the empty subset of a directed

set X must have an upper bound in X .

• If X ⊆ P is linearly ordered, i.e. x ⊑ y or y ⊑ x for all x, y ∈ X , then

X is directed.

• Consider the partial order (P,⊑) with P = {a0, b0, a1, b1, ...},

ai ⊑ aj , bj and bi ⊑ aj , bj for all i < j. A directed set is P .

A cpo is a partial order (P,⊑) s.t. every directed subset of P has a least

upper bound.

The two definitions of cpo are equivalent. A general proof involves the

axiom of choice, but for countable cpo’s the proof is much simpler.

Formal semantics of programming languages Y. Deng@ECNU 110

5.4 Continuous functions

A function f : D → E between cpos D,E is monotonic iff

∀d, d′ ∈ D. d ⊑ d′ ⇒ f(d) ⊑ f(d′).

It’s continuous iff for all ω-chains

f(
⊔

n∈ω dn) =
⊔

n∈ω f(dn).

Proposition 0.19 The identity function IdD on a cpo D is continuous.

Let f : D → E and g : E → F be continuous functions on cpo’s D,E, F .

Then their composition g ◦ f : D → F is continuous.

Formal semantics of programming languages Y. Deng@ECNU 111

5.4 Continuous functions: examples

The parallel-or function por : T⊥ ×T⊥ → T⊥ given by

por(x, y) =

true if x = true or y = true

false if x = y = false

⊥ otherwise

is continuous.

Formal semantics of programming languages Y. Deng@ECNU 112

5.4 Continuous functions: examples

A solution to the “halting problem” would be a definable function

total? : (N⊥ → N⊥) → T⊥ with the property that for every f : N⊥ → N⊥,

total?(f) =

true if ∀n 6= ⊥N. f(n) 6= ⊥N

false otherwise

There is no (PCF) expression defining total? because this function is not

continuous. In fact it is not even monotonic.

Formal semantics of programming languages Y. Deng@ECNU 113

5.4 Fixed point theorem

Let f : D → D be a function. A fixed point of f is an element d with

f(d) = d. A prefixed point of f is an element d with f(d) ⊑ d.

Proposition 0.20 Let f : D → D be a continuous function on a cpo with

bottom D. Define fix(f) =
⊔

n∈ω fn(⊥). Then fix(f) is the fixed point of

f and the least prefixed point f .

Proof: • f(
⊔

n∈ω fn(⊥)) =
⊔

n∈ω fn+1(⊥) = (
⊔

n∈ω fn+1(⊥)) ⊔ {⊥}

• If d is a prefixed point. By induction on n we have fn(⊥) ⊑ d. So⊔
n∈ω fn(⊥) ⊑ d.

�

Formal semantics of programming languages Y. Deng@ECNU 114

5.5 The Knaster-Tarski theorem for minimum fixed points

Let (P,⊑) be a partial order and X ⊆ P . Similar to lub, we can define a

greatest lower bound (glb) of X . A complete lattice is a partial order

which has glbs of arbitrary subsets.

Proposition 0.21 Let (L,⊑) be a complete lattice and f : L → L a

monotonic function. Define m =
d
{x ∈ L | f(x) ⊑ x}. Then m is a fixed

point of f and the least prefixed point f .

Proof: Let X = {x ∈ L | f(x) ⊑ x}. For any x ∈ X , we have m ⊑ x, thus

f(m) ⊑ f(x) by monotonicity of f . But f(x) ⊑ x as x ∈ X . So f(m) ⊑ x

for any x ∈ X . Thus f(m) ⊑
d
X = m, i.e. m is the least prefixed point.

By f(m) ⊑ m and monotonicity, f(f(m)) ⊑ f(m). So f(m) ∈ X which

entails m ⊑ f(m). Thus f(m) = m. �

Formal semantics of programming languages Y. Deng@ECNU 115

5.5 The Knaster-Tarski theorem for maximum fixed points

Proposition 0.22 Let (L,⊑) be a complete lattice and f : L → L a

monotonic function. Define m =
⊔
{x ∈ L | x ⊑ f(x)}. Then m is a fixed

point of f and the greatest postfixed point f (i.e. x ⊑ f(x)).

Proof: A monotonic function on (L,⊑) is also monotonic on the complete

lattice (L,⊒). Then the result follows from the minimum-fixed-point

theorem. �

Formal semantics of programming languages Y. Deng@ECNU 116

Chapter 6. The axiomatic semantics of IMP

Formal semantics of programming languages Y. Deng@ECNU 117

6.1 The idea

Assertions in programs.

S := 0;N := 1

{S = 0 & N = 1}

while ¬(N = 101) do S := S +N ;N := N + 1

{S =
∑

1≤m≤100m}

Formal semantics of programming languages Y. Deng@ECNU 118

6.1 Partial correctness

Let A,B be assertions like those in Bexp, and c a command. We write

{A}c{B} to mean: for all states σ which satisfy A (precondition) if the

execution c from state σ terminates in state σ′ then σ′ satisfies B

(postcondition).

NB: {true}while true do skip{false}

In contrast to total correctness assertions [A]c[B] — the execution of c

from any state which satisfies A will terminate in a state which satisfies B.

Formal semantics of programming languages Y. Deng@ECNU 119

6.1 Partial correctness

Consider C[[c]] as a total function in (Σ → Σ⊥) instead of partial function

in (Σ ⇀ Σ).

Write σ |= A to mean the state σ satisfies assertion A. Let ⊥ |= A for any

A. Then the meaning of {A}c{B} will be

∀σ ∈ Σ. σ |= A ⇒ C[[c]]σ |= B.

Formal semantics of programming languages Y. Deng@ECNU 120

6.2 The assertion language Assn

Let i range over integer variables, Intvar. Extending Aexp with integer

variables to be Aexpv:

a ::= n | X | i | a0 + a1 | a0 − a1 | a0 × a1

Extending Bexp to be Assn:

A ::= true | false | a0 = a1 | a0 ≤ a1 | A0∧A1 | A0∨A1 | ¬A | A0 ⇒ A1 | ∀i.A | ∃

Formal semantics of programming languages Y. Deng@ECNU 121

6.2 Free integer variables

Define free integer variables in Aexpv or Assn expressions by structural

induction.

FV (n) = FV (X) = ∅

FV (i) = {i}

FV (a0 + a1) = FV (a0 − a1) = FV (a0 × a1) = FV (a0) ∪ FV (a1)

FV (true) = FV (false) = ∅

FV (a0 = a1) = FV (a0 ≤ a1) = FV (a0) ∪ FV (a1)

FV (A0 ∧A1) = FV (A0 ∨A1) = FV (A0 ⇒ A1) = FV (A0) ∪ FV (A1)

FV (¬A) = FV (A)

FV (∀i.A) = FV (∃i.A) = FV (A)\{i}

Formal semantics of programming languages Y. Deng@ECNU 122

6.2 Substitution

Define substitution for Aexpv or Assn expressions by structural

induction.

n[a/i] ≡ n X [a/i] ≡ X

j[a/i] ≡ j i[a/i] ≡ a

(a0 + a1)[a/i] ≡ (a0[a/i] + a1[a/i])

· · ·

true[a/i] ≡ true false[a/i] ≡ false

(a0 = a1)[a/i] ≡ (a0[a/i] = a1[a/i])

(A0 ∧A1)[a/i] ≡ (A0[a/i] ∧A1[a/i])

(¬A)[a/i] ≡ ¬(A[a/i])

(∀j.A)[a/i] ≡ ∀j.(A[a/i]) (∀i.A)[a/i] ≡ ∀i.A

(∃j.A)[a/i] ≡ ∃j.(A[a/i]) (∃i.A)[a/i] ≡ ∃i.A

Formal semantics of programming languages Y. Deng@ECNU 123

6.3 The meaning of expressions, Aexpv

An interpretation is a function I : Intvar → N assigning an integer to each

integer variable. The value of an expression a ∈ Aexpv in an

interpretation I and state σ is written Av[[a]]Iσ or (Av[[a]](I))(σ).

Av[[n]]Iσ = n

Av[[X]]Iσ = σ(X)

Av[[i]]Iσ = I(i)

Av[[a0 + a1]]Iσ = Av[[a0]]Iσ +Av[[a1]]Iσ

Av[[a0 − a1]]Iσ = Av[[a0]]Iσ −Av[[a1]]Iσ

Av[[a0 × a1]]Iσ = Av[[a0]]Iσ ×Av[[a1]]Iσ

Formal semantics of programming languages Y. Deng@ECNU 124

6.3 The meaning of assertions, Assn

Write I [n/i] for the interpretation given by I [n/i](j) = n if j ≡ i, and I(j)

otherwise.

For A ∈ Assn, write σ |=I A to mean σ satisfies A in interpretation I .

σ |=I true

σ |=I (a0 = a1) if Av[[a0]]Iσ = Av[[a1]]Iσ

σ |=I A ∧B if σ |=I A and σ |=I B

σ |=I A ⇒ B if σ 6|=I A or σ |=I B

σ |=I ∀i.A if σ |=I[n/i] A for all n ∈ N

σ |=I ∃i.A if σ |=I[n/i] A for some n ∈ N

⊥ |=I A

· · ·

Formal semantics of programming languages Y. Deng@ECNU 125

6.3 Partial correctness assertions

Write AI = {σ ∈ Σ⊥ | σ |=I A}.

• σ |=I {A}c{B} iff (σ |=I A ⇒ C[[c]]σ |=I B).

• |=I {A}c{B} iff ∀σ ∈ Σ⊥. σ |=I {A}c{B}

• Validity: |= {A}c{B} iff

σ |=I {A}c{B} for all interpretations I and states σ

• Similarly, A is valid, |= A, means σ |=I A for all interpretations I and

states σ.

Formal semantics of programming languages Y. Deng@ECNU 126

6.4 Proof rules for partial correctness

The proof rules are called Hoare rules and the proof system Hoare logic.

{A} skip {A}

{B[a/X]} X := a {B}

{A}c0{C} {C}c1{B}

{A} c0; c1 {B}

{A ∧ b}c0{B} {A ∧ ¬b}c1{B}

{A} if b then c0 else c1 {B}

{A ∧ b}c{A}

{A} while b do c {A ∧ ¬b}

|= (A ⇒ A′) {A′}c{B′} |= (B′ ⇒ B)

{A} c {B}

Formal semantics of programming languages Y. Deng@ECNU 127

6.5 Soundness of the proof system

A rule is sound in the sense that if the rule’s premise is valid then so is its

conclusion. The proof system is sound if every rule is sound. Then by rule

induction, every theorem obtained from the proof system is a valid partial

correctness assertion.

Lemma 0.23 Let I be an interpretation, σ a state, and X ∈ Loc.

• Let a, a0 ∈ Aexpv. Then Av[[a0[a/X]]]Iσ = Av[[a0]]Iσ[Av[[a]]Iσ/X]

• Let B ∈ Assn. Then σ |=I B[a/X] iff σ[A[[a]]σ/X] |=I B

Proof: By structural induction on a0 and B respectively. �

Formal semantics of programming languages Y. Deng@ECNU 128

6.5 Soundness of the proof system

Theorem 0.24 Let {A}c{B} be a partial correctness assertion. If

⊢ {A}c{B} then |= {A}c{B}.

Proof: Show that each proof rule is sound. Consider the rule for

while-loops. Let w ≡ while b do c. Then C[[w]] =
⋃

n∈ω θn where

θ0 = ∅

θn+1 = {(σ, σ′) | B[[b]]σ = true & (σ, σ′) ∈ θn ◦ C[[c]]} ∪ {(σ, σ) | B[[b]]σ = false}

and P (n) =def ∀σ, σ′ ∈ Σ.(σ, σ′) ∈ θn & (σ |=I A ⇒ σ′ |=I A ∧ ¬b). Show

by induction that P (n) holds for all n ∈ ω. cf. Page 92. �

Formal semantics of programming languages Y. Deng@ECNU 129

6.6 Using the Hoare rules

Let w ≡ (while X > 0 do Y := X × Y ;X := X − 1), and show

{X = n & n ≥ 0 & Y = 1}w{Y = n!}

Take I ≡ (Y ×X ! = n! & X ≥ 0), then

{I ∧X > 0}Y := X × Y ;X := X − 1{I}

and so {I}w{I ∧X 6> 0}.

Note X = n & n ≥ 0 & Y = 1 ⇒ I and I ∧X 6> 0 ⇒ Y = n!

Formal semantics of programming languages Y. Deng@ECNU 130

Chapter 7. Completeness of the Hoare rules

Formal semantics of programming languages Y. Deng@ECNU 131

7.1 Gödel’s incompleteness theorems

• The first incompleteness theorem states that no consistent system of

axioms whose theorems can be listed by an “effective procedure”

(essentially, a computer program) is capable of proving all facts about

the natural numbers. For any such system, there will always be

statements about the natural numbers that are true, but that are

unprovable within the system.

• The second incompleteness theorem shows that if such a system is also

capable of proving certain basic facts about the natural numbers, then

one particular arithmetic truth the system cannot prove is the

consistency of the system itself.

Formal semantics of programming languages Y. Deng@ECNU 132

7.1 No proof system for Assn

Theorem 0.25 There is no effective proof system for Assn such that the

theorems coincide with the valid assertions of Assn.

It follows that there is no effective proof system for partial correctness

assertions. As |= B iff |= {true}skip{B}, if we had an effective proof

system for partial correctness it would reduce to an effective proof system

for assertions in Assn, which is impossible by Theorem 0.25.

Formal semantics of programming languages Y. Deng@ECNU 133

7.1 No proof system for partial correctness assertions

Proposition 0.26 There is no effective proof system for partial

correctness assertions such that its theorems are precisely the valid partial

correctness assertions.

Proof: An alternative and direct proof: Observe that |= {true}c{false}

iff the command c diverges on all states. If we had an effective proof

system for partial correctness assertions it would yield a computational

method of confirming that a command c diverges on all states. But this is

known to be impossible. �

Still we seek relative completeness of the Hoare rules for partial correctness

— their completeness is relative to being able to draw from the set of valid

assertions about arithmetic.

Formal semantics of programming languages Y. Deng@ECNU 134

7.2 Weakest preconditions

Motivation: consider to prove {A}c0; c1{B}. In order to use the rule for

composition one requires an assertion C so that {A}c0{C} and {C}c1{B}

are provable. Why assertion C can be found?

Let c ∈ Com, B ∈ Assn and I an interpretation. The weakest

precondition wpI [[c, B]] of B wrt c in I is

wpI [[c, B]] = {σ ∈ Σ⊥ | C[[c]]σ |=I B}.

It’s all those states from which the execution of c either diverges or ends

up in a final state satisfying B.

Formal semantics of programming languages Y. Deng@ECNU 135

7.2 Weakest preconditions and expressiveness

|=I {A}c{B} iff AI ⊆ wpI [[c, B]].

If there is an assertion A0 s.t. in all interpretation I , AI
0 = wpI [[c, B]], then

|=I {A}c{B} iff |=I (A ⇒ A0) for any interpretation I , i.e.

|= {A}c{B} iff |= (A ⇒ A0).

So the weakest precondition is implied by any precondition that makes the

partial correctness assertion valid.

Say Assn is expressive iff for every command c and assertion B there is an

assertion A0 s.t. AI
0 = wpI [[c, B]] for any interpretation I .

Formal semantics of programming languages Y. Deng@ECNU 136

7.2 Weakest preconditions and expressiveness

In showing expressiveness we use Gödel’s β predicate, which involves the

operation mod . For x = a mod b we write

a ≥ 0 ∧ b ≥ 0∧

∃k.((k ≥ 0 ∧ k × b ≤ a) ∧ (k + 1)× b > a ∧ x = a− (k × b)).

Formal semantics of programming languages Y. Deng@ECNU 137

7.2 Chinese Remainder Theorem

Theorem 0.27 Suppose m1, ...,mn are relatively prime. Then for any

a1, ..., an there is an x such that x = ai mod mi for i = 1, ..., n.

Proof: Let

Mi = Πj 6=imj .

Since Mi and mi are relatively prime, we can find bi such that

biMi = 1 mod mi. Let

x =
n∑

i=1

aibiMi.

Since mi|Mj for j 6= i, we get x = aibiMi mod mi = ai mod mi for

i = 1, ..., n. �

Formal semantics of programming languages Y. Deng@ECNU 138

7.2 Gödel’s β predicate

Lemma 0.28 Let β(a, b, i, x) be the predicate over natural numbers

defined by

β(a, b, i, x) =def x = a mod ((1 + i)× b+ 1).

For any sequence n0, ..., nk of natural numbers there are natural numbers

n,m such that for all j, 0 ≤ j ≤ k, and all x we have

β(n,m, j, x) ⇔ x = nj .

Proof: Let m′ = max{k + 1, n0, ..., nk} and m = m′!. We claim that

m+ 1, 2m+ 1, ..., (k + 1)m+ 1 are relatively prime. Suppose p|(im+ 1)

and p|(jm+ 1) where j > i > 0. Then p|(j − i)m, thus p|(j − i) or p|m.

Since (j − i)|m, we have p|m. But then p 6 |(im+ 1), a contradiction.

By the Chinese remainder theorem there is a number n such that

n = nj mod ((j + 1)m+ 1) for j = 0, ..., k. �

Formal semantics of programming languages Y. Deng@ECNU 139

7.2 Weakest preconditions and expressiveness

Lemma 0.29 Let F (x, y) be the predicate over natural numbers x, and

positive and negative numbers y given by

F (x, y) =def x ≥ 0 &

∃z ≥ 0.((x = 2z ⇒ y = z) & (x = 2z + 1 ⇒ y = −z))

Define β±(n,m, j, y) =def ∃x.(β(n,m, j, x) & F (x, y)).

Then for any sequence n0, ..., nk of positive or negative numbers there are

natural numbers n,m s.t. for all j, 0 ≤ j ≤ k, and all x we have

β±(n,m, j, x) ⇔ x = nj .

Proof: F (n,m) expresses the 1-1 correspondence between n ∈ ω and

m ∈ N in which even n stand for non-negative and odd n for negative

numbers. Then apply Lemma 0.28. �

Formal semantics of programming languages Y. Deng@ECNU 140

7.2 Weakest preconditions and expressiveness

Theorem 0.30 Assn is expressive.

Proof: Show by structural induction on commands c that for all assertion

B there is an assertion w[[c, B]] s.t. for all interpretation I ,

wpI [[c, B]] = w[[c, B]]I , i.e.

σ |=I w[[c, B]] iff C[[c]]σ |=I B for all states σ.

• w[[skip, B]] ≡ B

• w[[X := a,B]] ≡ B[a/X]

• w[[c0; c1, B]] ≡ w[[c0, w[[c1, B]]]]

• w[[if b then c0 else c1, B]] ≡ (b ∧ w[[c0, B]]) ∨ (¬b ∧ w[[c1, B]]).

• w[[while b do c0]] is complicated but can be defined. See Page 105.

�

Formal semantics of programming languages Y. Deng@ECNU 141

7.2 Weakest preconditions and expressiveness

Lemma 0.31 For c ∈ Com, B ∈ Assn, let w[[c, B]] be an assertion

expressing the weakest precondition, i.e. w[[c, B]]I = wpI [[c, B]]. Then

⊢ {w[[c, B]]}c{B}.

Proof: Show by structural induction on commands c. cf. Pag 107. �

Theorem 0.32 The proof system for partial correctness is relatively

complete, i.e. if |= {A}c{B} then ⊢ {A}c{B}.

Proof: Lemma 0.31 gives ⊢ {w[[c, B]]c{B}}. If |= {A}c{B} then

|= A ⇒ w[[c, B]], by the consequence rule we obtain ⊢ {A}c{B}. �

Formal semantics of programming languages Y. Deng@ECNU 142

7.3 Proof of Gödel’s Theorem

Theorem 0.33 The subset of assertions {A ∈ Assn | |= A} is not

recursively enumerable.

Proof: For a command c, let Ac be the assertion w[[c, false]][0̃/X̃] where

X̃ collects all locations mentioned in w[[c, false]]. If {A ∈ Assn | |= A} is

recursively enumerable, there would be a computational method to check

the validity of Ac, thus confirming the divergence of c on the zero-state.

But it is known that the commands c which diverge on the zero-state do

not form a recursively enumerable set. �

Formal semantics of programming languages Y. Deng@ECNU 143

7.3 Proof of Gödel’s Theorem

Theorem 0.34 There is no effective proof system for Assn s.t. its

theorems coincide with the valid assertions of Assn.

Proof: Suppose there were an effective proof system for Assn so that A is

provable iff A is valid. Being effective means there is a computational

method to confirm precisely when something is a proof. Searching through

all proofs systematically till a proof of assertion A is found would provide a

computational method of confirming precisely when A is valid,

contradicting Theorem 0.33. �

Formal semantics of programming languages Y. Deng@ECNU 144

7.4 Verification conditions

|= {A}c{B} Iff |= A ⇒ w[[c, B]]. However, the previous method of

obtaining w[[c, B]] is inefficient and not practical.

Define annotated commands:

c ::= skip | X := a | c0; (X := a) | c0; {D}c1 |

if b then c0 else c1 | while b do {D}c

where D is an assertion, and in c0; {D}c1, the annotated command c1 is

NOT an assignment. The assertion D in a while-loop is intended to be an

invariant, i.e. {D ∧ b}c{D} is valid.

Formal semantics of programming languages Y. Deng@ECNU 145

7.4 Verification conditions

|= {A}c{B} Iff |= A ⇒ w[[c, B]]. However, the previous method of

obtaining w[[c, B]] is inefficient and not practical.

Define verification conditions:

vc({A}skip{B}) = {A ⇒ B}

vc({A}X := a{B}) = {A ⇒ B[a/X]}

vc({A}c0;X := a{B}) = vc({A}c0{B[a/X]})

vc({A}c0; {D}c1{B}) = vc({A}c0{D}) ∪ vc({D}c1{B})

vc({A}if b then c0 else c1{B}) = vc({A ∧ b}c0{B}) ∪ vc({A ∧ ¬b}c1{B})

vc({A}while b do {D}c{B}) = vc({D ∧ b}c{D}) ∪ {A ⇒ D} ∪ {D ∧ ¬b ⇒ B}

Formal semantics of programming languages Y. Deng@ECNU 146

7.4 Verification conditions

To show the validity of an annotated partial correctness assertion it is

sufficient (but not necessary) to show its verification conditions are valid.

E.g. {true}while false do {false}skip{true} is certainly valid with false

as an invariant, its verification condition contains

true ⇒ false

which is not a valid assertion.

Formal semantics of programming languages Y. Deng@ECNU 147

7.5 Predicate transformers

Previously a command is a function f : Σ → Σ⊥, a state transformer.

Now consider the set of partial correctness predicates to be

Pred(Σ) = {Q | Q ⊆ Σ⊥ & ⊥ ∈ Q}. The cpo of predicates is (Pred(Σ),⊇).

Let f : Σ → Σ⊥ be a partial function on states. Define

W f : Pred(Σ) → Pred(Σ);

(W f)(Q) = {σ ∈ Σ⊥ | f(σ) ∈ Q} ∪ {⊥}

A command c is a predicate transformer with (W (C[[c]]))(BI) = wpI [[c, B]],

which given a postcondition returns the weakest precondition.

Formal semantics of programming languages Y. Deng@ECNU 148

Chapter 8. Introduction to domain theory

Formal semantics of programming languages Y. Deng@ECNU 149

8.2 Streams — an example

Let S be the set of finite or infinite sequences of 0’s and 1’s which may end

with a special symbol “$”. They admit the partial order: s ⊑ s′ if s is a

prefix of s′. This yields a cpo with bottom ǫ, the empty sequence.

Let’s define a function isone : S → {true, false} to detect whether or not

1 appears in an input sequence. Certainly we have isone(000$) = false.

How about isone(000)?

We introduce a “don’t know” element standing for undefined. Then

isone : S → {true, false}⊥ is a continuous function defined by

isone(1s) = true isone($) = false

isone(0s) = isone(s) isone(ǫ) = ⊥

isone(0ω) = ⊥

Formal semantics of programming languages Y. Deng@ECNU 150

8.3 Constructions on cpo’s

8.3.1 Discrete cpo’s

• Discrete cpo’s are simply sets where the partial order relation is the

identity. Then an ω-chain has to be constant.

• Basic values, like truth values or the integers form discrete cpo’s, as do

syntactic sets.

• Any function from a discrete cpo to a cpo is always continuous. In

particular, semantic functions from syntactic sets are continuous.

Formal semantics of programming languages Y. Deng@ECNU 151

8.3.2 Finite products

Assume that D1, · · · , Dk are cpo’s. Their product D1 × · · · ×Dk is a cpo.

The partial order is determined “coordinatewise”, i.e.

(d1, · · · , dk) ⊑ (d′1, · · · , d
′
k) iff di ⊑ d′i for all 1 ≤ i ≤ k

An ω-chain (d1n, · · · , dkn) for n ∈ ω, of the product has

(
⊔

n∈ω d1n, · · · ,
⊔

n∈ω dkn) as an upper bound, and indeed the least upper

bound. So ⊔

n∈ω

(d1n, · · · , dkn) = (
⊔

n∈ω

d1n, · · · ,
⊔

n∈ω

dkn)

Formal semantics of programming languages Y. Deng@ECNU 152

8.3.2 Projection

The projection function πi : D1 × · · · ×Dk → Di, for i = 1, · · · , k, selects

the ith coordinate of a tuple: π(d1, · · · , dk) = di.

Projection functions are continuous:

π(
⊔

n∈ω(d1n, · · · , dkn)) = π(
⊔

n∈ω d1n, · · · ,
⊔

n∈ω dkn)

=
⊔

n∈ω din

=
⊔

n∈ω π(d1n, · · · , dkn)

Formal semantics of programming languages Y. Deng@ECNU 153

8.3.2 Tupling

Let fi : E → Di, for i = 1, · · · , k be continuous functions. Define the

tupling function 〈f1, · · · , fk〉 : E → D1 × · · · ×Dk by taking

〈f1, · · · , fk〉(e) = (f1(e), · · · , fk(e)).

The tupling function satisfies the property

π ◦ 〈f1, · · · , fk〉 = fi fori = 1, · · · , k

and is continuous:

〈f1, · · · , fk〉(
⊔

n∈ω en) = (f1(
⊔

n∈ω en), · · · , fk(
⊔

n∈ω en))

= (
⊔

n∈ω f1(en), · · · ,
⊔

n∈ω fk(en))

=
⊔

n∈ω(f1(en), · · · , fk(en))

=
⊔

n∈ω〈f1, · · · , fk〉(en)

Formal semantics of programming languages Y. Deng@ECNU 154

8.3.2 Product of functions

Let fi : Di → Ei, for i = 1, · · · , k, be continuous functions. Define

f1 × · · · × fk : D1 × · · · ×Dk → E1 × · · · × Ek by taking

(f1 × · · · × fk)(d1, · · · , dk) = (f1(d1), · · · , fk(dk))

That is, f1 × · · · × fk = 〈f1 ◦ π1, · · · , fk ◦ πk〉.

Each component fi ◦ πi is continuous, being the composition of continuous

functions, so is the tupling function 〈f1 ◦ π1, · · · , fk ◦ πk〉.

Formal semantics of programming languages Y. Deng@ECNU 155

8.3.2 Three important properties (1/3)

Lemma 0.35 Let h : E → D1 × · · · ×Dk be a function from a cpo E to a

product of cpo’s. It is continuous iff for all i, 1 ≤ i ≤ k, the functions

πi ◦ h : E → Di are continuous.

Proof: (⇒) The composition of continuous functions is continuous.

(⇐) Suppose πi ◦ h is continuous for i = 1, · · · , k. For any x ∈ E,

h(x) = (π1(h(x)), · · · , πk(h(x))) = (π1◦h(x), · · · , πk◦h(x)) = 〈π1◦h, · · · , πk◦h〉(x)

Therefore, h = 〈π1 ◦ h, · · · , πk ◦ h〉 which is continuous as each πi ◦ h is. �

Formal semantics of programming languages Y. Deng@ECNU 156

8.3.2 Three important properties (2/3)

Proposition 0.36 Suppose en,m are elements of a cpo E for n,m ∈ ω

with the property that en,m ⊑ en′,m′ when n ≤ n′ and m ≤ m′. Then the

set {en,m | n,m ∈ ω} has a least upper bound
⊔

n,m∈ω

en,m =
⊔

n∈ω

(
⊔

m∈ω

en,m) =
⊔

m∈ω

(
⊔

n∈ω

en,m) =
⊔

n∈ω

en,n

Proof: We show that all of the sets

{en,m | n,m ∈ ω}, {
⊔

m∈ω

en,m | n ∈ ω}, {
⊔

n∈ω

en,m | m ∈ ω}, {en,n | n ∈ ω}

have the same upper bounds, hence the same lubs. Easy to see that {en,m | n,m ∈ ω}

and {en,n | n ∈ ω} have the same upper bounds because the former includes the latter

and any en,m can be dominated by one en,n. As the lub of an ω-chain
⊔

n en,n exists,

hence the lub
⊔

n,m∈ω en,m exists and is equal to it. Any upper bound of

{
⊔

m en,m | n ∈ ω} must be an upper bound of {en,m | n,m ∈ ω}. Conversely any upper

bound of {en,m | n,m ∈ ω} dominates any lub
⊔

m∈ω en,m for any m ∈ ω. Thus⊔
m en,m | n ∈ ω and {en,m | n,m ∈ ω} share the same upper bounds, so have equal

lubs. Similarly,
⊔

n,m∈ω en,m =
⊔

n∈ω(
⊔

m∈ω en,m). �

Formal semantics of programming languages Y. Deng@ECNU 157

8.3.2 Three important properties (3/3)

Lemma 0.37 Let f : D1 × · · · ×Dk → E be a function. Then f is

continuous iff f is “continuous in each argument separately”, i.e. for all i

with 1 ≤ i ≤ k, and any d1, ..., di−1, di+1, ..., dk the function Di → E given

by di 7→ f(d1, ..., di, ..., dk) is continuous.

Proof: (⇒)Trivial.

(⇐) Let k = 2; the general case is similar. Let (x0, y0) ⊑ (x1, y1) ⊑ · · · be a chain

in D1 ×D2.

f(
⊔

n
(xn, yn)) = f(

⊔

p
xp,

⊔

q
yq)

=
⊔

p
f(xp,

⊔

q
yq)

=
⊔

p

⊔

q
f(xp, yq)

=
⊔

n
f(xn, yn) by Prop. 0.36

�

Formal semantics of programming languages Y. Deng@ECNU 158

8.3.3 Function space

Let D,E be cpo’s. The function space [D → E] consists of elements

{f | f : D → E is continuous} ordered pointwise by

f ⊑ g iff ∀d ∈ D. f(d) ⊑ g(d). If E has a bottom element ⊥E , then the

function space has a bottom s.t. ⊥[D→E](d) = ⊥E for all d ∈ D. Lubs of

chains of functions are given pointwise: a chain f0 ⊑ f1 ⊑ · · · has lub⊔
n∈ω fn with (

⊔
n fn)(d) =

⊔
n fn(d). The lub is continuous: let

d0 ⊑ d1 ⊑ · · · be a chain in D, then

(
⊔

n fn)(
⊔

m dm) =
⊔

n fn(
⊔

m dm)

=
⊔

n(
⊔

m fn(dm))

=
⊔

m(
⊔

n fn(dm))

=
⊔

m((
⊔

n fn)(dm))

So the function space [D → E] is also a cpo.

Formal semantics of programming languages Y. Deng@ECNU 159

8.3.3 Function space

Let I be a discrete cpo and D a cpo. The special function space [I → D] is

called power, often written as DI . Its elements can be thought of as tuples

(di)i∈I ordered coordinatewise.

When I is the finite set {1, 2, · · · , k}, the cpo DI is isomorphic to the

product D × · · · ×D, written Dk.

Formal semantics of programming languages Y. Deng@ECNU 160

8.3.3 Application

Let D,E be cpo’s. Define apply : [D → E]×D → E to act as

apply(f, d) = f(d). Then apply is continuous as it’s continuous in each

argument separately:

• Let f0 ⊑ f1 ⊑ · · · be a chain of functions.

apply(
⊔

n

fn, d) = (
⊔

n

fn)(d) =
⊔

n

fn(d) =
⊔

n

apply(fn, d)

• Let d0 ⊑ d1 ⊑ · · · be a chain in D. Then

apply(f,
⊔

n

dn) = f(
⊔

n

dn) =
⊔

n

f(dn) =
⊔

n

apply(f, dn)

Formal semantics of programming languages Y. Deng@ECNU 161

8.3.3 Curringa

Let D,E, F be cpo’s and g ∈ [F ×D → E]. Define curry(g) : F → [D → E]

to act as curry(g) = λv ∈ F.λd ∈ D.g(v, d). Write h for curry(g). Check

that h(v) for each v ∈ F is continuous and that h is continuous.

• Let v ∈ F and d0 ⊑ d1 ⊑ · · · be a chain in D.

h(v)(
⊔

n

dn) = g(v,
⊔

n

dn) =
⊔

n

g(v, dn) =
⊔

n

h(v)(dn)

• Let v0 ⊑ v1 ⊑ · · · be a chain in F and d ∈ D. Then

h(
⊔

n

vn)(d) = g(
⊔

n

vn, d) =
⊔

n

g(vn, d) =
⊔

n

h(vn)(d) = (
⊔

n

h(vn))(d)

aNamed after the US logician Haskell Curry

Formal semantics of programming languages Y. Deng@ECNU 162

8.3.4 Lifting

Let D be a cpo. Define an injective (lifting) function ⌊−⌋ on D with

⊥ 6= ⌊d⌋ for any d ∈ D.

The lifted cpo D⊥ has underlying set

D⊥ = {⌊d⌋ | d ∈ D} ∪ {⊥}

and partial order

d′0 ⊑ d′1 iff either d′0 = ⊥ or (∃d0, d1.d
′
0 = ⌊d0⌋ & d′1 = ⌊d1⌋ & d0 ⊑ d1).

So ⌊d0⌋ ⊑ ⌊d1⌋ in D⊥ iff d0 ⊑ d1 in D. Clearly the function ⌊−⌋ : D → D⊥

is continuous.

Formal semantics of programming languages Y. Deng@ECNU 163

8.3.4 Lifting

A continuous function f ∈ D → E from a cpo D to a cpo E with a bottom,

can be extended to a continuous function f∗ : D⊥ → E by defining

f∗(d′) =

f(d) if d′ = ⌊d⌋ for some d ∈ D

⊥E otherwise

The operation (−)∗ is continuous. Let f0 ⊑ f1 ⊑ · · · be a chain in [D → E]

and d′ ∈ D⊥.

• If d′ = ⊥ then (
⊔

n fn)
∗(d′) = ⊥E = (

⊔
n f∗

n)(d
′)

• If d′ = ⌊d⌋ then

(
⊔

n

fn)
∗(d′) = (

⊔

n

fn)(d) =
⊔

n

fn(d) =
⊔

n

f∗
n(d

′) = (
⊔

n

f∗
n)(d

′)

If function f is described by λx.e then write let x ⇐ d′.e for (λx.e)∗(d′).

Formal semantics of programming languages Y. Deng@ECNU 164

8.3.5 Sums

Let D1, · · · , Dk be cpo’s. A sum D1 + · · ·+Dk has underlying set

{in1(d1) | d1 ∈ D1} ∪ · · · ∪ {ink(dk) | dk ∈ Dk}

and partial order

d ⊑ d′ iff (∃d1, d
′
1 ∈ D1. d = in1(d1) & d′ = in1(d

′
1) & d1 ⊑ d′1) ||

...

(∃dk, d
′
k ∈ D1. d = ink(dk) & d′ = ink(d

′
k) & dk ⊑ d′k)

where ini(d) 6= inj(d
′) for all d ∈ Di, d

′ ∈ Dj with i 6= j.

Easy to see that D1 + · · ·+Dk is a cpo and the injection functions

ini : Di → D1 + · · ·+Dk are continuous.

Formal semantics of programming languages Y. Deng@ECNU 165

8.3.5 Sums

Let fi : Di → E are continuous functions, for i = 1, ..., k. They can be

combined to be a function

[f1, · · · , fk] : D1 + · · ·+Dk → E

given by

[f1, · · · , fk](ini(di)) = fi(di) for all di ∈ Di,

for all i = 1, ..., k. That is, [f1, · · · , fk] ◦ ini = fi.

By Lemma 0.37 it can be shown that [f1, · · · , fk] is continuous.

Formal semantics of programming languages Y. Deng@ECNU 166

8.3.5 Conditional

The truth values T = {true, false} can be regarded as the sum of two

cpo’s: {true}+ {false}, with in1(true) = true and in2(false) = false.

Let λx1.e1 : {true} → E and λx2.e2 : {false} → E be two obviously

continuous functions to a cpo E.

Then cond(t, e1, e2) =def [λx1.e1, λx2.e2](t) behaves as a conditional:

cond(t, e1, e2) =

e1 if t = true

e2 if t = false

The conditional (b → e1|e2) =def let t ⇐ b. cond(t, e1, e2) acts as

(b → e1|e2) =

e1 if b = ⌊true⌋

e2 if b = ⌊false⌋

⊥ if b = ⊥

Formal semantics of programming languages Y. Deng@ECNU 167

8.3.5 Case construction

Let E be a cpo, and D1 + · · ·+Dk be a sum of cpo’s with an element d.

Suppose λxi.ei : Di → E are continuous functions for 1 ≤ i ≤ k Then

[λx1.e1, ..., λxk.ek](d)

describes the case-construction

case d of in1(x1).e1|
...

ink(xk).ek

Formal semantics of programming languages Y. Deng@ECNU 168

8.4 A metalanguage

Let expression e be an element of a cpo E. Say e is continuous in the

variable x ∈ D iff the function λx ∈ D.e : D → E is continuous. Say e is

continuous in its variables iff e is continuous in all variables.

Variables: A variable x ranging over elements of a cpo is continuous in its

variables.

Constants: ⊥D; true; false; πi; apply; curry; (−)∗; ini; [f1, ..., fk] etc.

Tupling: Let ei ∈ Ei for i = 1, ..., k. The tuple (e1, ..., ek) is continuous in

its variables provided its components are.

λx.(e1, · · · , ek) is continuous

⇔ πi ◦ (λx.(e1, · · · , ek)) is continuous for 1 ≤ i ≤ k by Lem. 0.35

⇔ λx.ei is continuous for 1 ≤ i ≤ k

⇔ ei is continuous in x for 1 ≤ i ≤ k

Formal semantics of programming languages Y. Deng@ECNU 169

8.4 A metalanguage

Application: Let K be a continuous function (in Constants), and e is an

argument.

λx.K(e) is continuous

⇔ K ◦ (λx.e) is continuous

⇐ λx.e is continuous

⇔ e is continuous in x

The application is continuous in its variables provided its argument is.

E.g. the general form of application e1(e2) are continuous in variables if

e1, e2 are, since e1(e2) = apply(e1, e2), i.e. applying the constant apply to

the tuple (e1, e2).

Formal semantics of programming languages Y. Deng@ECNU 170

8.4 A metalanguage

λ-abstraction: Let e ∈ E be continuous function in its variables. Form

the abstraction λy.e : D → E. It is continuous in x iff

λx.λy.e is continuous

⇔ curry(λx, y.e) is continuous

⇐ λx, y.e is continuous as curry preserves continuity

⇔ e is continuous in x and y

The application is continuous in its variables provided its body is.

E.g. function composition preserves the property of being continuous in

variables as e1 ◦ e2 = λx.e1(e2(x)).

Formal semantics of programming languages Y. Deng@ECNU 171

8.4 A metalanguage

let-construction: Let D be be a cpo and E a cpo with bottom. If

e1 ∈ D⊥ and e2 ∈ E are continuous in variables then so is the expression

let x ⇐ e1.e2 since

(let x ⇐ e1.e2) = (λx.e2)
∗(e1)

which is built up by the methods admitted above.

case-construction Assume E is a cpo and D1 + · · ·+Dk a sum of cpo’s

with an element e continuous in variables. Suppose ei ∈ E are continuous

in variables, then so is the case construction

case e of in1(x1).e1|

. . .

ink(xk).ek

because it is just [λx1.e1, ..., λxk.ek](e).

Formal semantics of programming languages Y. Deng@ECNU 172

8.4 A metalanguage

Fixed-point operators: Each cpo D with bottom is associated with a

fixed-point operator fix : [D → D] → D, which is continuous because

fix =
⊔

n∈ω

(λf.fn(⊥)),

i.e. fix is the lub of the chain of functions

λf.⊥ ⊑ λf.f(⊥) ⊑ λf.f(f(⊥)) ⊑ · · ·

where each of these is continuous and so an element of the cpo

[[D → D] → D]. Thus their lub fix exists in the cpo.

Notation: we use µx.e to abbreviate fix(λx.e).

Formal semantics of programming languages Y. Deng@ECNU 173

Chapter 9. Recursion equations

Formal semantics of programming languages Y. Deng@ECNU 174

9.1 The language REC

A simple programming language for recursive definition of functions. It has

syntactic sets:

• numbers n ∈ N

• variables over numbers x ∈ Var

• function variables f1, f2, ... ∈ Fvar

Terms t, t0, ... of REC have the following syntax:

t ::= n | x | t1 + t2 | t1 − t2 | t1 × t2 | if t0 then t1 else t2 | fi(t1, ..., tai
)

Evaluating t0 to 0 means true and to nonzero numbers means false.

A term is closed when it contains no variables from Var.

Formal semantics of programming languages Y. Deng@ECNU 175

9.1 The language REC

Function symbols f are given meaning by a declaration, consisting of

equations:

f1(x1, · · · , xa1) = d1
...

fk(x1, · · · , xak
) = dk

where the variables of di are included in x1, · · · , xai
. Term di is the

definition of fi.

Formal semantics of programming languages Y. Deng@ECNU 176

9.1 Two methods of evaluation

To evaluate a term f(t), there are two methods:

• call-by-value: evaluate t first and once an integer n is obtained then

evaluate f(n)

• call-by-name: pass to the definition of f , replacing all occurrences of x

by t.

Consider the equations

f1(x) = f1(x) + 1

f2(x) = 1

How to evaluate the term f2(f1(3))?

Formal semantics of programming languages Y. Deng@ECNU 177

9.2 Operational semantics of call-by-value

n →d
va n

t1 →d
va n1 t2 →d

va n2

t1 op t2 →d
va n1 op n2

t0 →d
va 0 t1 →d

va n1

if t0 then t1 else t2 →d
va n1

t0 →d
va n0 t2 →d

va n2 n0 6≡ 0

if t0 then t1 else t2 →d
va n2

t1 →d
va n1 · · · tai

→d
va nai

di[n1/x1, ..., nai
/xai

] →d
va n

fi(t1, ..., tai
) →d

va n

Proposition 0.38 If t →d
va n1 and t →d

va n2, then n1 ≡ n2. �

Formal semantics of programming languages Y. Deng@ECNU 178

9.3 Denotational semantics of call-by-value

Terms will be assigned meanings in the presence of environments for

variables and function variables.

An environment for variables is a function ρ : Var → N. Write

Envva = [Var → N] for the cpo of all such environments.

An environment for the function variables f1, ..., fk is a tuple

ϕ = (ϕ1, ..., ϕk) where ϕi : N
ai → N⊥. Write

Fenvva = [Na1 → N⊥]× · · · × [Nak → N⊥] for the cpo of environments for

function variables.

Formal semantics of programming languages Y. Deng@ECNU 179

9.3 Denotational semantics of call-by-value

A term t denotes a function [[t]]va ∈ [Fenvva → [Envva → N⊥]]

[[n]]va = λϕ.λρ.⌊n⌋

[[x]]va = λϕ.λρ.⌊ρ(x)⌋

[[t1 op t2]]va = λϕ.λρ.[[t1]]vaϕρ op⊥ [[t2]]vaϕρ op = +,−,×

[[if t0 then t1 else t2]]va = λϕ.λρ.Cond([[t0]]vaϕρ, [[t1]]vaϕρ, [[t2]]vaϕρ)

[[fi(t1, · · · , tai)]]va = λϕ.λρ.

(let v1 ⇐ [[t1]]vaϕρ, ..., vai ⇐ [[tai]]vaϕρ. ϕi(v1, · · · , vai))

Formal semantics of programming languages Y. Deng@ECNU 180

9.3 Denotational semantics of call-by-value

Let iszero : N → T be defined as

iszero = λn ∈ N.if n then true else false

Its strict extension iszero⊥ : N⊥ → T⊥ is

iszero⊥ = λz ∈ N⊥.let n ⇐ z.⌊iszero(n)⌋

which acts so

iszero⊥(z) =

⌊true⌋ if z = ⌊0⌋

⌊false⌋ if z = ⌊n⌋ & n 6= 0

⊥ otherwise

Then Cond(z0, z1, z2) = (iszero⊥(z0) → z1|z2) is continuous.

Formal semantics of programming languages Y. Deng@ECNU 181

9.3 Denotational semantics of call-by-value

Lemma 0.39 For all terms t of REC, the denotation [[t]]va is a

continuous function in [Fenvva → [Envva → N⊥]].

Proof: By structural induction on terms t. �

Lemma 0.40 For all terms t of REC, if environments ρ, ρ′ ∈ Envva yield

the same result on all variables which appear in t then for any ϕ ∈ Fenvva,

[[t]]vaϕρ = [[t]]vaϕρ
′.

In particular, the denotation of a closed term [[t]]vaϕρ is independent of the

environment ρ.

Proof: By structural induction on terms t. �

Formal semantics of programming languages Y. Deng@ECNU 182

9.3 Denotational semantics of call-by-value

A declaration

f1(x1, · · · , xa1) = d1
...

fk(x1, · · · , xak
) = dk

determines a function environment δ = (δ1, ..., δk) such that

δ1(n1, · · · , na1) = [[d1]]vaδρ[n1/x1, ..., na1/xa1], for all n1, ..., na1 ∈ N
...

δk(n1, · · · , nak
) = [[dk]]vaδρ[n1/x1, ..., nak

/xak
], for all n1, ..., na1 ∈ N

The updated environment ρ[n/x] is continuous. View the discrete cpo Var

as a sum of the singleton {x} and Var\{x}, with the injection functions

in1 : {x} → Var and in2 : (Var\{x}) → Var being the inclusion functions.

Then ρ[n/x] is equal to λy ∈ Var.case y of in1(x).n | in2(w).ρ(w).

Formal semantics of programming languages Y. Deng@ECNU 183

9.3 Denotational semantics of call-by-value

The equations of a declaration d will not in general determine a unique

solution. We are interested in the least one, which is the least fixed point

of the continuous function F : Fenvva → Fenvva given by

F (ϕ) = (λn1, ..., na1 ∈ N.[[d1]]vaϕρ[n1/x1, ..., na1/xa1],

· · · ,

λn1, ..., nak
∈ N.[[dk]]vaϕρ[n1/x1, ..., nak

/xak
])

The function environment determined by the declaration d is δ = fix(F).

A closed term t denotes a result [[t]]vaδρ in N⊥ wrt this function

environment δ, independent of what environment ρ is.

Formal semantics of programming languages Y. Deng@ECNU 184

9.3 Denotational semantics of call-by-value: example 1

Consider the declaration

f1 = f1 + 1

f2(x) = 1

which determines the denotation of f1, f2 as δ = (δ1, δ2) ∈ N⊥ × [N → N⊥]

where

(δ1, δ2) = µϕ.([[f1 + 1]]vaϕρ, λm ∈ N.[[1]]vaϕρ[m/x])

= µϕ.(ϕ1 +⊥ ⌊1⌋, λm ∈ N.⌊1⌋)

= (⊥, λm ∈ N.⌊1⌋)

From which, [[f2(f1)]]vaδρ = let n1 ⇐ δ1. δ2(n1) = ⊥

Formal semantics of programming languages Y. Deng@ECNU 185

9.3 Denotational semantics of call-by-value: example 2

Consider the declaration f(x) = if x then 1 else x× f(x− 1). Let f

denote the function δ ∈ [N → N⊥], t be the definition and ρ an arbitrary

environment for variables.

δ = fix(λϕ.(λm.[[t]]vaϕρ[m/x]))

=
⊔

r∈ω δr.

For an arbitrary m ∈ N, δ0(m) = ⊥ and

δ1(m) = cond(iszero(m), ⌊1⌋, ⌊m⌋ ×⊥ δ0(m− 1)) =

⌊1⌋ if m = 0

⊥ otherwise

By mathematical induction, we obtain δr(m) =

⌊m!⌋ if 0 ≤ m < r

⊥ otherwise
. The

least upper bound δ is δ(m) =

⌊m!⌋ if 0 ≤ m

⊥ otherwise
.

Formal semantics of programming languages Y. Deng@ECNU 186

9.4 Equivalence of semantics for call-by-value

Lemma 0.41 Let t be a term and n a number. Let

ϕ ∈ Fenvva, ρ ∈ Envva. Then [[t]]vaϕρ[n/x] = [[t[n/x]]]vaϕρ.

Proof: By structural induction on t. �

Lemma 0.42 Let t be a closed term and n a number. Let ρ ∈ Envva.

Then t →d
va n ⇒ [[t]]vaδρ = ⌊n⌋.

Proof: By rule induction. Consider the rule instance for the last rule.

Formal semantics of programming languages Y. Deng@ECNU 187

Assume

t1 →d
va n1 and [[t1]]vaδρ = ⌊n1⌋,

...

tai
→d

va nai
and [[tai

]]vaδρ = ⌊nai
⌋,

di[n1/x1, ..., nai
/xai

] →d
va n and [[di[n1/x1, ..., nai

/xai
]]]vaδρ = ⌊n⌋

Then

[[fi(t1, ..., tai
)]]vaδρ = let v1 ⇐ [[t1]]vaδρ, ..., vai

⇐ [[tai
]]vaδρ. δi(v1, ..., vai

)

= δi(n1, ..., nai
)

= [[di]]vaδρ[n1/x1, ..., nai
/xai

] by δ’s definition as a fixed p

= [[di[n1/x1, ..., nai
/xai

]]]vaδρ by Lem. 0.41

= ⌊n⌋

�

Formal semantics of programming languages Y. Deng@ECNU 188

9.4 Equivalence of semantics for call-by-value

Lemma 0.43 Let t be a closed term and ρ ∈ Envva. For all n ∈ N,

[[t]]vaδρ = ⌊n⌋ ⇒ t →d
va n.

Proof: Define the function ϕi : N
ai → N⊥, for i = 1, ..., k by taking

ϕi(n1, ..., nai
) =

⌊n⌋ if di[n1/x1, ..., nai
/xai

] →d
va n

⊥ otherwise

and show ϕ = (ϕ1, ..., ϕk) is a prefixed point the function F , thus δ ⊑ ϕ.

To this end, show by structural induction on t that provided the variables

in t are included in x1, ..., xl, then

[[t]]vaϕρ[n1/x1, ..., nl/xl] = ⌊n⌋ ⇒ t[n1/x1, ..., nl/xl] →
d
va n (1)

for all n, n1, ..., nl ∈ N.

For the case t ≡ fi(t1, ..., tai
), suppose

[[fi(t1, ..., tai
)]]vaϕρ[n1/x1, ..., nl/xl] = ⌊n⌋. Then there must be

Formal semantics of programming languages Y. Deng@ECNU 189

m1, ...,mai
∈ N s.t. [[tj]]vaϕρ[n1/x1, ..., nl/xl] = ⌊mj⌋ for j = 1, ..., ai, with

ϕi(m1, ...,mai
) = ⌊n⌋. By induction, tj [n1/x1, ..., nl/xl] →

d
va mj for all j

and di[m1/x1, ...,mai
/xai

] →d
va n. It follows that

fi(t1, ..., tai
)[n1/x1, ..., nl/xl] →

d
va n as was to be proved.

As a special case of (1),

[[di]]vaϕρ[n1/x1, ..., nai
/xai

] = ⌊n⌋ ⇒ di[n1/x1, ..., nai
/xai

] →d
va n

for all n, n1, ..., nai
∈ N. Thus by the definition of ϕ,

λn1, ..., na1 ∈ N.[[di]]vaϕρ[n1/x1, ..., na1/xa1] ⊑ ϕ1

...

λn1, ..., nak
∈ N.[[di]]vaϕρ[n1/x1, ..., nak

/xak
] ⊑ ϕk

which makes ϕ a prefixed point of F . It follows that

[[t]]vaδρ = ⌊n⌋ ⇒ [[t]]vaϕρ = ⌊n⌋ ⇒ t →d
va n

�

Formal semantics of programming languages Y. Deng@ECNU 190

9.5 Operational semantics of call-by-name

n →d
na n

t1 →d
na n1 t2 →d

na n2

t1 op t2 →d
na n1 op n2

t0 →d
na 0 t1 →d

na n1

if t0 then t1 else t2 →d
na n1

t0 →d
na n0 t2 →d

na n2 n0 6≡ 0

if t0 then t1 else t2 →d
na n2

di[t1/x1, ..., tai
/xai

] →d
na n

fi(t1, ..., tai
) →d

na n

Proposition 0.44 If t →d
na n1 and t →d

na n2, then n1 ≡ n2. �

Formal semantics of programming languages Y. Deng@ECNU 191

9.6 Denotational semantics of call-by-name

A term will be assigned a meaning as a value in N⊥ wrt environments for

variables and function variables.

An environment for variables is now a function ρ : Var → N⊥. Write

Envna = [Var → N⊥] for the cpo of all such environments.

An environment for the function variables f1, ..., fk is a tuple

ϕ = (ϕ1, ..., ϕk) where ϕi : N
ai

⊥ → N⊥. Write

Fenvna = [Na1

⊥ → N⊥]× · · · × [Nak

⊥ → N⊥] for the cpo of environments for

function variables.

Formal semantics of programming languages Y. Deng@ECNU 192

9.6 Denotational semantics of call-by-name

A term t denotes a function [[t]]na ∈ [Fenvna → [Envna → N⊥]]

[[n]]na = λϕ.λρ.⌊n⌋

[[x]]na = λϕ.λρ.⌊ρ(x)⌋

[[t1 op t2]]na = λϕ.λρ.[[t1]]naϕρ op⊥ [[t2]]naϕρ op = +,−,×

[[if t0 then t1 else t2]]na = λϕ.λρ.Cond([[t0]]naϕρ, [[t1]]naϕρ, [[t2]]naϕρ)

[[fi(t1, · · · , tai)]]na = λϕ.λρ. ϕi([[t1]]naϕρ, · · · , [[tai]]naϕρ)

Formal semantics of programming languages Y. Deng@ECNU 193

9.6 Denotational semantics of call-by-name

Lemma 0.45 For all terms t of REC, the denotation [[t]]na is a

continuous function in [Fenvna → [Envna → N⊥]].

Proof: By structural induction on terms t. �

Lemma 0.46 For all terms t of REC, if environments ρ, ρ′ ∈ Envna yield

the same result on all nariables which appear in t then for any ϕ ∈ Fenvna,

[[t]]naϕρ = [[t]]naϕρ
′.

In particular, the denotation of a closed term [[t]]naϕρ is independent of the

environment ρ.

Proof: By structural induction on terms t. �

Formal semantics of programming languages Y. Deng@ECNU 194

9.6 Denotational semantics of call-by-name

Let d be a declaration

f1(x1, · · · , xa1) = d1
...

fk(x1, · · · , xak
) = dk

Define F : Fenvna → Fenvna by

F (ϕ) = (λz1, ..., za1 ∈ N.[[d1]]naϕρ[z1/x1, ..., za1/xa1],

· · · ,

λz1, ..., zak
∈ N.[[dk]]naϕρ[z1/x1, ..., zak

/xak
])

The function environment determined by the declaration d is δ = fix(F).

Formal semantics of programming languages Y. Deng@ECNU 195

9.6 Denotational semantics of call-by-name: an example

Consider the declaration

f1 = f1 + 1

f2(x) = 1

which determines the denotation of f1, f2 as

δ = (δ1, δ2) ∈ N⊥ × [N⊥ → N⊥] where

(δ1, δ2) = µϕ.([[f1 + 1]]naϕρ, λz ∈ N⊥.[[1]]naϕρ[z/x])

= µϕ.(ϕ1 +⊥ ⌊1⌋, λz ∈ N⊥.⌊1⌋)

= (⊥, λz ∈ N⊥.⌊1⌋)

From which, [[f2(f1)]]naδρ = δ2(δ1) = ⌊1⌋

Formal semantics of programming languages Y. Deng@ECNU 196

9.7 Equivalence of semantics for call-by-name

Lemma 0.47 Let t be a term and n a number. Let

ϕ ∈ Fenvna, ρ ∈ Envna. Then [[t]]naϕρ[[[t
′]]naϕρ/x] = [[t[t′/x]]]naϕρ.

Proof: By structural induction on t. �

Formal semantics of programming languages Y. Deng@ECNU 197

9.7 Equinalence of semantics for call-by-name

Lemma 0.48 Let t be a closed term and n a number. Let ρ ∈ Envna.

Then t →d
na n ⇒ [[t]]naδρ = ⌊n⌋.

Proof: By rule induction. Consider the rule instance for the last rule.

Assume

di[t1/x1, ..., tai
/xai

] →d
na n and [[di[t1/x1, ..., tai

/xai
]]]naδρ = ⌊n⌋

Then

[[fi(t1, ..., tai)]]naδρ = δi([[t1]]naδρ, ..., [[tai]]naδρ)

= [[di]]naδρ[[[t1]]naδρ/x1, ..., [[tai]]naδρ/xai] by δ’s def as a fixed p

= [[di[t1/x1, ..., tai/xai]]]naδρ by Lem. 0.47

= ⌊n⌋

�

Formal semantics of programming languages Y. Deng@ECNU 198

9.7 Equinalence of semantics for call-by-name

Lemma 0.49 Let t be a closed term and ρ ∈ Envna. For all n ∈ N,

[[t]]naδρ = ⌊n⌋ ⇒ t →d
na n.

Proof: Define res(t) =

⌊n⌋ if t →d
na n

⊥ otherwise
Let δr be the rth approximant to

δ. Show by induction on r ∈ ω that

[[t]]naδ
rρ[res(u1)/y1, ..., res(us)/ys] = ⌊n⌋ ⇒ t[u1/y1, ..., us/ys] →

d
na n (2)

It is equivalent to

[[t]]naδ
rρ[res(u1)/y1, ..., res(us)/ys] = ⌊n⌋ ⊑ res(t[u1/y1, ..., us/ys])

Consider the induction step. Suppose the induction hypothesis holds for (r − 1).

We show (2) by structural induction on t. Only consider the case

Formal semantics of programming languages Y. Deng@ECNU 199

t ≡ fi(t1, ..., tai). Let ρ
′ = ρ[res(u1)/y1, ..., res(us)/ys].

[[fi(t1, ..., tai)]]naδ
rρ′ = δri ([[t1]]naδ

rρ′, ..., [[tai]]naδ
rρ′)

= [[di]]naδ
r−1ρ′[[[t1]]naδ

rρ′/x1, ..., [[tai]]naδ
rρ′/xai]

By structural induction

[[tj]]naδ
rρ′ = [[tj]]naδ

rρ[res(u1)/y1, ..., res(us)/ys]

⊑ res(tj [u1/y1, ..., us/ys])

Then

[[fi(t1, ..., tai)]]naδ
rρ′ ⊑ [[di]]naδ

r−1ρ′[res(t′1)/x1, ..., res(t
′
ai
)/xai] monotonicity [[

⊑ res(di[t
′
1/x1, ..., t

′
ai
/xai]) by mathematical induction

= res(fi(t
′
1, ..., t

′
ai
)) by operational semantics

where t′j = tj [u1/y1, ..., us/ys], thus establishes the induction hypothesis.

Therefore, for closed term t, [[t]]naδ
rρ = ⌊n⌋ ⇒ t →d

na n for all r ∈ ω. Since

[[t]]naδρ = [[t]]na

⊔

r
δrρ =

⊔

r
[[t]]naδ

rρ by the continuity of semantic function,

[[t]]naδρ = ⌊n⌋ implies [[t]]naδ
rρ = ⌊n⌋ for some r, and hence t →d

na n. �

Formal semantics of programming languages Y. Deng@ECNU 200

9.8 Local declarations

Let S ≡ let rec A ⇐ t and B ⇐ u in v. The denotation of S can be

taken to be

[[S]]ϕρ = [[v]]ϕ[α0/A, β0/B]ρ

where (α0, β0) is the least fixed point of the continuous function

(α, β) 7→ ([[t]]ϕ[α/A, β/B]ρ, [[u]]ϕ[α/A, β/B]ρ)

In general the language allows:

let rec f1(x1, ..., xa1) = d1 and
...

fk(x1, ..., xak
) = dk

in t

Formal semantics of programming languages Y. Deng@ECNU 201

Chapter 10. Techniques for recursion

Formal semantics of programming languages Y. Deng@ECNU 202

10.1 Bekić’s theorem

Theorem 0.50 Let F : D × E → D and G : D × E → E be continuous

functions where D,E are cpo’s. The least fixed point of

〈F,G〉 : D × E → D × E is the pair with coordinates

f̂ = µf.F (f, µg.G(µf.F (f, g), g))

ĝ = µg.G(µf.F (f, g), g)

Proof: First show (f̂ , ĝ) is a fixed point of 〈F,G〉. By definition f̂ = µf.F (f, ĝ),

the least fixed point of λf.F (f, ĝ). Also the definition of ĝ says

ĝ = G(µf.F (f, ĝ), ĝ) = G(f̂ , ĝ)

Thus (f̂ , ĝ) = 〈F,G〉(f̂ , ĝ).

Let (f0, g0) be the least fixed point of 〈F,G〉, then (f0, g0) ⊑ (f̂ , ĝ). For the

converse ordering, as f0 = F (f0, g0), we have µf.F (f, g0) ⊑ f0. The monotonicity

of G yields G(µf.F (f, g0), g0) ⊑ G(f0, g0) = g0 Thus ĝ ⊑ g0. The monotonicity of

F yields F (f0, ĝ) ⊑ F (f0, g0) = f0, thus f̂ ⊑ f0. �

Formal semantics of programming languages Y. Deng@ECNU 203

10.1 Bekić’s theorem

• The proof only relies on the monotonicity and the properties of least

fixed point, so it works for monotonic functions on lattices.

• From Bekić’s theorem we can deduce a symmetric form of

simultaneous least fixed point.

f̂ = µf.F (f, µg.G(f, g))

ĝ = µg.G(µf.F (f, g), g)

The second equation is the same as in Bekić’s theorem. The first

follows by the symmetry between f and g.

Formal semantics of programming languages Y. Deng@ECNU 204

10.1 Bekić’s theorem: an example

Consider the term
T ≡ let rec B ⇐ (let rec A ⇐ t in u)

in (let rec A ⇐ t in v)

Abbreviate F (f, g) = [[t]]ϕ[f/A, g/B]ρ and G(f, g) = [[u]]ϕ[f/A, g/B]ρ.

Then [[T]]ϕρ = [[v]]ϕ[f̂/A, ĝ/B]ρ where

ĝ = µg.[[let rec A ⇐ t in u]]ϕ[g/B]ρ

= µg.[[u]]ϕ[g/B, µf.[[t]]ϕ[f/A, g/B]ρ/A]ρ

= µg.G(µf.F (f, g), g)

and f̂ = µf.[[t]]ϕ[f/A, ĝ/B]ρ = µf.F (f, ĝ). By Bekić’s theorem, (f̂ , ĝ) is the

(simultaneous) least fixed point of 〈F,G〉. So

[[T]] = [[let rec A ⇐ t and B ⇐ u in v]]

Formal semantics of programming languages Y. Deng@ECNU 205

10.2 Fixed point induction

Let D be a cpo. A subset P of D is inclusive iff for all ω-chains

d0 ⊑ d1 ⊑ · · ·, if dn ∈ P for all n ∈ ω then
⊔

n∈ω dn ∈ P .

Proposition 0.51 Let D be a cpo with bottom ⊥, and F : D → D be

continuous. Let P be an inclusive subset of D. If ⊥ ∈ P and

∀x ∈ D. x ∈ P ⇒ F (x) ∈ P then fix(F) ∈ P .

Proof: Note fix(F) =
⊔

n F
n(⊥). If P satisfies the condition above, then

Fn(⊥) ∈ P for all n by mathematical induction. By the inclusiveness of P ,

we obtain fix(F) ∈ P . �

Formal semantics of programming languages Y. Deng@ECNU 206

10.2 Fixed point induction

Fixed point induction implies Park induction.

Proposition 0.52 Let D be a cpo with bottom, and F : D → D be

continuous. Let d ∈ D. If F (d) ⊑ d then fix(F) ⊑ d.

Proof: The set P = {x ∈ D | x ⊑ d} is inclusive. If every element in a

chain is below d, then so is the lub
⊔

n dn. Clearly, ⊥ ∈ P . If x ∈ P , i.e.

x ⊑ d, then the monotonicity of F yields F (x) ⊑ F (d) ⊑ d, thus F (x) ∈ d.

By fixed point induction, fix(F) ∈ P , i.e. fix(F) ⊑ d. �

Formal semantics of programming languages Y. Deng@ECNU 207

10.2 Fixed point induction

A predicate Q(x1, ..., xk) with free variables x1, ..., xk ranging over the

cpo’s D1, · · · , Dk respectively, determines a set

P = {(x1, ..., xk) ∈ D1 × · · · ×Dk | Q(x1, · · · , xk)}

We say the predicate Q(x1, ..., xk) is inclusive if its extension as a set is

inclusive.

We rephrase fixed point induction as follows. Let

F : D1 × · · · ×Dk → D1 × · · · ×Dk be a continuous function on a product

cpo D1 × · · · ×Dk with bottom (⊥1, ...,⊥k). Assuming Q(x1, ..., xk) is an

inclusive predicate, if Q(⊥1, ...,⊥k) and

∀x1 ∈ D1, ..., xk ∈ Dk. Q(x1, ..., xk) ⇒ Q(F (x1, ..., xk))

then Q(fix(F)).

Formal semantics of programming languages Y. Deng@ECNU 208

10.2 Inclusive sets and predicates

Basic relations: Let D be a cpo. The binary relations

{(x, y) ∈ D ×D | x ⊑ y} and {(x, y) ∈ D ×D | x = y}

are inclusive subsets of D×D. So the predicates x ⊑ y, x = y are inclusive.

Inverse image: Let f : D → E be a continuous function between cpo’s D

and E. If P is an inclusive subset of E then the inverse image

f−1P = {x ∈ D | f(x) ∈ P}

is an inclusive subset of D.

Formal semantics of programming languages Y. Deng@ECNU 209

10.2 Inclusive sets and predicates

Substitution: Inclusive predicates are closed under the substitution of

terms for their variables, provided the terms are continuous in their

variables. Let Q(y1, · · · , yl) be an inclusive predicate of E1 × · · · × El, i.e.

P =def {(y1, ..., yl) ∈ E1 × · · · × El | Q(y1, · · · , yl)}

is an inclusive set. Suppose e1, · · · , el are expressions for elements of

E1, · · · , El, continuous in their variables x1, · · · , xk over D1, · · · , Dk. Then

function f =def λx1, · · · , xk. (e1, ..., el) is continuous. Thus

f−1P =def {(x1, ..., xk) ∈ D1 × · · · ×Dk | Q(e1, · · · , el)}

is inclusive, and thus Q(e1, · · · , el) is an inclusive predicate of

D1 × · · · ×Dk.

E.g. Take f = λx ∈ D. (x, c). If R(x, y) is an inclusive predicate of D × E,

then R(x, c), obtained by fixing y to a constant c is an inclusive predicate

of D.

Formal semantics of programming languages Y. Deng@ECNU 210

10.2 Inclusive sets and predicates

Logical operation: Let D be a cpo. Then D (predicate “true”) and ∅

(“false”) are inclusive. Let P,Q ⊆ D be inclusive, then P ∪Q and P ∩Q

are inclusive. That is, if P (x1, ..., xk) and Q(x1, ..., xk) are inclusive

predicates then so are P (x1, ..., xk) or Q(x1, ..., xk) and

P (x1, ..., xk) & Q(x1, ..., xk).

If Pi, i ∈ I is an indexed family of inclusive subsets of E then so is
⋂

i∈I Pi.

Note that infinite unions of inclusive subsets need not be inclusive, and

thus inclusive predicates are not generally closed under ∃-quantification.

Formal semantics of programming languages Y. Deng@ECNU 211

10.2 Inclusive sets and predicates

Direct image under order-monics: Let D,E be cpo’s. A continuous

function f : D → E is an order-monic iff f(d) ⊑ f(d′) ⇒ d ⊑ d′ for all

d, d′ ∈ D. E.g. the “lifting” function ⌊−⌋ and injection functions ini

associated with a sum are order-monics.

If P is inclusive then so is its direct image fP where f is an order-monic.

Thus, if Q(x) is an inclusive predicate of D then ∃x ∈ D. y = f(x) & Q(x)

with free variable y ∈ E, is an inclusive predicate of E.

Formal semantics of programming languages Y. Deng@ECNU 212

10.2 Inclusive sets and predicates

Discrete cpo’s: Any subset of a discrete cpo, and any predicate on a

discrete cpo, are inclusive.

Product cpo’s: Let Pi ⊆ Di be inclusive subsets. Then

P1 × · · · × Pk = {(x1, · · · , xk) | x1 ∈ P1 & · · · & xk ∈ Pk}

is an inclusive subset of the product D1 × · · · ×Dk as

P1 × · · · × Pk = π−1
1 P1 ∩ · · · ∩ π−1

k Pk.

Each inverse image π−1
i Pi is inclusive, and is their intersection. P (x1, ..., xk)

is inclusive in each argument separately, if for each i, the predicate

P (d1, ..., di−1, xi, di+1, ..., dk) got by fixing all but the ith argument, is an

inclusive predicate of Di. If P (x1, ..., xk) is inclusive then it is inclusive in each

argument separately. The converse does not hold in general. Consider the

product cpo Ω× Ω, and the predicate P (x, y) =def (x = y & x 6= ∞).

Formal semantics of programming languages Y. Deng@ECNU 213

10.2 Inclusive sets and predicates

Function space: Let D,E be cpo’s, and P ⊆ D,Q ⊆ E be inclusive

subsets. Then

P → Q =def {f ∈ [D → E] | ∀x ∈ P.f(x) ∈ Q}

is an inclusive subset of the function space [D → E]. Thus, the predicate

∀x ∈ D. P (x) ⇒ Q(f(x)), with free variable f ∈ [D → E], is inclusive

when P (x), Q(y) are inclusive predicates of D,E respectively.

Lifting: Let P be an inclusive subset of a cpo D. As ⌊−⌋ is an

order-monic, the direct image {⌊d⌋ | d ∈ P} is an inclusive subset of D⊥. If

Q(x) is an inclusive predicate of D, then ∃x ∈ D. y = ⌊x⌋ & Q(x) with free

variable y ∈ D⊥, is an predicate of D⊥.

Formal semantics of programming languages Y. Deng@ECNU 214

10.2 Inclusive sets and predicates

Sum: Let Pi be an inclusive subset of the cpo Di. Then

P1 + · · ·+ Pk = in1P1 ∪ · · · ∪ inkPk

is an inclusive subset of the sum D1 + · · ·+Dk, because each injection is

an order-monic. Thus the predicate

(∃x1 ∈ D1. y = in1(x1) &Q1(x1)) or · · · or (∃xk ∈ Dk. y = ink(xk) &Qk(xk))

with free variables y ∈ D1 + · · ·+Dk is an inclusive predicate of the sum if

each Qi(xi) is inclusive in Di.

Proposition 0.53 Any predicate of the form ∀x1, ..., xn. P is inclusive

where x1, ..., xn are variables ranging over specific cpo’s, and P is built up

by conjunctions and disjunctions of basic predicates of the form e0 ⊑ e1 or

e0 = e1, where e0, e1 are expressions in the metalanguage of expressions

from Section 8.4.

Formal semantics of programming languages Y. Deng@ECNU 215

10.3 Well-founded induction

Let ≺ be a well founded relation on a set A. Let P be a property. Then

∀a ∈ A.P (a) iff ∀a ∈ A. ((∀b ≺ a. P (b)) ⇒ P (a))

Well founded relations:

• Product: If ≺1 and ≺2 are well-founded, taking

(a1, a2) � (a′1, a
′
2) ⇔ a1 �1 a′1 and a2 �2 a′2 determines a well

founded relation ≺= (� \IdA1×A2)

• Lexicographic products:

(a1, a2) ≺lex (a′1, a
′
2) ⇔ a1 ≺1 a′1 or (a1 = a′1 & a2 ≺2 a′2)

• Inverse image: Let f : A → B be a function and ≺B is well-founded on

B, then so is ≺A on A, where a ≺A a′ ⇔ f(a) ≺B f(a′)

Formal semantics of programming languages Y. Deng@ECNU 216

10.3 Well-founded induction: an example

Ackermann’s function.

A(x, y) = if x then y + 1 else

if y then A(x− 1, 1) else

A(x− 1, A(x, y − 1))

For call-by-value, this declaration denotes the least function a ∈ [N2,N⊥]

s.t.

a(m,n) =

⌊n+ 1⌋ if m = 0

a(m− 1, 1) if m 6= 0 & n = 0

let l ⇐ a(m,n− 1) . a(m− 1, l) otherwise

for all m,n ∈ N. The fact that a(m,n) terminates is shown by

well-founded induction on (m,n) ordered lexicographically.

Formal semantics of programming languages Y. Deng@ECNU 217

10.3 Well-founded recursion

Notation: Each element b ∈ B has a set of predecessors

≺−1 {b} = {b′ ∈ B | b′ ≺ b}. The restriction of function f : B → C to

B′ ⊆ B is f ↾ B′ = {(b, f(b)) | b ∈ B′}

Theorem 0.54 Let ≺ be a well-founded relation on set B. Suppose

F (b, h) ∈ C, for all b ∈ B and functions h :≺−1 {b} → C. There is a unique

f : B → C s.t. ∀b ∈ B. f(b) = F (b, f ↾≺−1 {b})

Proof: First show by well-founded induction a uniqueness property P (x):

∀y ≺∗ x. f(y) = F (y, f ↾≺−1 {y}) & g(y) = F (y, g ↾≺−1 {y})

⇒ f(x) = g(x)

for any x ∈ B. For any x ∈ B, assume P (z) for every z ≺ x. Then

f(z) = g(z). Thus f ↾≺−1 {x} = g ↾≺−1 {x}. It follows that

f(x) = F (x, f ↾≺−1 {x}) = F (x, g ↾≺−1 {x}) = g(x), thus P (x).

Formal semantics of programming languages Y. Deng@ECNU 218

Then show the existence of that function f . We need to prove a property

Q(x), for all x ∈ B, by well-founded induction,

∃fx : ≺∗−1{x} → C.

∀y ≺∗ x.fx(y) = F (y, fx ↾≺−1 {y}).

Suppose ∀z ≺ x.Q(z). Then h =
⋃
{fz | z ≺ x} is a function because the

uniqueness property ensures that the functions fz agree on values assigned

to common arguments y. Taking fx = h ∪ {(x, F (x, h))} gives a function

fx : ≺∗−1{x} → C witnesses Q(x).

Now take f =
⋃

x∈B fx. The uniqueness property yields f : B → C, and f

is the unique function we required. �

Formal semantics of programming languages Y. Deng@ECNU 219

10.3 Well-founded recursion: an example

By the well founded recursion theorem, there is a unique total function

such that

ack(m,n) =

n+ 1 if m = 0

ack(m− 1, 1) if m 6= 0 & n = 0

ack(m− 1, ack(m,n− 1)) otherwise

for all m,n ≥ 0. Observe that the value of ack at (m,n) is defined in terms

of its value at the lexicographically smaller pairs (m− 1, l) and (m,n− 1).

Formal semantics of programming languages Y. Deng@ECNU 220

Chapter 11. Languages with higher types

Formal semantics of programming languages Y. Deng@ECNU 221

11.1 An eager language

Types are introduced in the language to classify different kinds of values

terms can evaluate to.

Type expressions:

τ ::= int | τ1 ∗ τ2 | τ1 → τ2

Variables x, y, ... in Var are associated with a unique type type(x).

Formal semantics of programming languages Y. Deng@ECNU 222

11.1 Syntax of terms

t ::= x |

n | t1 + t2 | t1 − t2 | t1 × t2 | if t0 then t1 else t2 |

(t1, t2) | fst(t) | Snd(t) |

λx.t | (t1 t2) |

let x ⇐ t1 in t2 |

rec y.(λx.t)

Here rec y.(λx.t) defines a function y to be λx.t; the term t can involve y.

E.g. fact ≡ rec f.(λx.if x then 1 else x× f(x− 1)).

Formal semantics of programming languages Y. Deng@ECNU 223

11.1 Typing rules

x : τ if type(x) = τ n : int

t1 : int t2 : int

t1 op t2 : int
where op is +,− or ×

t0 : int t1 : τ t2 : τ

if t0 then t1 else t2 : τ

t1 : τ1 t2 : τ2

(t1, t2) : τ1 ∗ τ2

t : τ1 ∗ τ2

fst(t) : τ1

t : τ1 ∗ τ2

Snd(t) : τ2

x : τ1 t : τ2

λx.t : τ1 → τ2

t1 : τ1 → τ2 t2 : τ1

(t1 t2) : τ2

x : τ1 t1 : τ1 t2 : τ2

let x ⇐ t1 in t2 : τ2

y : τ λx.t : τ

rec y.(λx.t) : τ

Formal semantics of programming languages Y. Deng@ECNU 224

11.1 Free variables

FV (t) of a term t is defined by structural induction on t.

FV (n) = ∅

FV (x) = {x}
...

FV (λx.t) = FV (t)\{x}

FV (let x ⇐ t1 in t2) = FV (t1) ∪ (FV (t2)\{x})

FV (rec y.(λx.t)) = FV (λx.t)\{y}

A term is closed iff FV (t) = ∅.

Formal semantics of programming languages Y. Deng@ECNU 225

11.2 Eager operational semantics

Canonical forms of a type represent the values of the type.

• Ground type: numerals are canonical forms, i.e. n ∈ Ce
int.

• Product type: if c1 ∈ Ce
τ1 & c2 ∈ Ce

τ2 then (c1, c2) ∈ Ce
τ1∗τ2 .

• Function type: λx.t ∈ Ce
τ1→τ2 if λx.t : τ1 → τ2 and λx.t is closed.

NB: Canonical forms are special kinds of closed terms.

Formal semantics of programming languages Y. Deng@ECNU 226

11.2 Evaluation rules

c →e c where c ∈ Ce
τ

t1 →e n1 t2 →e n2

(t1 op t2) →
e n1 op n2

where op is +,−,×

t0 →e 0 t1 →e c1

if t0 then t1 else t2 →e c1

t0 →e n t2 →e c2 n 6≡ 0

if t0 then t1 else t2 →e c2

t1 →e c1 t2 →e c2

(t1, t2) →
e (c1, c2)

t →e (c1, c2)

fst(t) →e c1

t →e (c1, c2)

Snd(t) →e c2

t1 →e λx.t′1 t2 →e c2 t′1[c2/x] →
e c

(t1 t2) →
e c

t1 →e c1 t2[c1/x] →
e c2

let x ⇐ t1 in t2 →e c2
rec y.(λx.t) →e λx.(t[rec y.(λx.t)/y])

Formal semantics of programming languages Y. Deng@ECNU 227

11.2 Eager operational semantics

Evaluation is deterministic and respects types.

Proposition 0.55 If t →e c and t →e c′ then c ≡ c′.

If t →e c and t : τ then c : τ .

Formal semantics of programming languages Y. Deng@ECNU 228

11.3 Eager denotational semantics

Guiding idea: denote t as an element of (V e
τ)⊥ where V e

τ is a cpo of values

of type τ .

V e
int = N

V e
τ1∗τ2 = V e

τ1 × V e
τ2

V e
τ1→τ2 = [V e

τ1 → (V e
τ2)⊥]

An environment is a function ρ : Var →
⋃
{V e

τ | t a type} which respects

types: x : τ ⇒ ρ(x) ∈ V e
τ for any x ∈ Var and type τ .

Formal semantics of programming languages Y. Deng@ECNU 229

11.3 Eager denotational semantics

[[n]]e = λρ.⌊n⌋

[[x]]e = λρ.⌊ρ(x)⌋

[[t1 op t2]]
e = λρ.([[t1]]

eρ op⊥ [[t2]]
eρ) where op is +,−,×

[[if t0 then t1 else t2]]
e = λρ.Cond([[t0]]

eρ, [[t1]]
eρ, [[t2]]

eρ)

[[(t1, t2)]]
e = λρ. let v1 ⇐ [[t1]]

eρ, v2 ⇐ [[t2]]
eρ. ⌊(v1, v2)⌋

[[fst(t)]]e = λρ. let v ⇐ [[t]]eρ. ⌊π1(v)⌋

[[Snd(t)]]e = λρ. let v ⇐ [[t]]eρ. ⌊π2(v)⌋

[[λx.t]]e = λρ. ⌊λv ∈ V e
τ1 . [[t]]

eρ[v/x]⌋ where λx.t : τ1 →

[[(t1 t2)]]
e = λρ. let ϕ ⇐ [[t1]]

eρ, v ⇐ [[t2]]
eρ. ϕ(v)

[[let x ⇐ t1 in t2]]
e = λρ. let v ⇐ [[t1]]

eρ. [[t2]]
eρ[v/x]

[[rec y.(λx.t)]]e = λρ.⌊µϕ.(λv.[[t]]eρ[v/x, ϕ/y])⌋

Formal semantics of programming languages Y. Deng@ECNU 230

11.3 Eager denotational semantics

The function Cond : N⊥ ×D ×D → D satisfies

Cond(z0, z1, z2) =

z1 if z0 = ⌊0⌋,

z2 if z0 = ⌊n⌋ for some n ∈ N with n 6= 0,

⊥ otherwise

Lemma 0.56 Let t be a typable term. Let ρ, ρ′ be environments which

agree on the free variables of t. Then [[t]]eρ = [[t]]eρ′.

Proof: By structural induction. �

Formal semantics of programming languages Y. Deng@ECNU 231

11.3 Eager denotational semantics

Lemma 0.57 [Substitution Lemma] Let s be a closed term with s : τ and

[[s]]eρ = ⌊v⌋. Let x be a variable with x : τ . Assume t : τ ′. Then t[s/x] : τ ′

and [[t[s/x]]]eρ = [[t]]eρ[v/x].

Proof: By structural induction. �

Lemma 0.58 1. If t : τ then [[t]]eρ ∈ (V e
τ)⊥, for any ρ.

2. If c ∈ Ce
τ then [[c]]eρ 6= ⊥, the bottom element of (V e

τ)⊥, for any ρ

Proof: By structural induction. �

Formal semantics of programming languages Y. Deng@ECNU 232

11.4 Agreement of eager semantics

Lemma 0.59 If t →e c then [[t]]eρ = [[c]]eρ, for any environment ρ.

Proof: By rule induction on the rules for evaluation. E.g., consider the

rule
t1 →e λx.t′1 t2 →e c2 t′1[c2/x] →

e c

(t1 t2) →
e c

. Assume

[[t1]]
eρ = [[λx.t′1]]

eρ, [[t2]]
eρ = [[c2]]

eρ and [[t′1[c2/x]]]
eρ = [[c]]eρ. Then

[[t1 t2]]
eρ = let ϕ ⇐ [[t1]]

eρ, v ⇐ [[t2]]
eρ.ϕ(v)

= let ϕ ⇐ [[λx.t′1]]
eρ, v ⇐ [[c2]]

eρ.ϕ(v)

= let ϕ ⇐ ⌊λv.[[t′1]]
eρ[v/x]⌋, v ⇐ [[c2]]

eρ.ϕ(v)

= [[t′1]]
eρ[v/x] where [[c2]]

eρ = ⌊v⌋

= [[t′1[c2/x]]]
eρ by the substitution lemma

= [[c]]eρ

�

Formal semantics of programming languages Y. Deng@ECNU 233

11.4 Convergence

• Operational convergence: t ↓e iff t →e c for some canonical form c.

• Denotational convergence: t ⇓e iff ∃v ∈ V e
τ .[[t]]

eρ = ⌊v⌋.

It follows from Lemma 0.59 that t ↓e implies t ⇓e. But the converse

implication is more difficult.

Formal semantics of programming languages Y. Deng@ECNU 234

11.4 Convergence

A tentative proof of t ⇓e ⇒ t ↓e would be by structural induction.

Consider the critical case t ≡ (t1 t2). Assume t1 ⇓e ⇒ t1 ↓e and

t2 ⇓e ⇒ t2 ↓e. Suppose t ⇓e. Because

[[t]]eρ = let ϕ ⇐ [[t1]]
eρ, v ⇐ [[t2]]

eρ. ϕ(v), this ensures t1 ⇓e and t2 ⇓e, and

so by induction t1 →e λx.t′1 and t2 →e c2 for some canonical forms. Thus

[[t]]eρ = ϕ(v) where ϕ = [[t1]]
eρ = λu.[[t′1]]

eρ[u/x] and ⌊v⌋ = [[c2]]
eρ. Hence,

[[t]]eρ = [[t′1]]
eρ[v/x] = [[t′1[c2/x]]]

eρ by the substitution lemma. Since t ⇓e we

have t′1[c2/x] ⇓
e. Now we’d like to conclude t′1[c2/x] ↓

e so t′1[c2/x] →
e c and

from the operational semantics that t →e c. But we can’t use the structural

induction hypothesis here as t′1[c2/x] is not structurally smaller than t.

Formal semantics of programming languages Y. Deng@ECNU 235

11.4 Logical relations

Define a relation .◦⊆ V e
τ × Ce

τ on types τ , and then extend it to a relation

between element d of (V e
τ)⊥ and closed term t by letting

d .τ t iff ∀v ∈ V e
τ . d = ⌊v⌋ ⇒ ∃c. t →e c & v .◦

τ c

The relations .◦
τ are defined by structural induction on types τ :

• Ground type: n .◦

int n, for all numbers n.

• Product types: (v1, v2) .
◦
τ1∗τ2 (c1, c2) iff v1 .◦

τ1 c1 & v2 .◦
τ2 c2.

• Function types: ϕ .◦
τ1→τ2 λx.t iff

∀v ∈ V e
τ1 , c ∈ Ce

τ1 . v .◦
τ1 c ⇒ ϕ(v) .τ2 t[c/x].

Formal semantics of programming languages Y. Deng@ECNU 236

11.4 Logical relations

Lemma 0.60 Let t : τ . Then

1. ⊥(V e
τ)⊥ .τ t

2. If d ⊑ d′ and d′ .τ t then d .τ t.

3. If d0 ⊑ d1 ⊑ ... ⊑ dn ⊑ ... is an ω-chain in (V e
τ)⊥ such that dn .τ t for

all n ∈ ω then
⊔

n∈ω dn .τ t.

Proof: Property 1 follows by definition. Properties 2 and 3 are shown by

structural induction on types. For ground type int they certainly hold.

Consider a function type. Let d0 ⊑ d1 ⊑ ... be an ω-chain in (V e
τ1→τ2)⊥

with dn .τ1→τ2 t for all n. Either dn = ⊥ for all n ∈ ω (easy case) or for

some n and all m ≥ n we have dm = ⌊ϕm⌋, t →e λx.t′ and

ϕm .◦
τ1→τ2 λx.t′. Assuming v .e

τ1 c we obtain ϕm(v) .τ2 t′[c/x] for m ≥ n.

By induction,
⊔

m(ϕm(v)) .τ2 t′[c/x], and so (
⊔

m ϕm)(v) .τ2 t′[c/x]

whenever v .e
τ1 c. In other words

⊔
m ϕm .◦

τ1→τ2 λx.t′ whence⊔
m dm = ⌊

⊔
m ϕm⌋ .τ1→τ2 t. �

Formal semantics of programming languages Y. Deng@ECNU 237

11.4 Agreement of eager semantics

Lemma 0.61 Let t be a typable closed term. Then t ⇓e implies t ↓e.

Proof: Show by structural induction on terms that for terms t : τ with

free variables x1 : τ1, ..., xk : τk that if ⌊v1⌋ .τ1 s1, ..., ⌊vk⌋ .τ1 sk then

[[t]]eρ[v1/x1, ..., vk/xk] .τ t[s1/x1, ..., sk/xk].

cf. pages 195-200. �

Corollary 0.62 If t is a closed term with t : int. Then

t →e n iff [[t]]eρ = ⌊n⌋

for any n ∈ int.

Formal semantics of programming languages Y. Deng@ECNU 238

11.5 A lazy language

The syntax is the same as that for the early language except for recursion.

rec x.t

The typing rule
x : t t : τ

rec x.t : τ

Free variables FV (rec x.t) = FV (t)\{x}

Formal semantics of programming languages Y. Deng@ECNU 239

11.6 Lazy operational semantics

Lazy canonical forms Cl
τ :

• Ground type: n ∈ Cl
int.

• Product type: (t1, t2) ∈ Cl
τ1∗τ2 if t1 : τ1 & t2 : τ2 with t1 and t2 closed.

• Function type: λx.t ∈ Cl
τ1→τ2 if λx.t : τ1 → τ2 and λx.t is closed.

Formal semantics of programming languages Y. Deng@ECNU 240

11.6 Evaluation rules

c →l c where c ∈ Cl
τ

t1 →l n1 t2 →l n2

(t1 op t2) →
l n1 op n2

where op is +,−,×

t0 →l 0 t1 →l c1

if t0 then t1 else t2 →l c1

t0 →l n t1 →l c2 n 6≡ 0

if t0 then t1 else t2 →l c2

t →l (t1, t2) t1 →l c1

fst(t) →l c1

t →l (t1, t2) t2 →l c2

Snd(t) →l c2

t1 →l λx.t′1 t′1[c2/x] →
l c

(t1 t2) →
l c

t2[t1/x] →
l c

let x ⇐ t1 in t2 →l c

t[rec x.t/x] →l c

rec x.t →l c

Formal semantics of programming languages Y. Deng@ECNU 241

11.6 Lazy operational semantics

Evaluation is deterministic and respects types.

Proposition 0.63 If t →l c and t →l c′ then c ≡ c′.

If t →l c and t : τ then c : τ .

Formal semantics of programming languages Y. Deng@ECNU 242

11.7 Lazy denotational semantics

Guiding idea: denote t as an element of (V l
τ)⊥ where V l

τ is a cpo of values

of type τ .

V l
int = N

V l
τ1∗τ2 = (V l

τ1)⊥ × (V l
τ2)⊥

V l
τ1→τ2 = [(V l

τ1)⊥ → (V l
τ2)⊥]

An environment is a function ρ : Var →
⋃
{(V l

τ)⊥ | t a type} which

respects types: x : τ ⇒ ρ(x) ∈ V l
τ for any x ∈ Var and type τ .

Formal semantics of programming languages Y. Deng@ECNU 243

11.7 Lazy denotational semantics

[[n]]l = λρ.⌊n⌋

[[x]]l = λρ.⌊ρ(x)⌋

[[t1 op t2]]
l = λρ.([[t1]]

lρop⊥[[t2]]
lρ) where op is +,−,×

[[if t0 then t1 else t2]]
l = λρ.Cond([[t0]]

lρ, [[t1]]
lρ, [[t2]]

lρ)

[[(t1, t2)]]
l = λρ. ⌊([[t1]]

lρ, [[t2]]
lρ)⌋

[[fst(t)]]l = λρ. let v ⇐ [[t]]lρ. ⌊π1(v)⌋

[[Snd(t)]]l = λρ. let v ⇐ [[t]]lρ. ⌊π2(v)⌋

[[λx.t]]l = λρ. ⌊λv ∈ (V l
τ1)⊥. [[t]]

lρ[v/x]⌋ where λx.t : τ1

[[(t1 t2)]]
l = λρ. let ϕ ⇐ [[t1]]

lρ. ϕ([[t2]]
lρ)

[[let x ⇐ t1 in t2]]
l = λρ. [[t2]]

lρ[[[t1]]
lρ/x]

[[rec x.t]]l = λρ.(µv.[[t]]lρ[v/x])

Formal semantics of programming languages Y. Deng@ECNU 244

11.7 Lazy denotational semantics

The function Cond : N⊥ ×D ×D → D satisfies

Cond(z0, z1, z2) =

z1 if z0 = ⌊0⌋,

z2 if z0 = ⌊n⌋ for some n ∈ N with n 6= 0,

⊥ otherwise

Lemma 0.64 Let t be a typable term. Let ρ, ρ′ be environments which

agree on FV (t). Then [[t]]lρ = [[t]]lρ′.

Proof: By structural induction. �

Formal semantics of programming languages Y. Deng@ECNU 245

11.7 Lazy denotational semantics

Lemma 0.65 [Substitution Lemma] Let s be a closed term with s : τ . Let

x be a variable with x : τ . Assume t : τ ′. Then t[s/x] : τ ′ and

[[t[s/x]]]lρ = [[t]]lρ[[[s]]lρ/x].

Proof: By structural induction. �

Lemma 0.66 1. If t : τ then [[t]]lρ ∈ (V l
τ)⊥, for any ρ.

2. If c ∈ Cl
τ then [[c]]lρ 6= ⊥, the bottom element of (V l

τ)⊥, for any ρ.

Proof: By structural induction. �

Formal semantics of programming languages Y. Deng@ECNU 246

11.8 Agreement of lazy semantics

Lemma 0.67 If t →l c then [[t]]lρ = [[c]]lρ, for any environment ρ.

Proof: By rule induction on the rules for evaluation. E.g., consider the

rule
t1 →l λx.t′1 t′1[t2/x] →

l c

(t1 t2) →
l c

. Assume [[t1]]
lρ = [[λx.t′1]]

lρ and

[[t′1[t2/x]]]
lρ = [[c]]lρ. Then

[[t1 t2]]
lρ = let ϕ ⇐ [[t1]]

lρ.ϕ([[t2]]
lρ)

= let ϕ ⇐ [[λx.t′1]]
lρ.ϕ([[t2]]

lρ)

= let ϕ ⇐ ⌊λv.[[t′1]]
lρ[v/x]⌋.ϕ([[t2]]

lρ)

= [[t′1]]
lρ[[[t2]]

lρ/x]

= [[t′1[t2/x]]]
eρ by the substitution lemma

= [[c]]eρ

�

Formal semantics of programming languages Y. Deng@ECNU 247

11.8 Convergence

• Operational convergence: t ↓l iff t →l c for some canonical form c.

• Denotational convergence: t ⇓l iff ∃v ∈ V l
τ .[[t]]

lρ = ⌊v⌋.

It follows from Lemma 0.67 that t ↓l implies t ⇓l. But the converse

implication is more difficult.

Formal semantics of programming languages Y. Deng@ECNU 248

11.8 Logical relations

Define a relation .◦⊆ V l
τ × Cl

τ on types τ , and then extend it to a relation

between element d of (V l
τ)⊥ and closed term t by letting

d .τ t iff ∀v ∈ V l
τ . d = ⌊v⌋ ⇒ ∃c. t →l c & v .◦

τ c

The relations .◦
τ are defined by structural induction on types τ :

• Ground type: n .◦

int n, for all numbers n.

• Product types: (v1, v2) .
◦
τ1∗τ2 (t1, t2) iff v1 .τ1 t1 & v2 .τ2 t2.

• Function types: ϕ .◦
τ1→τ2 λx.t iff ∀v ∈ (V l

τ1)⊥, closed

u : τ1. v .τ1 u ⇒ ϕ(v) .τ2 t[u/x].

Formal semantics of programming languages Y. Deng@ECNU 249

11.8 Logical relations

Lemma 0.68 Let t : τ . Then

1. ⊥(V l
τ)⊥

.τ t

2. If d ⊑ d′ and d′ .τ t then d .τ t.

3. If d0 ⊑ d1 ⊑ ... ⊑ dn ⊑ ... is an ω-chain in (V l
τ)⊥ such that dn .τ t for

all n ∈ ω then
⊔

n∈ω dn .τ t.

Proof: Similar to the proof of Lemma 0.60. Property 1 follows by

definition. Properties 2 and 3 are shown by structural induction on types.

�

Formal semantics of programming languages Y. Deng@ECNU 250

11.8 Agreement of lazy semantics

Lemma 0.69 Let t be a typable closed term. Then t ⇓l implies t ↓l.

Proof: Similar to the proof of Lemma 0.61. Show by structural induction

on terms that for terms t : τ with free variables x1 : τ1, ..., xk : τk that if

⌊v1⌋ .τ1 s1, ..., ⌊vk⌋ .τ1 sk then

[[t]]lρ[v1/x1, ..., vk/xk] .τ t[s1/x1, ..., sk/xk].

cf. pages 206-209. �

Corollary 0.70 If t is a closed term with t : int. Then

t →l n iff [[t]]lρ = ⌊n⌋

for any n ∈ int.

Formal semantics of programming languages Y. Deng@ECNU 251

11.9 Fixed-point operators

Let Rl ≡ rec Y.(λf.(f(Y f))) then [[Rl(λx.t)]]lρ = [[rec x.t]]lρ. However,

[[Rl(λx.t)]]eρ = ⊥.

Let Re ≡ rec Y. (λf.λx.((f(Y f))x)). Then

[[Re(λy.λx.t)]]eρ = [[rec y.(λx.t)]]eρ.

Formal semantics of programming languages Y. Deng@ECNU 252

11.10 Observations

The operational and denotational semantics agree on the “observations of

interest”, which expresses the adequacy of the denotational with respect to

the operational semantics.

The adequacy wrt convergence will ensure that the two semantics also

agree on how terms of type int evaluate. Consider the context

C ≡ if then 0 else Ω, where Ω : τ is a closed term which diverges. Then

for both the eager and lazy semantics,

t → n ⇔ C[t] ↓

⇔ C[t] ⇓ by adequacy

⇔ [[t]]ρ = n.

Formal semantics of programming languages Y. Deng@ECNU 253

11.10 Full abstraction

Suppose the observations of interest concern just the convergence

behaviour of terms, then

t1 ∼ t2 iff (C[t1] ↓⇔ C[t2] ↓)

for all contexts C[] for which C[t1], C[t2] are closed and typable. A

denotational semantics is fully abstract wrt the observations, if

[[t1]] = [[t2]] iff t1 ∼ t2

The “only if” direction follows provided the denotational semantics is

adequate, the “if” direction is hard because in our cpo’s of denotations

there are elements like parallel or which cannot be defined by terms. por is

a continuous function on T⊥ extending the usual disjunction with the

property that por(true,⊥) = por(⊥, true) = true.

Formal semantics of programming languages Y. Deng@ECNU 254

11.11 Sums

Extend our language with the constructions:

inl(t); inr(t); case t of inl(x1).t1, inr(x2).t2.

Free variables

FV (case t of inl(x1).t1, inr(x2).t2) = FV (t)∪(FV (t1)\{x1})∪(FV (t2)\{x2})

Typing rules

t : τ1

inl(t) : τ1 + τ2

t : τ2

inr(t) : τ1 + τ2

t : τ1 + τ2 x1 : τ1 x2 : τ2 t1 : τ t2 : τ

case t of inl(x1).t1, inr(x2).t2 : τ

Formal semantics of programming languages Y. Deng@ECNU 255

11.11 Sums in eager semantics

Adding two canonical forms

inl(c) ∈ Ce
τ1+τ2 if c ∈ Ce

τ1 , inr(c) ∈ Ce
τ1+τ2 if c ∈ Ce

τ2

The operational rules:

t →e inl(c1) t1[c1/x1] →
e c

(case t of inl(x1).t1, inr(x2).t2) →
e c

t →e inr(c2) t2[c2/x2] →
e c

(case t of inl(x1).t1, inr(x2).t2)

For denotational semantics, the cpo of values of a sum type:

V e
τ1+τ2 = V e

τ1 + V e
τ2 .

Formal semantics of programming languages Y. Deng@ECNU 256

11.11 Sums in lazy semantics

Adding two canonical forms

inl(t) ∈ Cl
τ1+τ2 if t : τ1 and t is closed

inr(t) ∈ Cl
τ1+τ2 if t : τ2 and t is closed

The operational rules:

t →l inl(t′) t1[t
′/x1] →

l c

(case t of inl(x1).t1, inr(x2).t2) →
l c

t →l inr(t′) t2[t
′/x2] →

l c

(case t of inl(x1).t1, inr(x2).t2) →

For denotational semantics, the cpo of values of a sum type:

V l
τ1+τ2 = (V l

τ1)⊥ + (V l
τ2)⊥.

Formal semantics of programming languages Y. Deng@ECNU 257

PCF

Formal semantics of programming languages Y. Deng@ECNU 258

The syntax of pure PCF

Formal semantics of programming languages Y. Deng@ECNU 259

Axiomatic semantics

Formal semantics of programming languages Y. Deng@ECNU 260

Operational semantics

M =op N if, for every context C[] s.t. both C[M] and C[N] are programs,

we have eval(C[M]) ≃ eval(C[N]). Here eval is an evaluation partial

function with eval(M) = N iff M may be reduced to normal form N .

Formal semantics of programming languages Y. Deng@ECNU 261

Denotational semantics

An environment ρ is a mapping from variables to
⋃

σ V
σ with ρ(x) ∈ V σ if

x : σ.

• A type σ is denoted as a cpo V σ, with N⊥ and T⊥ as bases and

V σ×τ = V σ × V τ and V σ→τ = [V σ → V τ].

• Constants 0, 1, 2, ... and true, false are interpreted as the standard

natural number and boolean elements of N⊥ and T⊥.

• + and Eq? are interpreted as the lifted versions, +⊥ and Eq?⊥, of the

standard functions that are strict in both arguments. E.g.

⊥N +⊥ x = ⊥N and Eq?⊥ ⊥T x = ⊥T.

Formal semantics of programming languages Y. Deng@ECNU 262

Denotational semantics

[[c]]ρ = Const(c)

[[x]]ρ = ρ(x)

[[if P then M else N]]ρ =

[[M]]ρ if [[P]]ρ = true

[[N]]ρ if [[P]]ρ = false

⊥ otherwise

[[MN]]ρ = apply([[M]]ρ, [[N]]ρ)

[[λx : τ. M]]ρ = λv ∈ V τ . [[M]]ρ[v/x]

[[Proj1M]]ρ = Proj1[[M]]ρ

[[Proj2M]]ρ = Proj2[[M]]ρ

[[〈M,N〉]]ρ = 〈[[M]]ρ, [[N]]ρ〉

[[fixσ M]]ρ =
⊔

n≥0([[M]]ρ)n(⊥σ)

Formal semantics of programming languages Y. Deng@ECNU 263

Soundness

Theorem 0.71 Let M and N be expressions of PCF over typed variables

from Γ. If Γ ⊲ M = N : σ is provable from the axioms for PCF, then the

CPO model satisfies that equation.

Corollary 0.72 If Γ ⊲M : σ is well-typed term of PCF, and M ։ N , then

the CPO model satisfies the equation Γ ⊲ M = N : σ.

For PCF terms, =ax ⊆ =den ⊆ =op and

(∀ programs M)(∀ results N) M =ax N iff M =den N iff M =op N

Formal semantics of programming languages Y. Deng@ECNU 264

Full abstract

The extension of PCF with parallel-or, PCF+por, is obtained by adding

the constant por : T → T → T with the following reduction axioms.

por true M → true

por M true → true

por false false → false

Theorem 0.73 For PCF+por, the relations =den, determined by the

CPO model and =op, determined by the reduction system, are identical.

The proof of =den⊆=op involves an approximation theorem, the other

direction makes use of algebraic PCPOs.

Formal semantics of programming languages Y. Deng@ECNU 265

Algebraic PCPO

An element x of a cpo P is compact if, for every directed set X ⊆ P with

x ⊑
⊔

X , we have x ⊑ x′ for some x′ ∈ X . Let K(P) be the set of compact

elements of P . The cpo P is algebraic if every p ∈ P is the limit of its

compact approximants, i.e. p =
⊔
{x ⊑ p | x ∈ K(P)}. Two elements p, p′

of a cpo are consistent if there is some p′′ ∈ P with p, p′ ⊑ p′′. A subset

X ⊆ P is pairwise consistent if every pair of elements from X is consistent.

A pcpo (pairwise-consistent complete cpo) is a partial order with the

property that every subset that is either directed or pairwise consistent has

a least upper bound.

Formal semantics of programming languages Y. Deng@ECNU 266

