E-Unification AC-Unification

ChuChen

PDF created with pdfFactory Pro trial version www.pdffactory.com

E-Unification

• A fixed set of identities E:

given terms s and t, find a substitution σ such that $\sigma(s) \approx_{E} \sigma(t)$. This substitution is called an E-unifier of s and t.

For example: syntactic unification $E = \emptyset$.

For example: assume that E implies that the binary function symbol f is commutative. $f(x,y) \approx_F f(y,x)$.

Example

 S={f(x, y) =? f(a, b)} The substitution σ:={x->b ; y->a } is not a syntactic unifier of S However it is a E-Unifier of S ,since f(b, a) ≈_F f(a, b).

Definition

• An E-Unification problem over Σ is a finite set of equation S={ $s_1 \approx_E t_1$,...., $s_n \approx_E t_n$ } between Σ -terms with variables in V. An E-unifier or E-Solution of S is a substitution σ such that $\sigma(s_i) \approx_E \sigma(t_i)$ for i=1,2,....,n. The set of all E-Unifiers of S is denoted by \ddot{U}_E (S) and S is called E-unifiable if \ddot{U}_E (S) $\neq Ø$.

E-Unification

- Sig(E) denotes the signature of E ,i.e. all the function symbols occurring in E.
- And let Σ be a signature that contains E.
- S is an elementary E-unification problem iff Sig(E)=∑
- S is an E-unification problem with constants iff ∑- Sig(E) consists of constant symbols.
- In a general E-unification problem , ∑- Sig(E) may contain arbitrary function symbols.

The Order

• Let X be a set of variables. A substitution σ is more general module \approx_E than a substitution σ' on X if there is a substitution σ such that $\sigma'(x)$ $\approx_E \sigma(\sigma(x))$ for all $x \in X$. In this case we write $\sigma \leq_e^x \sigma'$. We also say that σ' is an E-instance of σ on X.

Complete Set

- Let S be a E-Unification problem over Σ and let X:=Vars (S) .A complete set of E-Unifiers of S is a set of substitutions ς that satisfies :
- Each $\sigma \in \varsigma\,$ is an E-unifier of S
- for all $\theta \in \ddot{U}_{E}(S)$ there exists $\sigma \in \varsigma$ such that $\sigma \leq^{x} \theta$.

Minimal Complete Set

• A minimal complete set of E-unifiers is a complete set of E-unifiers M such that for all $\sigma, \sigma' \in M$, $\sigma \leq^{x} \sigma'$ implies that $\sigma = \sigma'$ Example: C:={ f(x,y) \approx f(y,x)} S:={f(x,y) $\approx cf(a,b)$ } $\sigma_1 = \{x->a, y->b\}$ and $\sigma_2 = \{x->b, y->a\}$

Mapping Between the Minimal

• Assume that M_1 and M_2 are minimal complete sets of E-unifiers of S. Then there exists a bijective mapping $B : M_1 \rightarrow M_2$ such that

 $\sigma_1 \sim^x_E B(\sigma_1)$ holds for all $\sigma_1 \in M_1$

Unification Type

- Unitary: iff a minimal complete set of Eunifiers exists for all E-Unification problems S with cardinality ≤1.
- Finitary: iff a minimal complete set of Eunifiers exists for all E-Unification problems S with finite cardinality .

Unification Type

- Infinitary: iff a minimal complete set of Eunifiers exists for all E-Unification problems S, and there exists an E-Unification problem for which this set is infinitary.
- Zero: iff there exists an E-Unification problem that does not have a minimal complete set of E-unifiers.

• The equational theory induced by the set of identities :

$$\mathsf{AC}:=\{(\mathsf{x}^*\mathsf{y})^*\mathsf{z}\approx\mathsf{x}^*(\mathsf{y}^*\mathsf{z}),\mathsf{x}^*\mathsf{y}\approx\mathsf{y}^*\mathsf{x}\},\$$

which axiomatizes the associativity and commutativity of a single binary function symbol *.

- It is more convenient to start with unification modulo the theory induced by AC1:=AC ∪ {x*1≈x}
- $\Sigma_1 = \Sigma \cup \{1\}$ for a constant symbol 1.
- The infinite set of variables V:={ x₁,x₂.....x_n}
- The module symbol \approx_{AC} -> \approx_{AC1}
- T(Σ₁,V)

PDF created with pdfFactory Pro trial version <u>www.pdffactory.com</u>

Lemma

- The number of occurrences of the variable x in the term t is denoted by |t|_x.
- Lemma: Let s , t \in T(Σ_1 ,V)

$$s \approx_{AC1} t \text{ iff } |s|_x = |t|_x \text{ for all } x \in V.$$

Proof => by induction on the number of rewriting steps to transform s to t. $<= s \approx_{AC1} X_1^{k1} \dots X_n^{kn}$, $t \approx_{AC1} X_1^{l1} \dots X_n^{ln}$

PDF created with pdfFactory Pro trial version www.pdffactory.com

Vector

- Given a finite set $X_n := \{x_1, x_2, \dots, x_n\}$ $s \in T(\Sigma_1, X_n)$ is uniquely determined by vector $V_n(s) = (|s|_{x1}, |s|_{x2}, \dots, |s|_{xn});$
- Lemma:

Let
$$s,t \in T(\Sigma_1, X_n)$$
.
(1) $s \approx_{AC1} t$ iff $V_n(s) = V_n(t)$ iff $s \approx t$.
(2) $V n(s) \in N^n - 0$

Equation

• Let n, m ≥ 0 , s $\in T(\Sigma_1, X_n)$ σ is a substitution and $\sigma(x_i) \in T(\Sigma_1, X_m)$, given $V_n(s)$ and $V_m(\sigma(x_i))$ for all $x_i \in X_n$ we can compute $V_m(\sigma(s))$:

$$|\sigma(\mathbf{s})| = \sum_{i=1}^{n} |\mathbf{s}|_{xi} |\sigma(\mathbf{x}_i)|_{xj}$$

PDF created with pdfFactory Pro trial version www.pdffactory.com

The Matrix

 M_{n,m}(σ) denotes the n*m matrix whose rows are vectors V_m(σ(x_i)).

Lemma

• Lemma:

 $V_m(\sigma(s)) = V_n(s) \cdot M_{n,m}(\sigma)$. Example:

$$s := x_1^2 * x_2$$
 $\sigma := \{x_1 - > x_2 x_3, x_2 - > x_1^2 x_3\}$
then

$$V_2(s) = (2,1)$$

$$\sigma(s) = (x_2 x_3)^2 x_1^2 x_3 \approx_{AC} x_1^2 x_2^2 x_3^3 |$$

Lemma

$$M_{2,3}(\sigma) = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
$$V_3(\sigma(s)) = (2,2,3) = (2,1) \cdot \begin{pmatrix} 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$

PDF created with pdfFactory Pro trial version www.pdffactory.com

AC1-Unification Problem

- An elementary AC1-unification problem: $S:=\{s_1 \approx_{AC1} t_1, \dots, s_n \approx_{AC1} t_n\} X_n :=\{x_1, \dots, x_n\} be$ the set of all variables occurring in S, let σ be a substitution and there exists m ≥ 1 such that $\sigma(x_i) \in T(\Sigma_1, X_m)$ for all $x_i \in X_n$.
- Lemma:

σ is a AC1-unifier of S $V_n(s_i).M_{n,m}(σ) = V_n(t_i).M_{n,m}(σ)$ for all i=1.....n

DE(S)

- Let M_{k,n} (S) be the integer matrix whose rows are the vectors V_n(s_i)-V_n(t_i) i.e. the matrix whose entry at position (i,j) is |s_i|_{xj}-|t_i|_{xj}
 K denotes the cardinality of problem set S.
- σ is an AC1-unifier of S iff the columns of M_{n,m} (σ) are (no-negative integer) solutions of the system of homogeneous linear Diophantine equations

finite generating set

• Let M_{k,n} be a k*n integer matrix ,and let

 $M_{k,n} \, , \, y = 0 \quad (*)$ be the system of homogeneous linear Diophantine equations induced by $M_{k,n}$

• A finite set $V = \{v_1, v_2, ..., v_n\}$ is a generating set for the set of all solutions of (*) iff every element of V solves (*) and for each $v \in N^n$ that solves (*) there exist aa $\in N$ such that

 $V = V_1 . a_1 + ... + V_r . a_r$

Finite Generating Set

- A finite generating set W:={v₁,....,v_n} for DE(S) There exists one substitution σ for every matrix M_{n,r} (W).
- Theorem : The substitution σ_w induced by the finite generating set W of all non-negative integer solutions of DE(S) is a most general AC1-unifier of S.

- Corollary: AC1 is *unitary* for elementary unification.
- Fact:
- Every elementary AC1-unification problem has a solution.

- An (elementary) AC-unification problem S is an AC1-unification problem in which the unit 1 does not occur.
- Any AC-unifier of S is also an AC1-unifier of S.

 Lemma: The elementary AC-unification problem S is solvable iff the system of homogeneous linear Diophantine equations DE(S) has a solution in the positive integers.

•
$$S:=\{x_1x_2 = ?x_3^2\}$$

• $\Phi:=\{x_1 - > x_1 x_2^2, x_2 - > x_1, x_3 - > x_1 x_2\}$

- Theorem: Solvability of elementary ACunification problem is decidable in polynomial time.
- This problem can easily be turned into a linear programming problem, which is solvable in polynomial time.