E-Unification AC-Unification

ChuChen

E-Unification

- A fixed set of identities E :
given terms s and t, find a substitution σ such that $\sigma(\mathrm{s}) \approx_{\mathrm{E}} \sigma(\mathrm{t})$. This substitution is called an E -unifier of s and t .
For example: syntactic unification $E=\varnothing$.
For example: assume that Eimplies that the binary function symbol f is commutative. $f(x, y) \approx_{E} f(y, x)$.

Example

- $S=\{f(x, y)=? f(a, b)\}$

The substitution $\sigma:=\{x->b ; y$->a $\}$ is not a syntactic unifier of S However it is a E -Unifier of S , since $f(b, a) \approx_{E} f(a, b)$.

Definition

- An E-Unification problem over Σ is a finite set of equation $\mathrm{S}=\left\{\mathrm{S}_{1} \approx_{\mathrm{E}} \mathrm{t}_{1}, \ldots, \mathrm{S}_{\mathrm{n}} \approx_{\mathrm{E}} \mathrm{t}_{\mathrm{n}}\right\}$ between Σ-terms with variables in V. An E-unifier or ESolution of S is a substitution σ such that $\sigma\left(s_{i}\right) \approx_{E} \sigma\left(t_{i}\right)$ for $i=1,2, \ldots . . ., n$. The set of all $E-$ Unifiers of S is denoted by $\ddot{U}_{E}(S)$ and S is called E-unifiable if $\ddot{U}_{\mathrm{E}}(\mathrm{S}) \neq \varnothing$.

E-Unification

- $\operatorname{Sig}(E)$ denotes the signature of E,i.e. all the function symbols occurring in E.
- And let Σ be a signature that contains E.
- S is an elementary E-unification problem iff Sig(E) $=\Sigma$
- S is an E-unification problem with constants iff $\Sigma-\operatorname{Sig}(\mathrm{E})$ consists of constant symbols.
- In a general E-unification problem , Σ - Sig(E) may contain arbitrary function symbols.

The Order

- Let X be a set of variables. A substitution σ is more general module \approx_{E} than a substitution σ^{\prime} on X if there is a substitution σ such that $\sigma^{\prime}(x)$ $\approx_{E} \sigma(\sigma(X))$ for all $x \in X$. In this case we write $\sigma \leq_{e}^{x} \sigma^{\prime}$. We also say that σ^{\prime} is an E-instance of σ on X.

Complete Set

- Let S be a E-Unification problem over Σ and let $X:=\operatorname{Vars}(S)$.A complete set of E-Unifiers of S is a set of substitutions ς that satisfies:
- Each $\sigma \in \varsigma$ is an E-unifier of S
- for all $\theta \in \ddot{U}_{\mathrm{E}}(\mathrm{S})$ there exists $\sigma \in \varsigma$ such that $\sigma \leq{ }_{E} \theta$.

M inimal Complete Set

- A minimal complete set of E-unifiers is a complete set of E-unifiers M such that for all $\sigma, \sigma^{\prime} \in M, \sigma \leq{ }_{E}{ }_{E} \sigma^{\prime}$ implies that $\sigma=\sigma^{\prime}$
Example: $C:=\{f(x, y) \approx f(y, x)\}$

$$
\begin{aligned}
& S:=\left\{f(x, y) \approx{ }_{c} f(a, b)\right\} \\
& \sigma_{1}=\{x->a, y->b\} \text { and } \sigma_{2}=\{x->b, y->a\}
\end{aligned}
$$

Mapping Between the Minimal

- Assume that M_{1} and M_{2} are minimal complete sets of E-unifiers of S . Then there exists a bijective mapping $B: M_{1}->M_{2}$ such that $\sigma_{1} \sim_{E} B\left(\sigma_{1}\right)$ holds for all $\sigma_{1} \in M_{1}$

Unification Type

- Unitary: iff a minimal complete set of Eunifiers exists for all E-Unification problems S with cardinality ≤ 1.
- Finitary: iff a minimal complete set of Eunifiers exists for all E-Unification problems S with finite cardinality .

Unification Type

- Infinitary: iff a minimal complete set of Eunifiers exists for all E-Unification problems S, and there exists an E-Unification problem for which this set is infinitary.
- Zero: iff there exists an E-Unification problem that does not have a minimal complete set of E-unifiers.

AC-Unification

- The equational theory induced by the set of identities:
$A C:=\left\{\left(x^{*} y\right)^{*} z \approx x^{*}\left(y^{*} z\right), x^{*} y \approx y^{*} x\right\}$, which axiomatizes the associativity and commutativity of a single binary function symbol*.

AC1-Unification

- It is more convenient to start with unification modulo the theory induced by
$\mathrm{AC1}:=\mathrm{AC} \cup\left\{\mathrm{x}^{*} 1 \approx x\right\}$
- $\Sigma_{1}=\Sigma \cup\{1\}$ for a constant symbol 1 .
- The infinite set of variables $V:=\left\{x_{1}, x_{2} \ldots \ldots . . x_{n}\right\}$
- The module symbol $\approx_{A C} \quad->\approx_{A C 1}$
- $\mathrm{T}\left(\Sigma_{1}, \mathrm{~V}\right)$

Lemma

- The number of occurrences of the variable x in the term t is denoted by $|t|_{x}$.
- Lemma: Let $s, t \in T\left(\Sigma_{1}, V\right)$

$$
s \approx_{A C 1} t \text { iff }|s|_{x}=|t|_{x} \text { for all } x \in V
$$

Proof \Rightarrow by induction on the number of rewriting steps to transform sto t.

$$
<=S \approx_{A C 1} X_{1}^{k 1} \ldots X_{n}^{k n}, t \approx_{A C 1} X_{1}^{11} \ldots X_{n}^{l n}
$$

Vector

- Given a finite set $X_{n}:=\left\{x_{1}, x_{2} \ldots . . . x_{n}\right\}$ $s \in T\left(\Sigma_{1}, X_{n}\right)$ is uniquely determined by vector $V_{n}(s)=\left(|s|_{x 1},|s|_{x 2}, \ldots|s|_{x n}\right) ;$
- Lemma:

Let $s, t \in T\left(\Sigma_{1}, X_{n}\right)$.
(1) $\mathrm{S} \approx_{A C 1} \mathrm{t}$ iff $\mathrm{V}_{\mathrm{n}}(\mathrm{s})=V_{\mathrm{n}}(\mathrm{t})$ iff $\mathrm{s} \approx \mathrm{t}$.
(2) $V n(s) \in N^{n}-0$

Equation

- Let $n, m \geq 0, s \in T\left(\Sigma_{1}, X_{n}\right)$ σ is a substitution and $\sigma\left(\mathrm{X}_{\mathrm{i}}\right) \in \mathrm{T}\left(\Sigma_{1}, X_{m}\right)$, given $V_{n}(s)$ and $V_{m}\left(\sigma\left(x_{i}\right)\right)$ for all $x_{i} \in X_{n}$ we can compute $\mathrm{V}_{\mathrm{m}}(\sigma(\mathrm{s})$):

$$
|\sigma(s)|=\sum_{i=1}^{n}|s|_{x i}\left|\sigma\left(x_{i}\right)\right|_{x j}
$$

The M atrix

- $M_{n, m}(\sigma)$ denotes the $n^{*} m$ matrix whose rows are vectors $\mathrm{V}_{\mathrm{m}}\left(\sigma\left(\mathrm{x}_{\mathrm{i}}\right)\right)$.

Lemma

- Lemma:
$V_{m}(\sigma(\mathrm{~s}))=\mathrm{V}_{\mathrm{n}}(\mathrm{s}) . M_{\mathrm{n}, \mathrm{m}}(\sigma)$.
Example:

$$
\mathrm{s}:=\mathrm{x}_{1}^{2} * \mathrm{x}_{2} \quad \sigma:=\left\{x_{1}->x_{2} x_{3}, x_{2}->x_{1}^{2} x_{3}\right\}
$$

then

$$
\begin{aligned}
& V_{2}(s)=(2,1) \\
& \sigma(\mathrm{s})=\left(\mathrm{X}_{2} \mathrm{X}_{3}\right)^{2} \mathrm{X}_{1}^{2} \mathrm{X}_{3} \approx_{A C} \mathrm{X}_{1}^{2} \mathbf{x}_{2}^{2} \mathrm{X}_{3}^{3}
\end{aligned}
$$

Lemma

$$
\begin{aligned}
& M_{2,3}(\sigma)=\left(\begin{array}{lll}
0 & 1 & 1 \\
2 & 0 & 1
\end{array}\right) \\
& V_{3}(\sigma(\mathrm{~s}))=(2,2,3)=(2,1) \cdot\left(\begin{array}{lll}
0 & 1 & 1 \\
2 & 0 & 1
\end{array}\right)
\end{aligned}
$$

AC1-Unification Problem

- An elementary AC1-unification problem: $S:=\left\{S_{1} \approx_{A C 1} t_{1}, \ldots \ldots, S_{n} \approx_{A C 1} t_{n}\right\} \quad X_{n}:=\left\{x_{1}, \ldots, X_{n}\right\}$ be the set of all variables occurring in S, let σ be a substitution and there exists $m \geq 1$ such that $\sigma\left(x_{i}\right) \in T\left(\Sigma_{1}, X_{m}\right)$ for all $x_{i} \in X_{n}$.
- Lemma:
σ is a AC1-unifier of S

$$
\begin{aligned}
& V_{n}\left(s_{i}\right) \cdot M_{n, m}(\sigma)=V_{n}\left(t_{i}\right) \cdot M_{n, m}(\sigma) \text { for all } \\
& i=1 . \ldots . . n
\end{aligned}
$$

DE(S)

- Let $M_{k, n}(S)$ be the integer matrix whose rows are the vectors $\mathrm{V}_{\mathrm{n}}\left(\mathrm{s}_{\mathrm{i}}\right)-\mathrm{V}_{\mathrm{n}}\left(\mathrm{t}_{\mathrm{i}}\right)$ i.e. the matrix whose entry at position (i, j) is $\left|s_{i}\right|_{x j}\left|t_{i}\right|_{x j}$ K denotes the cardinality of problem set S .
- σ is an AC1-unifier of S iff the columns of $M_{n, m}(\sigma)$ are (no-negative integer) solutions of the system of homogeneous linear Diophantine equations

DE(S)

finite generating set

- Let $\mathrm{M}_{\mathrm{k}, \mathrm{n}}$ be a $\mathrm{k}^{*} \mathrm{n}$ integer matrix , and let

$$
\mathrm{M}_{\mathrm{k}, \mathrm{n}} \cdot \mathrm{y}=0 \quad(*)
$$

be the system of homogeneous linear Diophantine equations induced by $\mathrm{M}_{\mathrm{k}, \mathrm{n}}$

- A finite set $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2} \ldots . . . \mathrm{V}_{\mathrm{n}}\right\}$ is a generating set for the set of all solutions of (*) iff every element of V solves $\left(^{*}\right)$ and for each $v \in \mathrm{~N}^{\mathrm{n}}$ that solves $\left({ }^{*}\right)$ there exist aa $\in N$ such that

$$
\mathrm{v}=\mathrm{v}_{1} \cdot \mathrm{a}_{1}+\ldots \ldots . . \mathrm{v}_{\mathrm{r}} \cdot \mathrm{a}_{\mathrm{r}}
$$

Finite Generating Set

- A finite generating set $W:=\left\{v_{1}, \ldots . . ., v_{n}\right\}$ for $D E(S)$ There exists one substitution σ for every matrix $M_{n, r}(W)$.

Theorem : The substitution σ_{w} induced by the finite generating set W of all non-negative integer solutions of $\mathrm{DE}(\mathrm{S})$ is a most general AC1-unifier of S.

AC1-Unification

- Corollary: AC1 is unitary for elementary unification.
- Fact:
- Every elementary AC1-unification problem has a solution.

AC-Unification

- An (elementary) AC-unification problem S is an AC1-unification problem in which the unit 1 does not occur.
- Any AC-unifier of S is also an AC1-unifier of S.

AC-Unification

- Lemma: The elementary AC-unification problem S is solvable iff the system of homogeneous linear Diophantine equations $D E(S)$ has a solution in the positive integers.
- $\mathrm{S}:=\left\{\mathrm{x}_{1} \mathrm{x}_{2}=? \mathrm{x}_{3}{ }^{2}\right\}$
- $\Phi:=\left\{x_{1}->x_{1} x_{2}{ }^{2}, x_{2}-->x_{1}, x_{3}->x_{1} x_{2}\right\}$

AC-Unification

- Theorem: Solvability of elementary ACunification problem is decidable in polynomial time.
- This problem can easily be turned into a linear programming problem, which is solvable in polynomial time.

