
1/34

An Introduction to Functional Programming and
Maude

Guoqiang Li

BASICS, Shanghai Jiao Tong University

October 26, 2009

2/34

Begin With. . .

I λ calculus
M := x | λ x.M | MM

I π calculus
π := a(b) | ab | τ

ϕ := > | ⊥ | x = y | x 6= y | ϕ ∧ ϕ

P :=
∑
i∈I

ϕiπi.Pi | P|P | (x)P |!P

3/34

Implementation

I Traditional approaches
• parser: Yacc.
• represented by some data structure: list, tree, acyclic graph. etc.
• search..

I What if a natural number 327
• Naive, since we have type of int.

I What if we define a type of λ calculus and π calculus?

3/34

Implementation

I Traditional approaches
• parser: Yacc.
• represented by some data structure: list, tree, acyclic graph. etc.
• search..

I What if a natural number 327
• Naive, since we have type of int.

I What if we define a type of λ calculus and π calculus?

3/34

Implementation

I Traditional approaches
• parser: Yacc.
• represented by some data structure: list, tree, acyclic graph. etc.
• search..

I What if a natural number 327
• Naive, since we have type of int.

I What if we define a type of λ calculus and π calculus?

3/34

Implementation

I Traditional approaches
• parser: Yacc.
• represented by some data structure: list, tree, acyclic graph. etc.
• search..

I What if a natural number 327
• Naive, since we have type of int.

I What if we define a type of λ calculus and π calculus?

4/34

Type and Pattern Matching

4/34

Type and Pattern Matching

How to define a set of variables?

5/34

Function

I Mathematical view: a function is a relation, where

x R y ∧ x R z → y = z

I Logical/Rewriting view: confluence, describing that terms in this
system can be rewritten in more than one way, to yield the same
result.

I Programming view: a function is a program procedure that you
can work out.

• Such a function can be regarded as a term with only one redex.

5/34

Function

I Mathematical view: a function is a relation, where

x R y ∧ x R z → y = z

I Logical/Rewriting view: confluence, describing that terms in this
system can be rewritten in more than one way, to yield the same
result.

I Programming view: a function is a program procedure that you
can work out.

• Such a function can be regarded as a term with only one redex.

5/34

Function

I Mathematical view: a function is a relation, where

x R y ∧ x R z → y = z

I Logical/Rewriting view: confluence, describing that terms in this
system can be rewritten in more than one way, to yield the same
result.

I Programming view: a function is a program procedure that you
can work out.

• Such a function can be regarded as a term with only one redex.

6/34

What Can Functional Programming Do

I Programming Language: SML, Haskel, OCaml, SML#, Visual
SML, Erlang?,. . .

I Theorem Proving: Isabelle/HOL, Coq, CafeObJ,. . .
I Model Checking: Maude

6/34

What Can Functional Programming Do

I Programming Language: SML, Haskel, OCaml, SML#, Visual
SML, Erlang?,. . .

I Theorem Proving: Isabelle/HOL, Coq, CafeObJ,. . .
I Model Checking: Maude

6/34

What Can Functional Programming Do

I Programming Language: SML, Haskel, OCaml, SML#, Visual
SML, Erlang?,. . .

I Theorem Proving: Isabelle/HOL, Coq, CafeObJ,. . .
I Model Checking: Maude

7/34

What Is Maude

I Maude is a rewriting system. . .
• f(x, y) ↪→ g(x)
• f(f(a, z),b) ↪→ g(f(a, z))
• f(f(a, z),b) ↪→ f(g(a),b)

I Maude encodes both equational logic and rewriting logic. . .
• An equational logic theory: (Σ,E ∪A)
• a rewriting Logic theory: (Σ,E ∪A, φ, R)

I Maude is a (programmable) model checker. . .
• Maude provides search and LTL engines, which can do model

checking on an established system.
I Maude is a functional programming language.

8/34

Categories of Maude

I Core Maude: functional module + system module
I Full Maude: Core Maude + object-oriented module
I Real-Time Maude: Full Maude + timed module
I Mobile Maude
I . . .

functional module system module
syntax fmod ...endfm mod ...endm

rewriting confluent & terminated divergent & non-terminated
logic equational logic rewriting logic
programming lang. sequential concurrent

9/34

The First example

10/34

Functional modules

I A basic functional module mainly has four parts: sorts,
operations, variables and equations. For example:

• fmod NAT is
sort Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .
op add : Nat Nat -> Nat .
vars X Y : Nat .
eq add (X, 0) = X .
eq add (X, s(Y)) = s(add(X,Y)) .

endfm

11/34

Functional modules

I A basic functional module mainly has four parts: sorts,
operations, variables and equations. For example:

• fmod NAT is
sort Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .
op add : Nat Nat -> Nat .
vars X Y : Nat .
eq add (X, 0) = X .
eq add (X, s(Y)) = s(add(X,Y)) .

endfm

12/34

Functional modules

I A basic functional module mainly has four parts: sorts,
operations, variables and equations. For example:

• fmod NAT is
sort Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .
op add : Nat Nat -> Nat .
vars X Y : Nat .
eq add (X, 0) = X .
eq add (X, s(Y)) = s(add(X,Y)) .

endfm

13/34

Functional modules

I A basic functional module mainly has four parts: sorts,
operations, variables and equations. For example:

• fmod NAT is
sort Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .
op add : Nat Nat -> Nat .
vars X Y : Nat .
eq add (X, 0) = X .
eq add (X, s(Y)) = s(add(X,Y)) .

endfm

14/34

Functional modules

I A basic functional module mainly has four parts: sorts,
operations, variables and equations. For example:

• fmod NAT is
sort Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .
op add : Nat Nat -> Nat .
vars X Y : Nat .
eq add (X, 0) = X .
eq add (X, s(Y)) = s(add(X,Y)) .

endfm

15/34

Sorts and Variables

I Maude can define a sort or several sorts each a time, with the key
words sort or sorts.

• sort Nat .
• sorts Nat Integer Real .

I Maude can also declare subsorts, which is defined as follows:
• subsort Nat < Integer .
• subsorts Nat < Integer < Real .

I Maude can define kinds for handling subsorts.
I Variables are declared with the key words var or vars.

• var X : Nat .
• vars C1 C2 C3 : Integer .

16/34

Operations

I There are two uses of operations: as the constructor of a sort,
and as the declaration of a function.

I The latter needs to be implemented by some equations.
I [ctor] is a key attribute to a constructor,

• sort Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .

• sort Color .
ops blue green red : -> Color [ctor] .

I As a declaration of a function. It can be represented in an mix-fix
notation, and _ is a specific place for a variable. For example,

• op _+_ : Nat Nat -> Nat .
• oCheck : Message Message -> Bool .

17/34

Attributes for Operations

I Equational Attribute: assoc, comm, idem, id: <term>. . .
• op _XOR_ : Term Term -> Term [assoc comm id: ZERO] .

I Memorized Attribute: memo, which instructs Maude to memorize
the result.

• op fibo : Nat -> Nat [memo] .

I Frozen Attribute: frozen, which forbids to apply rules to the
proper subitems of a term.

I Special Attribute: special, which is associated with
appropriate C++ code by hooks.

18/34

Equations

I A function can be implemented by a set of equations. The use of
variables in equations do not carry actual values. Rather, they
stand for any instance of a certain sort.

• op _+_ : Nat Nat -> Nat .
vars M N : Nat .
eq 0 + N = N .
eq s(M) + N = s(M + N).

I A conditional equation can be defined in two ways:
• ceq isdifferent (M, N) = true if M =/= N .
• eq isdifferent (M, N) = if M == N then true

else false fi .

I A default equation is defined by a key attribute [owise]
• eq oCheck (M1, M2) = false [owise] .

19/34

Importation

I A module can be imported in another module by using key words
protecting, extending or including. For example:

• fmod PARENT is
...
endfm

• fmod CHILD is
protecting PARENT .
...
endfm

I protecting means that the imported module can not be
modified in any way. including means one can change the
definition of the imported module. extending falls somewhere
between these two extremes.

20/34

Lambda Calculus
Technical background Encoding the full λ-calculus into the π-calculus Is the encoding any good? Conclusion

The λ-calculus

M := x | λx .M | MM

Full λ-calculus

1
(λx .M)N→M{N/x}

β-rule

2
M→M′

MN→M′N
structure rule

3
N→N′

MN→MN′ eager evaluation

4
M→M′

λx .M→λx .M′ partial evaluation

Lazy λ-calculus 1 + 2

Xiaojuan Cai Joint work with Yuxi Fu Interpreting the Full λ-Calculus in the π-Calculus

21/34

Lambda Calculus in Maude

22/34

Function modules VS. System modules

I Anything such as equations defined in a function module can be a
system module. Besides that, it can define a transition system by
a set of rewrite laws.

• A set of equations in a function module defines a structure. These
equations need to be confluent and terminating.

• Rewrite laws define transitions between structures. They may be
nonterminating.

I mod CIGARETTES is
sort State .
op cig : -> State [ctor] .
op box : -> State [ctor] .
op _ _ : State State -> State [ctor assoc comm] .

rl [smoke] : cig => box .
rl [makenew] : box box box box => cig .

endm

23/34

Rewrite laws

I A transition system can be implemented by a set of rewrite laws.
We often give each law a unique name in a bracket (optional), for
example, [makenew].

• rl [smoke] : cig => box .
rl [makenew] : box box box box => cig .

I A conditional rewrite law can also be defined.
• crl [equation] : a(X) => b(X-1) if X > 0 .
• crl [rewrite] : b(X) => c(X*2) if a(X)=>b(Y) .

I Usually, we can define an initial state to begin the rewriting
• op init : -> State .

eq init = cig cig cig cig cig cig cig .

24/34

Common commands

I For a function module, a common command is reduce, which
can reduce the normal form of a term.

• reduce in NAT : s(s(0)) + s(s(s(0))) .
result Nat : s(s(s(s(s(0)))))

I For a system module,
• A common command is rewrite (may not terminate),

• rewrite in CIGARETTES : init .
result State: box

• search begins with a given state, and finds out a given number
of states that satisfies the property.

• search [2] in CIGARETTES : init =>* ST
such that (number(cig,ST) == 1) .

solution 1 (state 8)
init -> cig box box box box box box
solution 2 (state 12)
init -> cig box box box

25/34

What can Maude do?

I Maude itself is a versatile tool supporting:
• Formal specification;
• Execution of the specification.

I Model checking: Reachability problem can be performed by
Maude itself. Maude also offers a LTL model checker for system
modules.

I Theorem proving: It can be performed by a theorem prover ITP
implemented by Maude, based on membership equational logic.

26/34

Q: Can Maude encode Maude itself?

27/34

What Can We Do

I Research
• Aspect-Oriented Maude
• Timed Automata Checker
• Pushdown Automata Checker
• Pi Calculus Theorem Prover

I Paper
• Translate lambda calculus to pi calculus
• System Simulator
• Synthesis
• . . .

27/34

What Can We Do

I Research
• Aspect-Oriented Maude
• Timed Automata Checker
• Pushdown Automata Checker
• Pi Calculus Theorem Prover

I Paper
• Translate lambda calculus to pi calculus
• System Simulator
• Synthesis
• . . .

27/34

What Can We Do

I Research
• Aspect-Oriented Maude
• Timed Automata Checker
• Pushdown Automata Checker
• Pi Calculus Theorem Prover

I Paper
• Translate lambda calculus to pi calculus
• System Simulator
• Synthesis
• . . .

27/34

What Can We Do

I Research
• Aspect-Oriented Maude
• Timed Automata Checker
• Pushdown Automata Checker
• Pi Calculus Theorem Prover

I Paper
• Translate lambda calculus to pi calculus
• System Simulator
• Synthesis
• . . .

27/34

What Can We Do

I Research
• Aspect-Oriented Maude
• Timed Automata Checker
• Pushdown Automata Checker
• Pi Calculus Theorem Prover

I Paper
• Translate lambda calculus to pi calculus
• System Simulator
• Synthesis
• . . .

27/34

What Can We Do

I Research
• Aspect-Oriented Maude
• Timed Automata Checker
• Pushdown Automata Checker
• Pi Calculus Theorem Prover

I Paper
• Translate lambda calculus to pi calculus
• System Simulator
• Synthesis
• . . .

27/34

What Can We Do

I Research
• Aspect-Oriented Maude
• Timed Automata Checker
• Pushdown Automata Checker
• Pi Calculus Theorem Prover

I Paper
• Translate lambda calculus to pi calculus
• System Simulator
• Synthesis
• . . .

27/34

What Can We Do

I Research
• Aspect-Oriented Maude
• Timed Automata Checker
• Pushdown Automata Checker
• Pi Calculus Theorem Prover

I Paper
• Translate lambda calculus to pi calculus
• System Simulator
• Synthesis
• . . .

27/34

What Can We Do

I Research
• Aspect-Oriented Maude
• Timed Automata Checker
• Pushdown Automata Checker
• Pi Calculus Theorem Prover

I Paper
• Translate lambda calculus to pi calculus
• System Simulator
• Synthesis
• . . .

27/34

What Can We Do

I Research
• Aspect-Oriented Maude
• Timed Automata Checker
• Pushdown Automata Checker
• Pi Calculus Theorem Prover

I Paper
• Translate lambda calculus to pi calculus
• System Simulator
• Synthesis
• . . .

28/34

An Example: Schedulability Analysis

from Suetsugu san’s slides

29/34

Clock Slot

fmod SLOT is
pr NAT .
sort Slot .
op init : -> Slot [ctor] .
op time : Nat -> Slot [ctor] .

op Timeplus : Slot -> Slot .
op getTime : Slot -> Nat .

var N : Nat .

eq Timeplus (init) = time(0) .
eq Timeplus (time(N)) = time (N + 1) .

eq getTime (init) = 0 .
eq getTime (time(N)) = N .

endfm

30/34

CPU

fmod CPU is
pr SLOT .
pr STRING .

sort Cpu .
sort CpuStatus .

op idle : -> CpuStatus [ctor] .
op init : -> CpuStatus [ctor] .
op exec : String -> CpuStatus [ctor] .
op CPU : CpuStatus Slot -> Cpu [ctor] .

endfm

31/34

Task and Task Status
fmod TASK is

pr NAT .
pr STRING .
sort Task .
sorts Period Wcet Pri .
op p : Nat -> Period [ctor] .
op wcet : Nat -> Wcet [ctor] .
op pri : Nat -> Pri [ctor] .
op task : String Period Wcet Pri -> Task [ctor] .

endfm
fmod TASKSTATUS is

pr NAT . pr STRING .
sort TaskStatus .
sorts Cp Tr .
op (_,_,_,_) : String Cp Tr Bool -> TaskStatus [ctor] .
op cp : Nat -> Cp [ctor] .
op tr : Nat -> Tr [ctor] .
op TaskExecutable : TaskStatus -> Bool .

endfm

32/34

Scheduling System

mod SCHEDULINGSYSTEM is
pr CPU . pr TASKSTATUS .
pr TASK .
sorts State SchedulingStatus .
op Init : -> State .
op exec : -> SchedulingStatus [ctor] .
op error : -> SchedulingStatus [ctor] .
op [_,_[_],_[_],_] : Cpu Task TaskStatus Task TaskStatus

SchedulingStatus -> State [ctor] .
op getExecutedTask : Task TaskStatus Task TaskStatus Slot

-> CpuStatus [memo] .
op getTaskStatus : Task TaskStatus Slot CpuStatus ->

TaskStatus [memo] .
op getSchedulingStatus : Task TaskStatus Task TaskStatus

Slot CpuStatus -> SchedulingStatus .
endm

33/34

Scheduling System (cont.)

eq Init = [CPU(init,init),
task ("TASK1", p(6), wcet(2), pri(2))

[("TASK1",cp(0),tr(2),true)],
task ("TASK2", p(9), wcet(4), pri(1))

[("TASK2",cp(0),tr(4),true)],
exec] .

rl [ex] : [CPU(CS,SL), T1[TS1], T2[TS2], exec] =>
[CPU(getExecutedTask(T1,TS1,T2,TS2,Timeplus(SL)),Timeplus(SL)),

T1[getTaskStatus(T1,TS1,Timeplus(SL),
getExecutedTask(T1,TS1,T2,TS2,Timeplus(SL)))],

T2[getTaskStatus(T2,TS2,Timeplus(SL),
getExecutedTask(T1,TS1,T2,TS2,Timeplus(SL)))],

getSchedulingStatus(T1,TS1,T2,TS2,Timeplus(SL),
getExecutedTask(T1,TS1,T2,TS2,Timeplus(SL)))] .

34/34

What we have done?

I We have encoded a specification for scheduling algorithm.
I We can run the specification due to different commands

(reduce, rewrite,. . .).
I We can perform schedulability analysis on the specification.

search [1] in SCHEDULINGSYSTEM : Init =>* [CPU(CS, time(N1)),
T1[TS1], T2[TS2], exec]

such that (N1 == 18) .

