An Introduction to Functional Programming and
Maude

Guogiang Li
BASICS, Shanghai Jiao Tong University

October 26, 2009

1/34

Begin With. ..

»)\ calculus
M:=x|AxM| MM

» 7 calculus

m:=a(b)|ab| T
=T |L|x=y|x#£y|pAyp

P:=) wmP;i| PP | (x)P |IP
iel

2/34

Implementation

» Traditional approaches
e parser: Yacc.
o represented by some data structure: list, tree, acyclic graph. etc.
 search..

3/34

Implementation

» Traditional approaches
e parser: Yacc.
o represented by some data structure: list, tree, acyclic graph. etc.
 search..

» What if a natural number 327

3/34

Implementation

» Traditional approaches
e parser: Yacc.
o represented by some data structure: list, tree, acyclic graph. etc.
 search..

» What if a natural number 327
» Naive, since we have type of int.

3/34

Implementation

» Traditional approaches
e parser: Yacc.
o represented by some data structure: list, tree, acyclic graph. etc.
 search..

» What if a natural number 327
» Naive, since we have type of int.

» What if we define a type of A calculus and 7 calculus?

3/34

Type and Pattern Matching

& *shell* - XEmacs
File Edit View Cmds Tools Options Buffers Complete InfOut Signals

NHCEEEREEECEERE
Open Dired Save Print cut Copy Paste Undao Spell | Replace il Infa | Coi
shell
datatype nat = Zero
S = et mate e

fun add (X, Zero) = X

| add (X, s(Y)) = s(add(X,Y))
- - addis(s(Zerao)),s(s(s(Zero))));
mal it = 3 (3 (s (= (3 #)1))) nat

4/34

Type and Pattern Matching

* *shell* - XEmacs
File Edit Yiew Cmds Tools Options Buffers Complete InfOut Signals

TEFEERRECEE
open Dired Save Print cut Copy Paste unda Spell

Reploce | el
shell |
datatype nat = Zero
| 8 of nat

*

1

ild

cal

fun add (X, Zero) = X
[add (X, s(Y)) = s(add(X,Y)) ;

= e rensimbEEST el i
al it = s (s (s (s (s #)))) : nat

How to define a set of variables?

4/34

Function

> a function is a relation, where

xRyAxRz—y=1z

5/34

Function

> a function is a relation, where

xRyAxRz—y=1z

> confluence, describing that terms in this
system can be rewritten in more than one way, to yield the same
result.

5/34

Function

> a function is a relation, where

xRyAxRz—y=1z

> confluence, describing that terms in this
system can be rewritten in more than one way, to yield the same
result.

> a function is a program procedure that you

can work out.
e Such a function can be regarded as a term with only one redex.

5/34

What Can Functional Programming Do

» Programming Language: SML, Haskel, OCaml, SML+#, Visual
SML, Erlang?,. ..

6/34

What Can Functional Programming Do

» Programming Language: SML, Haskel, OCaml, SML+#, Visual
SML, Erlang?,. ..

» Theorem Proving: Isabelle/HOL, Coq, CafeObJ,. ..

6/34

What Can Functional Programming Do

» Programming Language: SML, Haskel, OCaml, SML#, Visual
SML, Erlang?,. ..

» Theorem Proving: Isabelle/HOL, Coq, CafeObJ,. ..
» Model Checking: Maude

6/34

What Is Maude

v

Maude is a

* f(x,y) = g(x)

« £(f(a, z),b) — g(f(a,z))

« f(f(a,2),b) — f(g(a),b)
Maude encodes both and

» An equational logic theory: (X, EUA)

e a rewriting Logic theory: (X,EU A, ¢,R)
Maude is a (programmable) model checker. ..

v

v

e Maude provides search and LTL engines, which can do model
checking on an established system.

v

Maude is a functional programming language.

7/34

Categories of Maude

v

v

v

v

Core Maude: functional module + system module
Full Maude: Core Maude + object-oriented module
Real-Time Maude: Full Maude + timed module
Mobile Maude

|

functional module

|

system module

|

l syntax H fmod ...endfm [mod ...endm ‘
rewriting confluent & terminated | divergent & non-terminated
logic equational logic rewriting logic
programming lang. || sequential concurrent

8/34

The First example

‘& *shell* - XEmacs

File Edit Yiew Cmds Tools Options Buffers Complete InfOut Signals
NECIE R 1
Open Dired Saue Print cut Copy | Pashe | Undo Spell | Replace cal
shell |

datatype nat = Zero

|l enE aacee o

fun add (¥, Zero) = X

| add (X, s(Y)) = s(add(X, Y]] ;
— - addi(s(s(Zero)),s(s(s(Zero))));
val it = s (s (5 (s (s #))])) : nat

Nat.maude - XEm:

Fle Edit ¥iew Cmds Tools Options Buffers

D S s a B8 %
omen | oind | swe | it | cut | cony | pash | undo | ool | minisze| el | info_| compie] Debuo | mens
Nat.maude}

fmod Nat is

sort Nat

op O -> Nat [ctor]

op = Nat— = Na o

op add Nat Nat -> Nat

ars X Y Nat

eq add (X, 0) = X

eq add (X, s(Y)) = s(add (%,Y))
endfm

Maude> in Nat.maude
Advisory: defining module Nat.

fmod Nat
Maude> reduce add (s(s(0)), s(s(s(0))))

[reduce in Nat : add(s(s(0)), s(s(s(0)))) -

rewrites: 4 in -1520340230ms cpu (Oms real) (~ rewrites/second)
result Nat: s(s(s(s(s(0)))))
Maude>

9/34

Functional modules

» A basic functional module mainly has four parts: sorts,
operations, variables and equations. For example:

e fmod NAT is

sort Nat

op 0 : —> Nat [ctor]

op s : Nat -> Nat [ctor]

op add : Nat Nat —> Nat

vars X Y : Nat

eq add (X, 0) = X .

eq add (X, s(Y)) = s(add(X,Y))
endfm

10/34

Functional modules

» A basic functional module mainly has four parts: sorts,
operations, variables and equations. For example:

e fmod NAT is

sort Nat

op 0 : —> Nat [ctor]

op s : Nat -> Nat [ctor]

op add : Nat Nat —> Nat

vars X Y : Nat

eq add (X, 0) = X .

eq add (X, s(Y)) = s(add(X,Y))
endfm

11/34

Functional modules

» A basic functional module mainly has four parts: sorts,
operations, variables and equations. For example:

e fmod NAT is

sort Nat

op 0 : —> Nat [ctor]

op s : Nat —> Nat [ctor]

op add : Nat Nat —> Nat

vars X Y : Nat

eq add (X, 0) = X .

eq add (X, s(Y)) = s(add(X,Y))
endfm

12/34

Functional modules

» A basic functional module mainly has four parts: sorts,
operations, variables and equations. For example:

e fmod NAT is

sort Nat

op 0 : —> Nat [ctor]

op s : Nat —> Nat [ctor]

op add : Nat Nat —> Nat

vars X Y : Nat .

eq add (X, 0) = X .

eq add (X, s(Y)) = s(add(X,Y))
endfm

13/34

Functional modules

» A basic functional module mainly has four parts: sorts,
operations, variables and equations. For example:

e fmod NAT is

sort Nat

op 0 : —> Nat [ctor]

op s : Nat -> Nat [ctor]

op add : Nat Nat —> Nat

vars X Y : Nat

eq add (X, 0) = X .

eq add (X, s(Y)) = s(add(X,Y))
endfm

14/34

Sorts and Variables

v

Maude can define a or several sorts each a time, with the key
words sort or sorts.

e sort Nat

e sorts Nat Integer Real

v

Maude can also declare , which is defined as follows:

e subsort Nat < Integer
e subsorts Nat < Integer < Real

v

Maude can define for handling subsorts.
> are declared with the key words var or vars.

e var X : Nat .
e vars Cl C2 C3 : Integer

15/34

Operations

v

There are two uses of operations: as the of a sort,
and as the of a function.

v

The latter needs to be implemented by some equations.

v

[ctor] is a key to a constructor,
* sort Nat
op 0 : —-> Nat [ctor]
op s : Nat —-> Nat [ctor]
e sort Color
ops blue green red : -> Color [ctor]
As a declaration of a function. It can be represented in an mix-fix
notation, and __ is a specific place for a variable. For example,
e op _+_ : Nat Nat —-> Nat
e oCheck : Message Message —-> Bool

v

16/34

Attributes for Operations

> assoc, comm, idem, id: <term>...
® op _XOR_ : Term Term -> Term [assoc comm id: ZERO]
> memo, which instructs Maude to memorize
the result.
e op fibo : ©Nat -> Nat [memo]
> frozen, which forbids to apply rules to the

proper subitems of a term.

> special, which is associated with
appropriate C+-+ code by hooks.

17/34

Equations

» A function can be implemented by a set of . The use of
variables in equations do not carry actual values. Rather, they
stand for any instance of a certain sort.

e op _t+_ : Nat Nat —-> Nat
vars M N : Nat
eq 0 + N =N .
eq s(M) + N = s (M + N).
» A can be defined in two ways:
® ceq isdifferent (M, N) = true if M =/= N .
* eq isdifferent (M, N) = if M == N then true
else false fi .
» A default equation is defined by a key [owise]
* eq oCheck (M1, M2) = false [owise]

18/34

Importation

» A module can be imported in another module by using key words
protecting, extending or including. For example:

e fmod PARENT is
endfm

e fmod CHILD is
protecting PARENT

endfm
» protecting means that the imported module can not be
modified in any way. including means one can change the

definition of the imported module. extending falls somewhere
between these two extremes.

19/34

Lambda Calculus

©00000

The A-calculus

M :=x | Xx.M | MM

Full A-calculus

11— [-rule
(Ax.M)N—M{N/x} B
M—M'
22— == structure rule
MN—M'N
N—N’ ;
_ r evaluation
3 eager evaluatio
. . .
4 M=M partial evaluation
Ax.M—Ax.M’

Lazy A-calculus 142

n Cai Joint work with Yuxi Fu ing the Full A\-Calculus in the 7-Calculus

20/34

Lambda Calculus in Maude

File Edit view Cmds Tools Options Buffers

O|w s BB =8

open | oird print | ot | copy | pase | undo | Spel

lambda.maude |AbadiGordon.maude |

3

T

gl

S

Feplice nfo oebua | news

fmod LAMBDA 1is
pr
sorts Var Lambda .
subsort Var < Lambda
op var : Nat -> Var [ctor] .
> _._: Var Lambda -> Lambda [ctor prec 15]

__ ¢ Lambda Lambda -> Lambda [ctor prec 20]

) beta : Lambda Lambda -> Lambda
op sub : Lambda Var Lambda -> Lambda
op LazybetaRed : Lambda -> Lambda

vars M N O : Lambda . vars V W : Var
eq beta (\ V.M, N) = sub (M, V, N)

e sub (V, V, N) =N .

ceq sub (W, V, N) = W if W=/=V .

eq sub (\W .M, V, N) =\ W . (sub (MV,N))

e sub (M O, V, N) = sub(M, V, N) sub (0O, V, N)
*EE eq sub (M, V, N) =M [owise]

eq LazybetaRed (\ W . M 0) = beta (\ W . M, 0)
(

eq LazybetaRed (M N) = LazybetaRed (M) N [owise]
eq LazybetaRed (M) = M [owise]

endfm

21/34

Function modules VS. System modules

» Anything such as equations defined in a function module can be a
system module. Besides that, it can define a transition system by
a set of

» A set of equations in a function module defines a structure. These
equations need to be confluent and terminating.
e Rewrite laws define transitions between structures. They may be
nonterminating.
» mod CIGARETTES is
sort State

op cig : —> State [ctor]
op box : -> State [ctor]
op _ _ : State State —> State [ctor assoc comm]
rl [smoke] : cig => box .
rl [makenew] : box box box box => cig .
endm

22/34

Rewrite laws

» A transition system can be implemented by a set of rewrite laws.
We often give each law a unique name in a bracket (optional), for
example, [makenew].

* rl [smoke] : cig => box .
rl [makenew] : box box box box => cig .
» A conditional rewrite law can also be defined.
* crl [equation] : a(X) => b(X-1) if X > 0
e crl [rewrite] : Db(X) => c(X%x2) if a(X)=>b(Y)
» Usually, we can define an initial state to begin the rewriting
* op init : —-> State
eq init = cig cig cig cig cig cig cig .

23/34

Common commands

» For a function module, a common command is reduce, which
can reduce the normal form of a term.
* reduce in NAT : s(s(0)) + s(s(s(0)))
result Nat : s(s(s(s(s(0)))))
» For a system module,
e A common command is rewrite (may not terminate),
® rewrite in CIGARETTES : init
result State: Dbox
e search begins with a given state, and finds out a given number
of states that satisfies the property.
e search [2] in CIGARETTES : init =>* ST
such that (number (cig,ST) == 1)
solution 1 (state 8)
init -> cig box box box box box box
solution 2 (state 12)
init -> cig box box box

24/34

What can Maude do?

» Maude itself is a versatile tool supporting:
e Formal specification;
e Execution of the specification.
» Model checking: Reachability problem can be performed by
Maude itself. Maude also offers a LTL model checker for system
modules.

» Theorem proving: It can be performed by a theorem prover ITP
implemented by Maude, based on membership equational logic.

25/34

Q: Can Maude encode Maude itself?

26/34

What Can We Do

27/34

What Can We Do

e Aspect-Oriented Maude

27/34

What Can We Do

e Aspect-Oriented Maude
e Timed Automata Checker

27/34

What Can We Do

e Aspect-Oriented Maude
e Timed Automata Checker
e Pushdown Automata Checker

27/34

What Can We Do

e Aspect-Oriented Maude

e Timed Automata Checker

e Pushdown Automata Checker
Pi Calculus Theorem Prover

27/34

What Can We Do

e Aspect-Oriented Maude

e Timed Automata Checker

e Pushdown Automata Checker
Pi Calculus Theorem Prover

27/34

What Can We Do

e Aspect-Oriented Maude

e Timed Automata Checker

e Pushdown Automata Checker
e Pi Calculus Theorem Prover

e Translate lambda calculus to pi calculus

27/34

What Can We Do

e Aspect-Oriented Maude

e Timed Automata Checker

e Pushdown Automata Checker
e Pi Calculus Theorem Prover

e Translate lambda calculus to pi calculus
e System Simulator

27/34

What Can We Do

e Aspect-Oriented Maude

e Timed Automata Checker

e Pushdown Automata Checker
e Pi Calculus Theorem Prover

e Translate lambda calculus to pi calculus
e System Simulator
e Synthesis

27/34

What Can We Do

e Aspect-Oriented Maude

e Timed Automata Checker

e Pushdown Automata Checker
e Pi Calculus Theorem Prover

e Translate lambda calculus to pi calculus
e System Simulator
e Synthesis

27/34

not execute
. execute

0:
1

SK3_k = {

TA

boolean variable:

K

priority

1 TASK1

2 TASK2

3 TASK3

msec

mm) Task1

mmp Task?

[T

Priority High

Period Bmsec
WCET 2msec

Task 1

Task2

Period 9msec
WCET 4msec

Priority Low

msec

28/34

from Suetsugu san’s slides

Clock Slot

fmod SLOT is
pr NAT
sort Slot
op init : —-> Slot [ctor]
op time : Nat -> Slot [ctor]

op Timeplus : Slot —-> Slot
op getTime : Slot —-> Nat

var N : Nat

eq Timeplus (init) = time (0)
eq Timeplus (time(N)) = time (N + 1)

eq getTime (init) = 0
eq getTime (time(N)) = N

endfm

29/34

CPU

fmod CPU is

pr

pr STRING

sort Cpu

SLOT

sort CpuStatus

op
op
op
op
endfm

idle
init
exec
CPU

—-> CpuStatus [ctor]

—-> CpuStatus [ctor]

String —> CpuStatus [ctor]
CpuStatus Slot —-> Cpu [ctor]

30/34

Task and Task Status

fmod TASK is
pr NAT
pr STRING
sort Task
sorts Period Wcet Pri
op p : Nat —-> Period [ctor]
op wcet : Nat —> Wcet [ctor]
op pri : Nat -> Pri [ctor]

op task : String Period Wcet Pri -> Task [ctor]
endfm
fmod TASKSTATUS is
pr NAT . pr STRING

sort TaskStatus

sorts Cp Tr

op (_,_,_,_) : String Cp Tr Bool -> TaskStatus [ctor]
op cp : Nat —-> Cp [ctor]

op tr : Nat —> Tr [ctor]

op TaskExecutable : TaskStatus —-> Bool

RS
FrerTiT

31/34

Scheduling System

mod SCHEDULINGSYSTEM is

pr CPU . pr TASKSTATUS

pr TASK

sorts State SchedulingStatus

op Init : —-> State

op exec : —> SchedulingStatus [ctor]

op error : —> SchedulingStatus [ctor]

op [_,_[_1,_[_1,_1 : Cpu Task TaskStatus Task TaskStatus

SchedulingStatus —> State [ctor]
op getExecutedTask : Task TaskStatus Task TaskStatus Slot

—-> CpuStatus [memoO]

op getTaskStatus : Task TaskStatus Slot CpuStatus —>

TaskStatus [memo]

op getSchedulingStatus : Task TaskStatus Task TaskStatus
Slot CpuStatus —-> SchedulingStatus

endm

32/34

Scheduling System (cont.)

eq Init = [CPU(init,init),
task ("TASK1", p(6), wcet(2), pri(2))
[("TASK1",cp(0),tr(2),true)l],
task ("TASK2", p(9), wcet(4), pri(l))
[("TASK2",cp(0),tr(4),true)l,
exec |

rl [ex] : [CPU(CS,SL), T1[TSl], T2[TS2], exec] =>
[CPU(getExecutedTask (T1l,TS1,T2,TS2, Timeplus (SL)), Timeplus (SL)),
T1l[getTaskStatus (T1l,TS1l,Timeplus (SL),

getExecutedTask (T1l,TS1,T2,TS2, Timeplus (SL))) 1,
T2[getTaskStatus (T2,TS2,Timeplus (SL),
getExecutedTask (T1,TS1,T2,TS2, Timeplus (SL))) 1,

getSchedulingStatus (T1,TS1,T2,TS2, Timeplus (SL),
getExecutedTask (T1,TS1,T2,TS2, Timeplus (SL)))]

33/34

What we have done?

» We have encoded a specification for scheduling algorithm.

» We can run the specification due to different commands
(reduce, rewrite,...).

» We can perform on the specification.
search [1] in SCHEDULINGSYSTEM : Init => [CPU(CS, time (N1)),

T1[TS1], T2[TS2], exec]
such that (N1 == 18)

34/34

