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A Quick Recap



Definition
The depth d(C) of a circuit C is the length of the longest path from the
output node to an input node. The size L(F ) of a formula F is the number of
its input nodes.

For a function f , the depth complexity d(f ) is the minimum depth of a circuit
computing f and the size complexity L(f ) is the minimum size of a formula
computing f .

The measure dm(C), Lm(F ), dm(f ), and Lm(f ) are defined similarly for
monotone circuits, formulas, and functions respectively.



Definition
For a Boolean function f : {0, 1}n → {0, 1} let

X = f −1(1) and Y = f −1(0).

We define

Rf =
{

(x , y , i)
∣∣ x ∈ X , y ∈ Y , and i ∈ {1, . . . , n} with xi 6= yi

}
.

For monotone f we also define

Mf =
{

(x , y , i)
∣∣ x ∈ X , y ∈ Y , and i ∈ {1, . . . , n} with xi = 1 and yi = 0

}
.



Theorem

d(f ) = D(Rf ) and L(f ) = CP(Rf ).

Theorem

dm(f ) = D(CMf ) and Lm(f ) = CP(Mf ).

We prove circuit lower bounds by reductions to lower bounds for
communication complexity.



Matching

Given a graph G on n vertices,

match(G) =

{
1, if there is a matching of size ≥ n/3 in G ,

0, otherwise.

Theorem

dm(match) = Ω(n).



stcon

Given a directed graph G on n nodes,

stcon(G) =

{
1, if there is a path in G from vertex 1 to vertex n

0, otherwise.

Theorem

dm(stcon) = Ω(log2 n).



Set Cover



Let g : {0, 1}n × {0, 1}n → {0, 1} whose deterministic communication
complexity D(g) is significantly larger than its nondeterministic communication
complexity N(g).

Let R1, . . . ,Rt be a cover (possibly with intersections) of the matrix Mg

corresponding to g with monochromatic rectangles. Thus

N(g) ≤ t.

We define
M =

{
(x , y , i)

∣∣ x , y ∈ {0, 1}n and (x , y) ∈ Ri

}
.

M is a total relation, and
D(g) ≤ D(M).
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We construct a function f : {0, 1}t → {0, 1} such that D(Mf ) ≥ D(M).

f (z1, . . . , zt) =


1, if there exists a row x of Mg such that

for all i we have
(
x ∈ Ri =⇒ zi = 1

)
0, otherwise.

f is monotone.
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Reduction from M to Mf

1. Alice, given x ∈ {0, 1}n, constructs x ′ ∈ {0, 1}t by assigning x ′i = 1 if the
the row x belongs to Ri and 0 otherwise. So f (x ′) = 1.

2. Bob, given y ∈ {0, 1}n, constructs y ′ ∈ {0, 1}t by assigning y ′i = 0 if the
column y belongs to Ri and 1 otherwise. So f (y ′) = 0.

3. Alice and Bob use the protocol for the relation Mf on (x ′, y ′) to get an
index i with x ′i = 1 and y ′i = 0. Thus, both x and y intersect Ri , i.e.,
(x , y , i) ∈ M.

Assume D(g) = N2(g), then the function f has t = 2N(g) variables and

dm(f ) = D(Mf ) ≥ D(M) ≥ D(g) = log2 t.

Similarly L(f ) = Ω(t log t).
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We can write

f (z1, . . . , zt) ≡ ∃x ∈{0, 1}n :[
(x ∈ R1) =⇒ (z1 = 1)

]
∧ · · · ∧

[
(x ∈ Rt) =⇒ (zt = 1)

]
.

If deciding “x ∈ Ri” can be done in time polynomial in t, then f is a function
in NP, and can be rewritten to a 3-CNF formula

f (z1, . . . , zt) ≡ ∃x1 · · · xp
(
ϕ1 ∧ · · · ∧ ϕs

)
,

where

1. xn+1, . . . , xp are auxiliary variables,

2. each ϕi is a disjunction of 3 literals on the variables x1, . . . , xp,

3. and both p and s are polynomially bounded in t.
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set-cover
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and a number d .
Problem: Is there a subcollection of d sets that covers the

whole universe?
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Reduction to the set-cover problem

Recall
f (z1, . . . , zt) ≡ ∃x1 · · · xp

(
ϕ1 ∧ · · · ∧ ϕs

)
.

1. The universe is of size s + p, one element for each ϕi , and one element for
each xi ∨ x̄i .

2. For every xi there are two sets Axi=1 and Axi=0. Axi=1 contains all terms in
which xi appears, and Axi=0 contains all terms in which x̄i appears.

3. Finally, set d = p.
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The correctness

If f is 1, then there exists an assignment for x1, . . . , xp that satisfies all the
terms. Then the corresponding p sets from a cover.

If there is cover, then for every i at least one of Ax1=1 and Axi=0 is in the cover
in order to cover the term xi ∨ x̄i . Since the cover is of size p, exactly one of
Ax1=1 and Axi=0 is in the cover.

Then the cover induces a satisfying assignment, since the universe contains all
the terms.



The correctness

If f is 1, then there exists an assignment for x1, . . . , xp that satisfies all the
terms. Then the corresponding p sets from a cover.

If there is cover, then for every i at least one of Ax1=1 and Axi=0 is in the cover
in order to cover the term xi ∨ x̄i . Since the cover is of size p, exactly one of
Ax1=1 and Axi=0 is in the cover.

Then the cover induces a satisfying assignment, since the universe contains all
the terms.



The correctness

If f is 1, then there exists an assignment for x1, . . . , xp that satisfies all the
terms. Then the corresponding p sets from a cover.

If there is cover, then for every i at least one of Ax1=1 and Axi=0 is in the cover
in order to cover the term xi ∨ x̄i .

Since the cover is of size p, exactly one of
Ax1=1 and Axi=0 is in the cover.

Then the cover induces a satisfying assignment, since the universe contains all
the terms.



The correctness

If f is 1, then there exists an assignment for x1, . . . , xp that satisfies all the
terms. Then the corresponding p sets from a cover.

If there is cover, then for every i at least one of Ax1=1 and Axi=0 is in the cover
in order to cover the term xi ∨ x̄i . Since the cover is of size p, exactly one of
Ax1=1 and Axi=0 is in the cover.

Then the cover induces a satisfying assignment, since the universe contains all
the terms.



The correctness

If f is 1, then there exists an assignment for x1, . . . , xp that satisfies all the
terms. Then the corresponding p sets from a cover.

If there is cover, then for every i at least one of Ax1=1 and Axi=0 is in the cover
in order to cover the term xi ∨ x̄i . Since the cover is of size p, exactly one of
Ax1=1 and Axi=0 is in the cover.

Then the cover induces a satisfying assignment, since the universe contains all
the terms.



Reduction to the set-cover problem (3)

The reduction can be performed in a small depth O(log t). Hence

dm(set-cover) ≥ d(f )− O(log t) = Ω(log2 t).
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Monotone Constant-Depth Circuits



Circuits of unbounded fan-in

Now ∧- and ∨-gates can have unbounded number of inputs. Among others,
constant-depth circuits become meaningful.

We can define similarly d(f ) and L(f ).

It is still the case that L(F ), the size of a formula F , translate to the protocol
partition number CP(f ).

However, the depth d(f ) is equal to the round complexity of the protocol, the
number of alternations between the communication from Alice to Bob and the
communication from Bob to Alice.
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Depth k vs. depth k − 1 for monotone circuits

We construct a formula f : {0, 1}n → {0, 1} with n = mk as follows.

1. f consists of a complete m-ary tree of depth k.

2. Each of its mk leaves is labelled by a unique variable in {x1, . . . , xn}.

3. The gates in the odd levels (including the root) are labelled by ∧, and
those in the even levels are labelled by ∨.

We show that any depth k − 1 formula computing f has size exponential in m.
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Reduction from Tk to Mf (1)

1. Alice computes a sequence of sets S1, . . . , Sk inductively:

I S1 contains only the root of the tree.

I If i is even, then

Si+1 =
{

the child of v defined by the labelling given to Alice
∣∣ v ∈ Si

}
I If i is odd, then

Si+1 =
{

all the children of v
∣∣ v ∈ Si

}
2. Bob computes a sequence of sets Q1, . . . ,Qk inductively:

I Q1 contains only the root of the tree.

I If i is even, then

Qi+1 =
{

all the children of v
∣∣ v ∈ Qi

}
I If i is odd, then

Qi+1 =
{

the child of v defined by the labelling given to Bob
∣∣ v ∈ Qi

}
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Reduction from Tk to Mf (2)

3. Alice computes a string x of length n by putting 1 in all coordinates j for
j ∈ Sk and 0 elsewhere.

4. Bob computes a string y of length n by putting 0 in all coordinates j for
j ∈ Qk and 1 elsewhere.

5. Finally, Alice and Bob use the protocol for Mf on (x , y) and output the
result.
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The correctness (1)

We first show

f (x) = 1 and f (y) = 0

f (x) = 1 By induction on i from k − 1 to 1, if each node in Si+1 computes the value
1, then so do all the nodes in Si .

f (y) = 0 By induction on i from k − 1 to 1 if each node in Qi+1 computes the value
0, then so do all the nodes in Qi .
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The correctness (2)

Finally, we prove that there is exactly one j with xj = 1 and yj = 0 by showing
that for every i ∈ {1, . . . , k} the set Si ∩ Qi includes a single node vi , which is
the node in level i that the path from the root reaches.

I It is trivially true for i = 1, i.e., S1 = Q1 = {root}.

I If i is odd, then we put all the children of Si to Si+1, and only those
defined by the labelling to Qi+1. Since vi ∈ Si ∩ Qi , then the next node
vi+1 on the path is in Si+1 ∩ Qi+1. Conversely, if v ∈ Si+1 ∩ Qi+1, then its
father is in Si ∩ Qi = {vi}. Thus, v = vi+1.

I The case for even i is symmetric.
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The lower bound

We conclude for any constant k, the size of any depth k − 1 formula for f is

CP,k−1(Mf ) = Ω
(

2Dk−1(Mf )/(k−1)
)

= Ω
(

2Dk−1(Tf )/(k−1)
)

= Ω
(

2m/polylog(m)
)
.



Small Circuits



Q-Circuits

A Q-circuit is a directed acyclic graph whose gates are taken from a fixed
family of gates Q.

The cost of a circuit is its size, i.e., the number of gates.

Definition
The Q-circuits complexity of a function f , denoted by SQ(f ), is the minimum
cost of a Q-circuit computing f .
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Worst-case partition

Definition
Let f : {0, 1}m → {0, 1} be a function. Let S and T be a partition of the
variables x1, . . . , xm into two disjoint sets. The (deterministic) communication
complexity of f between S and T , denoted DS:T (f ), is the complexity of
computing f where Alice sees all bits in S , and Bob sees all bits in T .

The worse-case communication complexity of f , denoted by Dworst(f ), is the
maximum of DS ;T (f ) over all such partitions.
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Lemma
Denote cQ = maxq∈Q Dworst(q).

Then, for all f we have

SQ(f ) ≥ Dworst(f )

cQ
.



Lemma
Denote cQ = maxq∈Q Dworst(q). Then, for all f we have

SQ(f ) ≥ Dworst(f )

cQ
.



Proof

Fix an arbitrary partition of the input bits into two disjoint sets.

1. Alice and Bob agree on a “bottom-up” order of the gates.

2. For every gate q there are some inputs for q that are the results of previous
gates (whose values are known to both player) and some input variables.

Alice and Bob compute the value of q using the best protocol for
computing q with respect to any partition that has

I all the inputs to the gate that are Alice’s variables in one set,

I all the inputs to the gate that are Bob’s variables in the other set,

I and all the other inputs (that both players know) are partitioned in an
arbitrary way.

Thus, to simulate each gate, cQ bits of communication are sufficient.

Because the circuit is of size SQ(f ), the whole simulation uses at most

cQ · SQ(f )

bits.
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Threshold gates

A threshold gate is determined by:

1. t edges z1, . . . , zt entering the gate,

2. each edge is associated with an integer weight wi ,

3. an integer θ.

Then the gate computes whether

t∑
i=1

wi · zi > θ.
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gt by threshold gates

The “greater than” function

gt(x , y) =

{
1, if x > y

0, otherwise.

Assume x = xn · · · x1 and y = yn · · · y1. Then

x > y ⇐⇒
n∑

i=1

2i−1xi +
n∑

i=1

−2i−1yi = x − y > θ = 0.
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The total weight of a threshold gate

For a threshold gate specified by (w1, . . . ,wt , θ), its total weight is

t∑
i=1

|wi |.

For the previous threshold gate (1, 2, . . . , 2n−1,−1,−2, . . . ,−2n−1, 0), its total
weight is

W = 2 ·
n∑

i=1

2i−1 = 2n+1 − 2.

We will show that an exponential weight, W ≥ 2n is necessary for computing
gt with a single gate.
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cQ ≤ logW + 1

Let S : T be an arbitrary partition of the input bits.

1. Alice computes
∑

zi∈S
wzi zi and send the result to Bob.

2. Bob computes
∑

zi∈T
wzi zi , adds the result to the number received from

Alice, and compares the sum with θ.
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Now we apply
SQ(gt) ≥ Dworst(gt)/cQ

and Dworst(gt) = D(gt) = n + 1.

Thus the size of any Q-circuit computing
gt is at least

n + 1

logW + 1
.
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Depth 2 Threshold Circuits



Lemma
Assume that a function f : {0, 1}m → {0, 1} can be computed by a depth 2
threshold circuit, whether the total weight of each gate is bounded by W . Then

Rpub,worst
1/2+1/(4W )(f ) ≤ logW + 1.



Proof (1)

The first step is to covert a given circuit for f to a circuit with the following
properties.

1. The top gate is a threshold gate whose threshold θ′ = 0. We feed the gate
with the constant 1 with weight −θ.

2. The weighted sum computed by the gate is always nonzero. We multiply
each weight by 2, and decrease the weight of the constant 1 by 1, i.e., its
weight is −2θ + 1.

The function does not change, and the new total weight W ′ ≤ 4W .
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Proof (2)

Let f1, . . . , ft be the functions that are the inputs to the top gate and
w1, . . . ,wt . These functions are either constants or input variables or threshold
gates, all satisfy

Dworst(fi ) ≤ logW + 1.



Proof (2)

Let f1, . . . , ft be the functions that are the inputs to the top gate and
w1, . . . ,wt . These functions are either constants or input variables or threshold
gates, all satisfy

Dworst(fi ) ≤ logW + 1.



Proof (3)

Fix an arbitrary partition of the inputs, and in the public coin model.

1. Alice and Bob choose at random an index 1 ≤ i ≤ t with

Pr
[
i is chosen

]
=
|wi |
W ′

.

2. They run the deterministic protocol for fi with the fixed partition to get an
output b.

3. 3.1 If b = 0, then the output is chosen uniformly at random from 0 and 1.

3.2 If b = 1, then the output is 1 if wi > 0 and 0 if wi < 0.
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Proof (4)

Consider an input x with f (x) = 1. Let

α = Pr
1≤i≤t

[
fi (x) = 0

]
.

The contribution of these indices to the probability that the output is 1 is α/2.

Moreover
Pr
i

[
fi (x) = 1

]
= 1− α.

By f (x) = “
∑

i wi · fi (x) > 0?′′ we have∑
i :fi (x)=1

wi > 0,

and note the weights are integers, the contribution of these indices to the
probability that the output is 1 is at least (1− α)/2 + 1/W ′.

Therefore the total success probability is at least

α

2
+

1− α
2

+
1

W ′
=

1

2
+

1

W ′
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Proof (5)

The case for an x with f (x) = 0 is symmetric. Here, we crucially use the fact
that ∑

i

wi · fi (x) 6= 0.

In both case, we get the correct answer with probability

1

2
+

1

W ′
≥ 1

2
+

1

4W
.

And
Dworst(fi ) ≤ logW + 1. �
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ip by depth 2 threshold circuits

By Exercise 3.30
Rpub,worst

1/2+1/W (ip) ≥ m − O(logW ).

By the previous lemma any depth 2 threshold circuit for ip must satisfy

Rpub,worst
1/2+1/W (ip) ≤ log(W /4) + 1.

Thus
W = 2Ω(m).

If the circuit has s gates with each wi and θ is at most w , then

s = 2Ω(m)/w .

That is, provided the weights are small, the size of the circuit has to be
exponential.
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Thank You!
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