
Boolean Circuit Depth

Yijia Chen

Fudan University



1. Compared to Turing machines, circuits have much simpler structures.

Thus, some of the best lower bounds we can prove so far are in circuit
complexity. Circuits are in some sense more powerful than Turing
machines, so their lower bounds are also lower bounds for Turing machines.

2. There is a tight connection between the circuit complexity of a function
and the communication complexity of a corresponding relation, which is
the main topic of this chapter.

3. I’m not an expert in communication complexity, so please ask questions
and correct mistakes.
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Introduction



Definition
Let z1, . . . , zn be a set of variables. A Boolean circuit on z1, . . . , zn is a directed
acyclic graph with two types of nodes:

1. inputs with in-degree 0, each labelled by either zi or z̄i ,

2. gates with in-degree 2, each labelled by a Boolean operation, either ∨ or ∧.

There is a single node with out-degree 0 that is called the output node.

A monotone circuit is a circuit in which all input nodes are labelled by variables
(and none is labelled by a negated variable z̄i ).

A circuit in which each node has out-degree 1 (except for the output node) is
called a formula. (Note that we allow many input nodes to have the same
label).



Definition
Let z1, . . . , zn be a set of variables. A Boolean circuit on z1, . . . , zn is a directed
acyclic graph with two types of nodes:

1. inputs with in-degree 0, each labelled by either zi or z̄i ,

2. gates with in-degree 2, each labelled by a Boolean operation, either ∨ or ∧.

There is a single node with out-degree 0 that is called the output node.

A monotone circuit is a circuit in which all input nodes are labelled by variables
(and none is labelled by a negated variable z̄i ).

A circuit in which each node has out-degree 1 (except for the output node) is
called a formula. (Note that we allow many input nodes to have the same
label).



Definition
Let z1, . . . , zn be a set of variables. A Boolean circuit on z1, . . . , zn is a directed
acyclic graph with two types of nodes:

1. inputs with in-degree 0, each labelled by either zi or z̄i ,

2. gates with in-degree 2, each labelled by a Boolean operation, either ∨ or ∧.

There is a single node with out-degree 0 that is called the output node.

A monotone circuit is a circuit in which all input nodes are labelled by variables
(and none is labelled by a negated variable z̄i ).

A circuit in which each node has out-degree 1 (except for the output node) is
called a formula. (Note that we allow many input nodes to have the same
label).



Definition
Let z1, . . . , zn be a set of variables. A Boolean circuit on z1, . . . , zn is a directed
acyclic graph with two types of nodes:

1. inputs with in-degree 0, each labelled by either zi or z̄i ,

2. gates with in-degree 2, each labelled by a Boolean operation, either ∨ or ∧.

There is a single node with out-degree 0 that is called the output node.

A monotone circuit is a circuit in which all input nodes are labelled by variables
(and none is labelled by a negated variable z̄i ).

A circuit in which each node has out-degree 1 (except for the output node) is
called a formula. (Note that we allow many input nodes to have the same
label).



Definition
Let z1, . . . , zn be a set of variables. A Boolean circuit on z1, . . . , zn is a directed
acyclic graph with two types of nodes:

1. inputs with in-degree 0, each labelled by either zi or z̄i ,

2. gates with in-degree 2, each labelled by a Boolean operation, either ∨ or ∧.

There is a single node with out-degree 0 that is called the output node.

A monotone circuit is a circuit in which all input nodes are labelled by variables
(and none is labelled by a negated variable z̄i ).

A circuit in which each node has out-degree 1 (except for the output node) is
called a formula. (Note that we allow many input nodes to have the same
label).



Definition
Let z1, . . . , zn be a set of variables. A Boolean circuit on z1, . . . , zn is a directed
acyclic graph with two types of nodes:

1. inputs with in-degree 0, each labelled by either zi or z̄i ,

2. gates with in-degree 2, each labelled by a Boolean operation, either ∨ or ∧.

There is a single node with out-degree 0 that is called the output node.

A monotone circuit is a circuit in which all input nodes are labelled by variables
(and none is labelled by a negated variable z̄i ).

A circuit in which each node has out-degree 1 (except for the output node) is
called a formula. (Note that we allow many input nodes to have the same
label).



Definition
The function computed by a Boolean circuit is defined inductively:

1. the function computed by an input node is g(z1, . . . , zn) = zi if the node is
labelled by zi and g(z1, . . . , zn) = z̄i if the node is labelled by z̄i .

2. If one of the two nodes entering the gate computes the function
g1(z1, . . . , zn) and the other node computes the function g2(z1, . . . , zn) the
the gate computes the function

g(z1, . . . , zn) = g1(z1, . . . , zn) ∨ g2(z1, . . . , zn)

if the gate is labelled ∨ and it computes

g(z1, . . . , zn) = g1(z1, . . . , zn) ∧ g2(z1, . . . , zn)

if it is labelled ∧.

For every Boolean function f : {0, 1}n → {0, 1} there is a circuit or even
formula computing f , but possibly of huge size.
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For x , y ∈ {0, 1}n we say that x ≤ y if xi ≤ yi for all i ∈ [n]. A function
f : {0, 1}n → {0, 1} is monotone if x ≤ y implies f (x) ≤ f (y).

Lemma

1. The function computed by a monotone circuit is monotone.

2. For every monotone function there is a monotone circuit computing it.
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Definition
The depth d(C) of a circuit C is the length of the longest path from the
output node to an input node. The size L(F ) of a formula F is the number of
its input nodes.

For a function f , the depth complexity d(f ) is the minimum depth of a circuit
computing f and the size complexity L(f ) is the minimum size of a formula
computing f .

The measure dm(C), Lm(F ), dm(f ), and Lm(f ) are defined similarly for
monotone circuits, formulas, and functions respectively.
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The Connection to Communication Complexity



Definition
For a Boolean function f : {0, 1}n → {0, 1} let

X = f −1(1) and Y = f −1(0).

We define

Rf =
{

(x , y , i)
∣∣ x ∈ X , y ∈ Y , and i ∈ {1, . . . , n} with xi 6= yi

}
.

For monotone f we also define

Mf =
{

(x , y , i)
∣∣ x ∈ X , y ∈ Y , and i ∈ {1, . . . , n} with xi = 1 and yi = 0

}
.
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Lemma
For every circuit C for f there is a corresponding protocol P for Rf in which at
most d(C) bits are exchanged.



Proof (1)

Alice and Bob traverse the nodes of the circuit C , starting from the output
node and continuing towards the input nodes, while maintaining the following
invariant on the function g computed by the current node

g(x) = 1 and g(y) = 0.

The invariant if trivially true for the output node.
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Proof (2)

Suppose that the current node is a ∨-gate, and let g1 and g2 be the functions
corresponding to the nodes entering the current node. Then

g(z1, . . . , zn) = g1(z1, . . . , zn) ∨ g2(z1, . . . , zn).

By the invariant g(y) = 0 and g(x) = 1 we have

g1(y) = g2(y) = 0,

and
(
either g1(x) = 1 or g2(x) = 1

)
.

Then Alice who knows x sends a single bit indicating for which i ∈ {1, 2} we
have gi (x) = 1. So Alice and Bob can move to the same gi and maintain the
invariant.

The case for a ∧-gate is symmetric.
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Proof (3)

Finally, when the players reach an input node, labelled by either zi or z̄i . Then
they both know that i is an appropriate output, i.e., (x , y , i) ∈ Rf .
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Lemma
For every protocol P for Rf there is a corresponding circuit C for f such that
d(C) is at most the communication complexity of P.



Proof (1)

We convert the protocol tree for P to a circuit as follows.

1. Each internal node in which Alice sends a bit is labelled by ∨.

2. Each internal node in which Bob sends a bit is labelled by ∧.

3. Each leaf of the tree is a monochromatic rectangle A× B with whom an
output i is associated. We claim

3.1 either xi = 1 for all x ∈ A and yi = 0 for all y ∈ B in which case this leaf is
labelled by zi ;

3.2 or xi = 0 for all x ∈ A and yi = 1 for all y ∈ B in which case this leaf is
labelled by z̄i .
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Proof of the claim

Take any x ∈ A and let σ = xi . Because for all y ∈ B the value i is a legal
output on (x , y), we conclude yi = σ̄ for all y ∈ B. This in turn implies that
xi = σ for all x ∈ A.
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Proof (3)

The depth of the circuit equals the depth of the protocol tree, i.e., the
communication complexity of P.

We prove that the circuit computes f by showing

for every node of the circuit, the function g corresponding to that node
satisfies g(z) = 1 for all z ∈ A and g(z) = 0 for all z ∈ B, where A×B are the
inputs that reach the corresponding node of the protocol.

The claim is proved by induction starting from the input nodes towards the
output node.

It is true in the input nodes by our construction and the claim.
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Proof (4)

Now consider an internal node computing a function g such that the claim was
already proved for its two children (computing the functions g1 and g2).

Let A× B be the inputs reaching this node in the protocol tree. Assume,
without loss of generality, that Alice sends a bit in this node. Her bit partitions
A into A1 and A2.

By the induction hypothesis,
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Matching and ST-Connectivity



Matching

A matching in a graph G = (V ,E) is a set of edges such that no pair of them
has a common vertex.

Given a graph G on n vertices, represented by n′ =
(
n
2

)
Boolean variables (each

indicating whether a certain edge (i , j) appears in the graph or not).

match(G) =

{
1, if there is a matching of size ≥ n/3 in G ,

0, otherwise.

match is monotone.

With our loss of generality we assume n = 3m for some m ∈ N.
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Mmatch

The relation Mmatch is defined by:

1. X is the set of all graphs of n = 3m vertices with a matching of size m.

2. Y is the set of all graphs of n = 3m vertices without such a matching.

3. Alice is given x ∈ X and Bob y ∈ Y , and they have to find an edge that is
in x but not in y , or equivalently an index i such that xi = 1 and yi = 0.
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M ′

We will choose some X ′ ⊂ X and Y ′ ⊂ Y and let M ′ be the restriction of
Mmatch to X ′ × Y ′. Clearly

D(M ′) ≤ D(Mmatch).

1. X ′ is the set of graphs on n vertices that are matchings of size m.

2. Y ′ is the set of graphs in which the vertices are partitions into two sets S
of size m − 1 and T of size 2m + 1, and the edges are all the pairs in
which at least one vertex is in S .
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The pair-disjointness relation M

1. n = 3m.

2. X consists of all ordered sets P of m pairs of {1, . . . , n}, where the 2m
elements in P are pairwise distinct.

3. Y consists of all sets S of m − 1 elements of {1, . . . , n}.

Then we let

M =
{

(P,S , i)
∣∣ P ∈ X , S ∈ Y ,

and the i-th pair in P contains no element of S
}
.

Theorem
D(M) = Ω(m).
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From M ′ to the pair-disjointness M

1. Alice, given a list P of m mutually disjoint pairs of elements in
{1, . . . , 3m}, transforms it into a matching of size m in a graph with
n = 3m vertices, hence obtains a graph x ∈ X ′.

2. Bob, given a set S of m − 1 elements in {1, . . . , 3m}, transforms it into a
graph y ∈ Y ′ corresponding to this set S .

3. Hence the protocol for M ′ will output a pair of P that contains no
elements of S .

4. Finally, Alice sends the index of this pair in the list P using logm bits.

Hence we get D(M) ≤ D(M ′) + logm, and recall D(M) = Ω(m). Altogether

dm(match) = D(Mmatch) ≥ D(M ′) ≥ D(M)− logm = Ω(m) = Ω(n).



From M ′ to the pair-disjointness M

1. Alice, given a list P of m mutually disjoint pairs of elements in
{1, . . . , 3m}, transforms it into a matching of size m in a graph with
n = 3m vertices, hence obtains a graph x ∈ X ′.

2. Bob, given a set S of m − 1 elements in {1, . . . , 3m}, transforms it into a
graph y ∈ Y ′ corresponding to this set S .

3. Hence the protocol for M ′ will output a pair of P that contains no
elements of S .

4. Finally, Alice sends the index of this pair in the list P using logm bits.

Hence we get D(M) ≤ D(M ′) + logm, and recall D(M) = Ω(m). Altogether

dm(match) = D(Mmatch) ≥ D(M ′) ≥ D(M)− logm = Ω(m) = Ω(n).



From M ′ to the pair-disjointness M

1. Alice, given a list P of m mutually disjoint pairs of elements in
{1, . . . , 3m}, transforms it into a matching of size m in a graph with
n = 3m vertices, hence obtains a graph x ∈ X ′.

2. Bob, given a set S of m − 1 elements in {1, . . . , 3m}, transforms it into a
graph y ∈ Y ′ corresponding to this set S .

3. Hence the protocol for M ′ will output a pair of P that contains no
elements of S .

4. Finally, Alice sends the index of this pair in the list P using logm bits.

Hence we get D(M) ≤ D(M ′) + logm, and recall D(M) = Ω(m). Altogether

dm(match) = D(Mmatch) ≥ D(M ′) ≥ D(M)− logm = Ω(m) = Ω(n).



From M ′ to the pair-disjointness M

1. Alice, given a list P of m mutually disjoint pairs of elements in
{1, . . . , 3m}, transforms it into a matching of size m in a graph with
n = 3m vertices, hence obtains a graph x ∈ X ′.

2. Bob, given a set S of m − 1 elements in {1, . . . , 3m}, transforms it into a
graph y ∈ Y ′ corresponding to this set S .

3. Hence the protocol for M ′ will output a pair of P that contains no
elements of S .

4. Finally, Alice sends the index of this pair in the list P using logm bits.

Hence we get D(M) ≤ D(M ′) + logm, and recall D(M) = Ω(m). Altogether

dm(match) = D(Mmatch) ≥ D(M ′) ≥ D(M)− logm = Ω(m) = Ω(n).



From M ′ to the pair-disjointness M

1. Alice, given a list P of m mutually disjoint pairs of elements in
{1, . . . , 3m}, transforms it into a matching of size m in a graph with
n = 3m vertices, hence obtains a graph x ∈ X ′.

2. Bob, given a set S of m − 1 elements in {1, . . . , 3m}, transforms it into a
graph y ∈ Y ′ corresponding to this set S .

3. Hence the protocol for M ′ will output a pair of P that contains no
elements of S .

4. Finally, Alice sends the index of this pair in the list P using logm bits.

Hence we get D(M) ≤ D(M ′) + logm, and recall D(M) = Ω(m). Altogether

dm(match) = D(Mmatch) ≥ D(M ′) ≥ D(M)− logm = Ω(m) = Ω(n).



From M ′ to the pair-disjointness M

1. Alice, given a list P of m mutually disjoint pairs of elements in
{1, . . . , 3m}, transforms it into a matching of size m in a graph with
n = 3m vertices, hence obtains a graph x ∈ X ′.

2. Bob, given a set S of m − 1 elements in {1, . . . , 3m}, transforms it into a
graph y ∈ Y ′ corresponding to this set S .

3. Hence the protocol for M ′ will output a pair of P that contains no
elements of S .

4. Finally, Alice sends the index of this pair in the list P using logm bits.

Hence we get D(M) ≤ D(M ′) + logm, and recall D(M) = Ω(m).

Altogether

dm(match) = D(Mmatch) ≥ D(M ′) ≥ D(M)− logm = Ω(m) = Ω(n).



From M ′ to the pair-disjointness M

1. Alice, given a list P of m mutually disjoint pairs of elements in
{1, . . . , 3m}, transforms it into a matching of size m in a graph with
n = 3m vertices, hence obtains a graph x ∈ X ′.

2. Bob, given a set S of m − 1 elements in {1, . . . , 3m}, transforms it into a
graph y ∈ Y ′ corresponding to this set S .

3. Hence the protocol for M ′ will output a pair of P that contains no
elements of S .

4. Finally, Alice sends the index of this pair in the list P using logm bits.

Hence we get D(M) ≤ D(M ′) + logm, and recall D(M) = Ω(m). Altogether

dm(match) = D(Mmatch) ≥ D(M ′) ≥ D(M)− logm = Ω(m) = Ω(n).



stcon

The s-t-connectivity function stcon is defined as follows: Given a directed
graph G on n nodes,

stcon(G) =

{
1, if there is a path in G from vertex 1 to vertex n

0, otherwise.
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Mstcon

1. X is the set of all directed graphs G on n vertices with a directed path
from vertex 1 to vertex n.

2. Y is the set of all directed graphs G on n vertices with no directed paths
from vertex 1 to vertex n.

3. The task of Alice and Bob is given x ∈ X and y ∈ Y to find an edge that
appears in x but not in y .
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Restricting Mstcon

We will choose some X ′ ⊂ X and Y ′ ⊂ Y and let M be the restriction of
Mstcon to X ′ × Y ′. Thus

D(M) ≤ D(Mstcon).

The domains X ′ and Y ′ are obtained by restricting our attention to layered
graphs that consist of `+ 2 layers 0, 1, . . . , `, `+ 1 each of them with w
vertices with

`+ 2 = w =
√
n.

1. Every edge connects a vertex in some layer i and a vertex in the adjacent
layer i + 1.

2. Vertex 1 belongs to layer 0 and vertex n belongs to layer `+ 1.
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2. Vertex 1 belongs to layer 0 and vertex n belongs to layer `+ 1.
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Reducing fork to M

1. Alice considers her string a ∈ {1, . . . ,w}` as a directed path from vertex 1
to vertex n (this will be her graph x) by choosing from each layer i its
ai -th vertex and connecting them.

2. Bob considers his string b ∈ {1, . . . ,w}` as a path p from vertex 1 to
another vertex in the last layer (say n − 1), and construct a graph y ∈ Y ′

that contains this path. In addition, edges connecting each vertex not in
the path to all the vertices in the next layer.

Observe that the path corresponding to b does not reach vertex n, and
vertex 1 is not connected to vertex n in y .
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Reducing fork to M (cont’d)

3. Alice and Bob use the protocol for M on x and y to get an output edge
(u, v) that appears in x but not in y . In addition u belongs to layer i and
v to layer i + 1.

4. (u, v) belongs to the path a. On the other hand, u belongs to b but v
does not. Thus i is a legal output for fork.

We conclude

dm(stcon) = D(Mstcon) ≥ D(M) ≥ D(fork) = Ω(log ` · logw) = Ω(log2 n).
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Set Cover



Let g : {0, 1}n × {0, 1}n → {0, 1} whose deterministic communication
complexity D(g) is significantly larger than its nondeterministic communication
complexity N(g).

Let R1, . . . ,Rt be a cover (possibly with intersections) of the matrix Mg

corresponding to g with monochromatic rectangles. Thus

N(g) ≤ t.

We define
M =

{
(x , y , i)

∣∣ x , y ∈ {0, 1}n and (x , y) ∈ Ri

}
.

M is a total relation, and
D(g) ≤ D(M).
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We construct a function f : {0, 1}t → {0, 1} such that D(Mf ) ≥ D(M).

f (z1, . . . , zt) =


1, if there exists a row x of Mg such that

for all i we have
(
x ∈ Ri =⇒ zi = 1

)
0, otherwise.

f is monotone.



We construct a function f : {0, 1}t → {0, 1} such that D(Mf ) ≥ D(M).

f (z1, . . . , zt) =


1, if there exists a row x of Mg such that

for all i we have
(
x ∈ Ri =⇒ zi = 1

)
0, otherwise.

f is monotone.



We construct a function f : {0, 1}t → {0, 1} such that D(Mf ) ≥ D(M).

f (z1, . . . , zt) =


1, if there exists a row x of Mg such that

for all i we have
(
x ∈ Ri =⇒ zi = 1

)
0, otherwise.

f is monotone.



Reduction from M to Mf

1. Alice, given x ∈ {0, 1}n, constructs x ′ ∈ {0, 1}t by assigning x ′i = 1 if the
the row x belongs to Ri and 0 otherwise. So f (x ′) = 1.

2. Bob, given y ∈ {0, 1}n, constructs y ′ ∈ {0, 1}t by assigning y ′i = 0 if the
column y belongs to Ri and 1 otherwise. So f (y ′) = 0.

3. Alice and Bob use the protocol for the relation Mf on (x ′, y ′) to get an
index i with x ′i = 1 and y ′i = 0. Thus, both x and y intersect Ri , i.e.,
(x , y , i) ∈ M.

Assume D(g) = N2(g), then the function f has t = 2N(g) variables and

dm(f ) = D(Mf ) ≥ D(g) = log2 t.

Similarly L(f ) = Ω(t log t).
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Note we can write

f (z1, . . . , zt) ≡ ∃x ∈{0, 1}n :[
(x ∈ R1) =⇒ (z1 = 1)

]
∧ · · · ∧

[
(x ∈ Rt) =⇒ (zt = 1)

]
.

If deciding “x ∈ Ri” can be done in time polynomial in t, then f is a function
in NP, and can be rewritten to a 3-CNF formula

f (z1, . . . , zt) ≡ ∃x1 · · · xp
(
ϕ1 ∧ · · · ∧ ϕs

)
,

where

1. xn+1, . . . , xp are auxiliary variables,

2. each ϕi is a disjunction of 3 literals on the variables x1, . . . , xp,

3. and both p and s are polynomially bounded in t.
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set-cover
Input: A collection of m sets over a universe of ` elements

and a number d .
Problem: Is there a subcollection of d sets that covers the

whole universe?
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Reduction to the set-cover problem (1)

Recall
f (z1, . . . , zt) ≡ ∃x1 · · · xp

(
ϕ1 ∧ · · · ∧ ϕs

)
.

1. The universe is of size s + p, one element for each ϕi , and one element for
each xi ∨ x̄i .

2. For every xi there are two sets Axi=1 and Axi=0. Axi=1 contains all terms in
which xi appears, and Axi=0 contains all terms in which x̄i appears.

3. Finally, set d = p.
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Reduction to the set-cover problem (2)
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terms. Then the corresponding p sets from a cover.
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in order to cover the term xi ∨ x̄i . Since the cover is of size p, exactly one of
Ax1=1 and Axi=0 is in the cover.

Then the cover induces a satisfying assignment, since the universe contains all
the terms.



Reduction to the set-cover problem (2)

If f is 1, then there exists an assignment for x1, . . . , xp that satisfies all the
terms. Then the corresponding p sets from a cover.

If there is cover, then for every i at least one of Ax1=1 and Axi=0 is in the cover
in order to cover the term xi ∨ x̄i . Since the cover is of size p, exactly one of
Ax1=1 and Axi=0 is in the cover.

Then the cover induces a satisfying assignment, since the universe contains all
the terms.



Reduction to the set-cover problem (2)

If f is 1, then there exists an assignment for x1, . . . , xp that satisfies all the
terms. Then the corresponding p sets from a cover.

If there is cover, then for every i at least one of Ax1=1 and Axi=0 is in the cover
in order to cover the term xi ∨ x̄i .

Since the cover is of size p, exactly one of
Ax1=1 and Axi=0 is in the cover.

Then the cover induces a satisfying assignment, since the universe contains all
the terms.



Reduction to the set-cover problem (2)

If f is 1, then there exists an assignment for x1, . . . , xp that satisfies all the
terms. Then the corresponding p sets from a cover.

If there is cover, then for every i at least one of Ax1=1 and Axi=0 is in the cover
in order to cover the term xi ∨ x̄i . Since the cover is of size p, exactly one of
Ax1=1 and Axi=0 is in the cover.

Then the cover induces a satisfying assignment, since the universe contains all
the terms.



Reduction to the set-cover problem (2)

If f is 1, then there exists an assignment for x1, . . . , xp that satisfies all the
terms. Then the corresponding p sets from a cover.

If there is cover, then for every i at least one of Ax1=1 and Axi=0 is in the cover
in order to cover the term xi ∨ x̄i . Since the cover is of size p, exactly one of
Ax1=1 and Axi=0 is in the cover.

Then the cover induces a satisfying assignment, since the universe contains all
the terms.



Reduction to the set-cover problem (3)

The reduction can be performed in a small depth O(log t). Hence
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Monotone Constant-Depth Circuits



Circuits of unbounded fan-in

Now ∧- and ∨-gates can have unbounded number of inputs. Among others,
constant-depth circuits become meaningful.

We can define similarly d(f ) and L(f ).

It is still the case that L(F ), the size of a formula F , translate to the protocol
partition number CP(f ).

However, the depth d(f ) is equal to the round complexity of the protocol, the
number of alternations between the communication from Alice to Bob and the
communication from Bob to Alice.
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Depth k vs. depth k − 1 for monotone circuits

We construct a formula f : {0, 1}n → {0, 1} with n = mk as follows.

1. f consists of a complete m-ary tree of depth k.

2. Each of its mk leaves is labelled by a unique variable in {x1, . . . , xn}.

3. The gates in the odd levels (including the root) are labelled by ∧, and
those in the even levels are labelled by ∨.

We show that any depth k − 1 formula computing f has size exponential in m.
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The tree problem Tk

Consider the complete m-ary tree of depth k. A labelling of the tree assigns to
each leaf a bit, and to each internal node a number in {1, . . . , n}.

The labels of the internal nodes define a (unique) path from the root to a leaf,
where the label of each internal node is viewed as a pointer to one of its
children.

An input to the tree problem is a labelling of the tree, where

1. Bob gets as his input the labels of all nodes in the odd levels,

2. and Alice gets her input the labels of all nodes in even level.

The goal is to compute the label of the leaf reached by the path induced by the
labelling.

It is known that the k − 1-round communication complexity Dk−1(Tk) of Tk is

Dk−1(Tk) = Ω
(
m/polylog(m)

)
.
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Reduction from Tk to Mf (1)

1. Alice computes a sequence of sets S1, . . . , Sk inductively:

I S1 contains only the root of the tree.

I If i is even, then

Si+1 =
{

the child of v defined by the labelling given to Alice
∣∣ v ∈ Si

}
I If i is odd, then

Si+1 =
{

all the children of v
∣∣ v ∈ Si

}
2. Bob computes a sequence of sets Q1, . . . ,Qk inductively:

I Q1 contains only the root of the tree.

I If i is even, then

Qi+1 =
{

all the children of v
∣∣ v ∈ Qi

}
I If i is odd, then

Qi+1 =
{

the child of v defined by the labelling given to Bob
∣∣ v ∈ Qi

}
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Reduction from Tk to Mf (2)

3. Alice computes a string x of length n by putting 1 in all coordinates j for
j ∈ Sk and 0 elsewhere.

4. Bob computes a string y of length n by putting 0 in all coordinates j for
j ∈ Qk and 1 elsewhere.

5. Finally, Alice and Bob use the protocol for Mf on (x , y) and output the
result.
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The correctness (1)

We first show

f (x) = 1 and f (y) = 0

f (x) = 1 By induction on i from k − 1 to 1, if each node in Si+1 computes the value
1, then so do all the nodes in Si .

f (y) = 0 By induction on i from k − 1 to 1 if each node in Qi+1 computes the value
0, then so do all the nodes in Qi .



The correctness (1)

We first show

f (x) = 1 and f (y) = 0

f (x) = 1 By induction on i from k − 1 to 1, if each node in Si+1 computes the value
1, then so do all the nodes in Si .

f (y) = 0 By induction on i from k − 1 to 1 if each node in Qi+1 computes the value
0, then so do all the nodes in Qi .



The correctness (1)

We first show

f (x) = 1 and f (y) = 0

f (x) = 1 By induction on i from k − 1 to 1, if each node in Si+1 computes the value
1, then so do all the nodes in Si .

f (y) = 0 By induction on i from k − 1 to 1 if each node in Qi+1 computes the value
0, then so do all the nodes in Qi .



The correctness (1)

We first show

f (x) = 1 and f (y) = 0

f (x) = 1 By induction on i from k − 1 to 1, if each node in Si+1 computes the value
1, then so do all the nodes in Si .

f (y) = 0 By induction on i from k − 1 to 1 if each node in Qi+1 computes the value
0, then so do all the nodes in Qi .



The correctness (2)

Finally, we prove that there is exactly one j with xj = 1 and yj = 0 by showing
that for every i ∈ {1, . . . , k} the set Si ∩ Qi includes a single node vi , which is
the node in level i that the path from the root reaches.

I It is trivially true for i = 1, i.e., S1 = Q1 = {root}.

I If i is odd, then we put all the children of Si to Si+1, and only those
defined by the labelling to Qi+1. Since vi ∈ Si ∩ Qi , then the next node
vi+1 on the path is in Si+1 ∩ Qi+1. Conversely, if v ∈ Si+1 ∩ Qi+1, then its
father is in Si ∩ Qi = {vi}. Thus, v = vi+1.

I The case for even i is symmetric.
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The lower bound

We conclude for any constant k, the size of any depth k − 1 formula for f is

CP,k−1(Mf ) = Ω
(

2Dk−1(Mf )/(k−1)
)

= Ω
(

2Dk−1(Tf )/(k−1)
)

= Ω
(

2m/polylog(m)
)
.



Thank You!
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