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Discrete Distributions 



Entropy

(symmetric)



Conditional and Joint Entropy



Chain Rule for Entropy



Conditioning Cannot Increase Entropy

continuous



Conditioning Cannot Increase Entropy



Mutual Information

• (Mutual Information) I(X ; Y) = H(X) – H(X | Y) 

= H(Y) – H(Y | X) 

= I(Y ; X)

Note: I(X ; X) = H(X) – H(X | X) = H(X)

• (Conditional Mutual Information)

I(X ; Y | Z) = H(X | Z) – H(X | Y, Z)



Chain Rule for Mutual Information



Fano’s Inequality

Here X -> Y -> X’ is a Markov Chain, meaning X’ and X are independent
given Y. 

“Past and future are conditionally independent given the present”

To prove Fano’s Inequality, we need the data processing inequality



Data Processing Inequality

• Suppose X -> Y -> Z is a Markov Chain. Then, 
𝐼 𝑋 ; 𝑌 ≥ 𝐼(𝑋; 𝑍)

• That is, no clever combination of the data can improve estimation

• I(X ; Y, Z) = I(X ; Z) + I(X ; Y | Z) = I(X ; Y) + I(X ; Z | Y)

• So, it suffices to show I(X ; Z | Y) = 0

• I(X ; Z | Y) = H(X | Y) – H(X | Y, Z)

• But given Y, then X and Z are independent, so H(X | Y, Z) = H(X | Y).

• Data Processing Inequality implies H(X | Y) ≤ 𝐻 𝑋 𝑍)



Proof of Fano’s Inequality

• For any estimator X’ such that X-> Y -> X’ with 𝑃𝑒 = Pr 𝑋 ≠ 𝑋
′ ,

we have 𝐻 𝑋 𝑌) ≤ 𝐻 𝑃𝑒 + 𝑃𝑒(log2 𝑋 − 1) .

Proof: Let E = 1 if X’ is not equal to X, and E = 0 otherwise. 

H(E, X | X’) = H(X | X’) + H(E | X, X’) = H(X | X’)

H(E, X | X’) = H(E | X’) + H(X | E, X’) ≤ 𝐻 𝑃𝑒 + H(X | E, X’) 

But H(X | E, X’) = Pr(E = 0)H(X | X’, E = 0) + Pr(E = 1)H(X | X’, E = 1)

≤ (1 − 𝑃𝑒) ⋅ 0 + 𝑃𝑒 ⋅ log2 𝑋 − 1

Combining the above, H(X | X’) ≤ 𝐻 𝑃𝑒 + 𝑃𝑒 ⋅ log2 𝑋 − 1

By Data Processing, H(X | Y) ≤ 𝐻 𝑋 𝑋′) ≤ 𝐻 𝑃𝑒 + 𝑃𝑒 ⋅ log2 𝑋 − 1



Tightness of Fano’s Inequality
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Distances Between Distributions



Why Hellinger Distance?



Product Property of Hellinger Distance



Jensen-Shannon Distance 

l



Relations Between Distance Measures
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Randomized 1-Way Communication Complexity

x 2 {0,1}n j 2 {1, 2, 3, …, n}

INDEX 
PROBLEM



1-Way Communication Complexity of Index 

• Consider a uniform distribution μ on X

• Alice sends a single message M to Bob

• We can think of Bob’s output as a guess 𝑋𝑗
′𝑡𝑜 𝑋𝑗

• For all j, Pr 𝑋𝑗
′ = 𝑋𝑗 ≥

2

3

• By Fano’s inequality, for all j, 

𝐻 𝑋𝑗 𝑀) ≤ 𝐻
2

3
+
1

3
(log2 2 − 1) = 𝐻(

1

3
)



1-Way Communication of Index Continued

So, 𝐼 𝑋 ;𝑀 ≥ 𝑛 −  𝑖𝐻 𝑋𝑖 𝑀) ≥ 𝑛 − 𝐻
1

3
𝑛

So, 𝑀 ≥ 𝐻 𝑀 ≥ 𝐼 𝑋 ;𝑀 = Ω 𝑛
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