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Discrete Distributions

* Consider distributions p over a finite support of size n:

* p=(P1, P2, 03 - Pn)

* p; €[0,1] for all i
* Lipi=1

* X is a random variable with distribution p if Pr[X = i] = p;



Entropy

* Let X be a random variable with distribution p on n items

* (Entropy) H(X) = Y; p; log, (1/p;)

. prl—Othenpllogz( ) 0

* H(X) < log, n. Equality holds when p; = = for all i.

* Entropy measures “uncertainty” of X.
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H(B) =

p logz

+ (1 —p) 1082

0.5 +

0.0

xxxxxxxxx

™ T T T Tttt

(symmetric)



Conditional and Joint Entropy

* Let Xand Y be random variables

* (Conditional Entropy)
H(X|Y) =T, HX|Y =y) Prly = y]

* (Joint Entropy)
H(X, Y) = 2,y PrI(XY) = (x,y)] log(1/Pr[(X,Y) = (x,y)])



Chain Rule for Entropy

* (Chain Rule) H(X,Y) = H(X) + H(Y | X)

* Proof:

HXY) = Sy PIICE, V) = x,)] log

=Zx,y Pr[X = x|
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Conditioning Cannot Increase Entropy

* Let X, Y be random variables. Then H(X | Y) < H(X)

* To prove this, we need Jensen’s Inequality: continuous

Recall a concave function f means f (%b) > f(za) + f(zb) forall a,b

Recall the expectation E[W] =), PriW =w]-w

(Jensen’s Inequality) For concave f, E[f(W)] < f(E|W])
We will use that f(x) = log(x) is concave



Conditioning Cannot Increase Entropy

* Proof:
HX 1Y) = HX) = Ty PrlY = y] Pr[X = x |Y = y] logGrmrivsy)

- )., Pr|X = x]log (Pr[;zx]) 2y PrlY =y |X = x]

_ ] Pr[X=x]
_ Zx,y PriX=x,Y=yvy log(pr[xr X |;C y])

Pr|[X=x]| Pr[Y= y])
Pr{(X,Y)=(x,y)]

B _ Pr[X x| Pr[Y=y]
< log( Zx,y PI‘[X =xY = y] Pr[(X,Y)=(x,y)] )

=Yy Pr[X = x,Y = y]log(

where the inequality follows by Jensen’s inequality.
If X and Y are independent H(X | Y) = H(X).



Mutual Information

e (Mutual Information) I(X; Y) = H(X) — H(X | Y)
= H(Y) = H(Y | X)
=1(Y ; X)

Note: I(X ; X) = H(X) = H(X | X) = H(X)

* (Conditional Mutual Information)
I(X;Y | Z)=H(X | Z)-H(X |, 2)



Chain Rule for Mutual Information
(X, Y:Z)=1(X:2Z)+1(Y:Z ]| X)
e Proof: I(X,Y;2Z) =H(X, Y)=H(X, Y | 2)

= H(X) + H(Y | X) — H(X | Z) —H(Y | X, Z)

=1(X;2Z)+ I(Y; Z | X)

By induction, I(Xy, ..., Xn; Z) = X I(Xi; Z | X1, o, Xio1y)



Fano’s Inequality

* For any estimator X’: X->Y -> X’ with P, = Pr[X’ # X], we have
HX|Y)<H(P,)+P, - log(|X| — 1)

Here X ->Y -> X" is a Markov Chain, meaning X" and X are independent
given Y.

“Past and future are conditionally independent given the present”

To prove Fano’s Inequality, we need the data processing inequality



Data Processing Inequality

e Suppose X ->Y ->Zis a Markov Chain. Then,
I(X;Y)=1(X;2)

* That is,

(XY, 2)=1(X;Z2)+I(X;Y|Z)=UX;Y)+I(X;Z]Y)

* So, it sufficestoshow I(X;Z | Y)=0
*I(X;Z[Y)=HX|Y)-H(X]Y,2)

* But given Y, then X and Z are independent, soH(X | Y, Z) = H(X | Y).

* Data Processing Inequality implies H(X | Y) < H(X |Z)



Proof of Fano’s Inequality

* For any estimator X’ such that X->Y -> X’ with P, = Pr[X # X'],
we have H(X |Y) < H(P,) + P,(log,|X| — 1).

Proof: Let E =1 if X" is not equal to X, and E = 0 otherwise.
H(E, X | X') = H(X | X') + H(E | X, X’) = H(X | X’)
H(E, X | X') = H(E | X') +H(X | E, X)) < H(P,) + H(X | E, X)
But H(X | E, X’) = Pr(E = 0)H(X | X, E=0) + Pr(E = 1)H(X | X, E = 1)
<1 - F):-0+PF - log(IX]-1)
Combining the above, H(X | X') < H(P,) + P, -log,(|X]| — 1)
By Data Processing, H(X | Y) < H(X |X') < H(P,) + P, -log,(|X| — 1)



Tightness of Fano’s Inequality
* Suppose the distribution p of X satisfies p; =2 p, = ... =2 p,
* Suppose Y is a constant, so I(X; Y)=H(X)—-H(X | Y) =

* Best predictor X" of Xis X = 1.

P,=Pr[lX  #X]|=1-p;

HX|Y)<H(p;)+ (1 —p;)log,(n — 1) predicted by Fano’s inequality

But HX) = H(X | Y) and if p, = p3 = .. = p, = — p1 the inequality is tight

n-—
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Distances Between Distributions

* Let pand g be two distributions with the same support

* (Total Variation Distance) Dy (p,q) = % lp —ql, = %Zi |p; — g;l
* Dry(p,q) = MaXepenss e [P(E) — q(E)|

* Sometimes abuse notation and say D7y (X,Y) to mean Dy (p, q) where X has
distribution p and Y has distribution g

* (Hellinger Distance)

+ Define B = (yP1, VP2~ yPr)s VA = (Va1 A2 ) )

* Note that /p and |/q are unit vectors

o h(p,q)=\[%l\/ﬁ-\/§|2 2%(21,(\/1)_1_ _\@)2).5

* Note: Dyy(p, @) and h(p, q) satisfy the triangle inequality



Why Hellinger Distance?

» Useful for independent distributions

* Suppose X and Y are independent random variables with distributions p
and g, respectively

Pr[(X,Y) = (x,y)] =px) - q(y)

* Suppose A and B are independent random variables with distributions p’
and g/, respectively

Pr[(A,B) = (a,b)] =p'(a) - q'(b)

* (Product Property)
h*((X,Y),(4,B)) =1 — (1 - h*(X,A))- (1 — h*(Y,B))
No easy product structure for variation distance



Product Property of Hellinger Distance

02 (. @), @.q") = 2 |VPra —VP'a],
=-(1+1 - 2(/Pq,\P'q )
=1-Y; VpiVaVpiVq]
=1- Zi\/p_i\/p_f'zj\/q_j Vq;
=1-(1-h*(p,p")) - (1 —h*(q,q"))



Jensen-Shannon Distance

* (Kullback-Leibler Divergence) KL(p,q) = }.; p; log (%)
* KL(p,q) can be infinite! l

* (Jensen-Shannon Distance) JS(p,q) = % (KL(p,r) + KL(q,1)),
where r = (p+q)/2 is the average distribution

* Why Jensen-Shannon Distance?

* (Jensen-Shannon Lower Bounds Information) Squose X, B are possibly
dependent random variables and B is a uniform bit Then

IX;B)=JS(X|B=0,X|B=1)



Relations Between Distance Measures

* (Squared Hellinger Lower Bounds Jensen-Shannon)
JS(p,q) = h*(p,q)

* (Squared Hellinger Lower Bounded by Squared Variation Distance)
h*(p,q) = D7y (p, q)

* (Variation Distance Upper Bounds Distinguishing Probability)

If you can distinguish distribution p from g with a sample w.pr. 9,
Dry(p,q) = &
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Randomized 1-Way Communication Complexity

> a{li]
)
Y¥S ==

e

x 2{0,1}" 12{1,2,3, ..., n}

* Alice sends a single message M to Bob
* Bob, given M and j, should output x; with probability at least 2/3

* Note: The probability is over the coin tosses, not inputs
* Prove that for some inputs and coin tosses, M must be Q(n) bits long...



1-Way Communication Complexity of Index

* Consider a uniform distribution p on X
* Alice sends a single message M to Bob

* We can think of Bob’s output as a guess Xj’to Xj

* Forallj, Pr|X/ = X;| > 2

* By Fano’s inequality, for all j,

H(X;| M) < H@ +§(log2 2 -1)= H(ﬁ)



1-Way Communication of Index Continued

* Consider the mutual information |(M ; X)
* By the chain rule,
I(X; M) =2 1(X.; M | X_)
=2 H(X | X..)=H(X | M, X_))
* Since the coordinates of X are independent bits, H(X, | X_.) = H(X,) = 1.
* Since conditioning cannot increase entropy,
HX | M, X)) < H(X; | M)

So, I(X; M) =n — Y, HX;M)>n —H (%)n
So, |M| = H(M) = I(X : M) = Q(n)
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