Information Theory for Communication Complexity

> David P. Woodruff IBM Almaden

Talk Outline

- 1. Information Theory Concepts
- 2. Distances Between Distributions
- 3. An Example Communication Lower Bound Randomized 1-way Communication Complexity of the INDEX problem
- 4. Communication Lower Bounds imply space lower bounds for data stream algorithms
- 5. Techniques for Multi-Player Communication

Discrete Distributions

- Consider distributions p over a finite support of size n:
	- $p = (p_1, p_2, p_3, ..., p_n)$
	- $p_i \in [0,1]$ for all i
	- $\sum_{i} p_i = 1$
- X is a random variable with distribution p if $Pr[X = i] = p_i$

Entropy

- Let X be a random variable with distribution p on n items
- (Entropy) $H(X) = \sum_i p_i \log_2(1/p_i)$

• If
$$
p_i = 0
$$
 then $p_i \log_2 \left(\frac{1}{p_i}\right) = 0$

- $H(X) \leq \log_2 n$. Equality holds when $p_i = \frac{1}{n}$ for all i.
- Entropy measures "uncertainty" of X.
- (Binary Input) If B is a bit with bias p, then H(B) = $p \log_2 \frac{1}{p} + (1-p) \log_2 \frac{1}{1-p}$

(symmetric)

Conditional and Joint Entropy

- Let X and Y be random variables
- (Conditional Entropy) $H(X | Y) = \sum_{y} H(X | Y = y) Pr[Y = y]$
- (Joint Entropy)

 $H(X, Y) = \sum_{x,y} Pr[(X,Y) = (x,y)] log(1/Pr[(X,Y) = (x,y)])$

Chain Rule for Entropy

- (Chain Rule) $H(X,Y) = H(X) + H(Y | X)$
- Proof:

$$
H(X,Y) = \sum_{x,y} \Pr[(X,Y) = (x,y)] \log \left(\frac{1}{\Pr((X,Y)=(x,y))} \right)
$$

= $\sum_{x,y} \Pr[X = x] \Pr[Y = y | X = x] \log \left(\frac{1}{\Pr(X=x) \Pr(Y=y | X=x)} \right)$
= $\sum_{x,y} \Pr[X = x] \Pr[Y = y | X = x] (\log \left(\frac{1}{\Pr(X=x)} \right) + \log \left(\frac{1}{\Pr[Y=y | X=x]} \right))$
= $H(X) + H(Y | X)$

Conditioning Cannot Increase Entropy

- Let X, Y be random variables. Then $H(X | Y) \leq H(X)$
- To prove this, we need Jensen's Inequality: continuousRecall a concave function f means $f\left(\frac{a+b}{2}\right) \ge \frac{f(a)}{2} + \frac{f(b)}{2}$ for all a,b Recall the expectation $E[W] = \sum_{w} Pr[W = w] \cdot w$

(Jensen's Inequality) For concave f, $E[f(W)] \leq f(E[W])$ We will use that $f(x) = \log(x)$ is concave

Conditioning Cannot Increase Entropy

• Proof:

$$
H(X | Y) - H(X) = \sum_{xy} \Pr[Y = y] \Pr[X = x | Y = y] \log(\frac{1}{\Pr[X = x | Y = y]})
$$

- $\sum_{x} \Pr[X = x] \log(\frac{1}{\Pr[X = x]}) \sum_{y} \Pr[Y = y | X = x]$
= $\sum_{x,y} \Pr[X = x, Y = y] \log(\frac{\Pr[X = x]}{\Pr[X = x | Y = y]})$
= $\sum_{x,y} \Pr[X = x, Y = y] \log(\frac{\Pr[X = x] \Pr[Y = y]}{\Pr[(X, Y) = (x, y)]})$
 $\le \log(\sum_{x,y} \Pr[X = x, Y = y] \cdot \frac{\Pr[X = x] \Pr[Y = y]}{\Pr[(X, Y) = (x, y)]})$
= 0

where the inequality follows by Jensen's inequality. If X and Y are independent $H(X | Y) = H(X)$.

Mutual Information

• (Mutual Information) $I(X; Y) = H(X) - H(X | Y)$ $= H(Y) - H(Y | X)$ $= I(Y; X)$

Note: $I(X; X) = H(X) - H(X | X) = H(X)$

• (Conditional Mutual Information)

 $I(X; Y | Z) = H(X | Z) - H(X | Y, Z)$

Chain Rule for Mutual Information

•
$$
I(X, Y; Z) = I(X; Z) + I(Y; Z | X)
$$

• Proof:
$$
I(X, Y; Z) = H(X, Y) - H(X, Y | Z)
$$

= $H(X) + H(Y | X) - H(X | Z) - H(Y | X, Z)$
= $I(X; Z) + I(Y; Z | X)$

By induction, $I(X_1, ..., X_n; Z) = \sum_i I(X_i; Z | X_1, ..., X_{\{i-1\}})$

Fano's Inequality

• For any estimator X': X -> Y -> X' with $P_e = \Pr[X' \neq X]$, we have $H(X | Y) \leq H(P_e) + P_e \cdot \log(|X| - 1)$

Here X -> Y -> X' is a Markov Chain, meaning X' and X are independent given Y.

"Past and future are conditionally independent given the present"

To prove Fano's Inequality, we need the data processing inequality

Data Processing Inequality

- Suppose X -> Y -> Z is a Markov Chain. Then, $I(X; Y) \geq I(X; Z)$
- That is, no clever combination of the data can improve estimation
- $I(X ; Y, Z) = I(X ; Z) + I(X ; Y | Z) = I(X ; Y) + I(X ; Z | Y)$
- So, it suffices to show $I(X; Z | Y) = 0$
- $I(X; Z | Y) = H(X | Y) H(X | Y, Z)$
- But given Y, then X and Z are independent, so $H(X | Y, Z) = H(X | Y)$.
- Data Processing Inequality implies $H(X | Y) \leq H(X | Z)$

Proof of Fano's Inequality

• For any estimator X' such that X-> Y -> X' with $P_e = \Pr[X \neq X']$, we have $H(X | Y) \leq H(P_e) + P_e(\log_2 |X| - 1)$.

Proof: Let $E = 1$ if X' is not equal to X, and $E = 0$ otherwise. $H(E, X | X') = H(X | X') + H(E | X, X') = H(X | X')$ $H(E, X | X') = H(E | X') + H(X | E, X') \leq H(P_e) + H(X | E, X')$ But H(X | E, X') = Pr(E = 0)H(X | X', E = 0) + Pr(E = 1)H(X | X', E = 1) $\leq (1 - P_e) \cdot 0 + P_e \cdot \log_2(|X| - 1)$ Combining the above, $H(X | X') \leq H(P_e) + P_e \cdot \log_2(|X| - 1)$ By Data Processing, $H(X | Y) \leq H(X | X') \leq H(P_e) + P_e \cdot \log_2(|X| - 1)$

Tightness of Fano's Inequality

- Suppose the distribution p of X satisfies $p_1 \geq p_2 \geq ... \geq p_n$
- Suppose Y is a constant, so $I(X; Y) = H(X) H(X | Y) = 0$.
- Best predictor X' of X is $X = 1$.
- $P_e = \Pr[X' \neq X] = 1 p_1$
- H(X | Y) $\leq H(p_1) + (1-p_1) \log_2(n-1)$ predicted by Fano's inequality
- But H(X) = H(X | Y) and if $p_2 = p_3 = ... = p_n = \frac{1-p_1}{n-1}$ the inequality is tight

Talk Outline

- 1. Information Theory Concepts
- 2. Distances Between Distributions
- 3. An Example Communication Lower Bound Randomized 1-way Communication Complexity of the INDEX problem
- 4. Communication Lower Bounds imply space lower bounds for data stream algorithms
- 5. Techniques for Multi-Player Communication

Distances Between Distributions

- Let p and q be two distributions with the same support
- (Total Variation Distance) $D_{TV}(p,q) = \frac{1}{2}|p-q|_1 = \frac{1}{2}\sum_i |p_i q_i|$
	- $D_{TV}(p,q) = \max_{\text{events } F} |p(E) q(E)|^2$
- Sometimes abuse notation and say $D_{TV}(X, Y)$ to mean $D_{TV}(p, q)$ where X has distribution p and Y has distribution q
- (Hellinger Distance)
	- Define $\sqrt{p} = (\sqrt{p_1}, \sqrt{p_2}, ..., \sqrt{p_n}), \sqrt{q} = (\sqrt{q_1}, \sqrt{q_2}, ..., \sqrt{q_n})$
	- Note that \sqrt{p} and \sqrt{q} are unit vectors

•
$$
h(p,q) = \frac{1}{\sqrt{2}} |\sqrt{p} - \sqrt{q}|_2 = \frac{1}{\sqrt{2}} (\sum_i (\sqrt{p_i} - \sqrt{q_i})^2)^2
$$

• Note: $D_{TV}(p,q)$ and $h(p,q)$ satisfy the triangle inequality

Why Hellinger Distance?

- Useful for independent distributions
- Suppose X and Y are independent random variables with distributions p and q, respectively

$$
Pr[(X, Y) = (x, y)] = p(x) \cdot q(y)
$$

• Suppose A and B are independent random variables with distributions p' and q', respectively

$$
Pr[(A, B) = (a, b)] = p'(a) \cdot q'(b)
$$

• (Product Property) $h^{2}((X,Y),(A,B)) = 1 - (1 - h^{2}(X,A)) \cdot (1 - h^{2}(Y,B))$

No easy product structure for variation distance

Product Property of Hellinger Distance

•
$$
h^2((p,q),(p',q')) = \frac{1}{2} |\sqrt{p,q} - \sqrt{p'q'}|_2^2
$$

\n
$$
= \frac{1}{2} (1 + 1 - 2 \langle \sqrt{p,q}, \sqrt{p'q'} \rangle)
$$
\n
$$
= 1 - \sum_{i,j} \sqrt{p_i} \sqrt{q_j} \sqrt{p'_i} \sqrt{q'_j}
$$
\n
$$
= 1 - \sum_i \sqrt{p_i} \sqrt{p'_i} \cdot \sum_j \sqrt{q_j} \sqrt{q'_j}
$$
\n
$$
= 1 - (1 - h^2(p,p')) \cdot (1 - h^2(q,q'))
$$

Jensen-Shannon Distance

- (Kullback-Leibler Divergence) KL(p,q) = $\sum_i p_i \log \left(\frac{p_i}{q_i}\right)$
	- KL(p,q) can be infinite!
- (Jensen-Shannon Distance) JS(p,q) = $\frac{1}{2}(KL(p,r) + KL(q,r))$, where $r = (p+q)/2$ is the average distribution
- Why Jensen-Shannon Distance?
- (Jensen-Shannon Lower Bounds Information) Suppose X, B are possibly dependent random variables and B is a uniform bit. Then, $I(X; B) \geq IS(X | B = 0, X | B = 1)$

Relations Between Distance Measures

- (Squared Hellinger Lower Bounds Jensen-Shannon) $JS(p,q) \geq h^2(p,q)$
- (Squared Hellinger Lower Bounded by Squared Variation Distance) $h^{2}(p,q) \ge D_{TV}^{2}(p,q)$
- (Variation Distance Upper Bounds Distinguishing Probability) If you can distinguish distribution p from q with a sample w.pr. δ , $D_{TV}(p,q) \geq \delta$

Talk Outline

- 1. Information Theory Concepts
- 2. Distances Between Distributions
- 3. An Example Communication Lower Bound Randomized 1-way Communication Complexity of the INDEX problem
- 4. Communication Lower Bounds imply space lower bounds for data stream algorithms
- 5. Techniques for Multi-Player Communication

Randomized 1-Way Communication Complexity

- Alice sends a single message M to Bob
- Bob, given M and j, should output x_i with probability at least $2/3$
- Note: The probability is over the coin tosses, not inputs
- Prove that for some inputs and coin tosses, M must be $\Omega(n)$ bits long...

1-Way Communication Complexity of Index

- Consider a uniform distribution μ on X
- Alice sends a single message M to Bob
- We can think of Bob's output as a guess X'_j to X_j

• For all j,
$$
Pr[X'_j = X_j] \ge \frac{2}{3}
$$

• By Fano's inequality, for all j,

$$
H(X_j \mid M) \le H\left(\frac{2}{3}\right) + \frac{1}{3}(\log_2 2 - 1) = H\left(\frac{1}{3}\right)
$$

1-Way Communication of Index Continued

- Consider the mutual information $I(M; X)$
- By the chain rule,

 $I(X; M) = \sum_i I(X_i; M | X_{< i})$

$$
= \Sigma_{i} H(X_{i} | X_{< i}) - H(X_{i} | M, X_{< i})
$$

- Since the coordinates of X are independent bits, $H(X_i | X_{\le i}) = H(X_i) = 1$.
- Since conditioning cannot increase entropy,

 $H(X_i | M, X_{< i}) \leq H(X_i | M)$

So, $I(X; M) \ge n - \sum_i H(X_i|M) \ge n - H(\frac{1}{2})n$ So, $|M| \ge H(M) \ge I(X;M) = \Omega(n)$

Talk Outline

- 1. Information Theory Concepts
- 2. Distances Between Distributions
- 3. An Example Communication Lower Bound Randomized 1-way Communication Complexity of the INDEX problem
- 4. Communication Lower Bounds imply space lower bounds for data stream algorithms
- 5. Techniques for Multi-Player Communication