Information Theory for Communication Complexity

> David P. Woodruff IBM Almaden

Talk Outline

- 1. Information Theory Concepts
- 2. Distances Between Distributions
- 3. An Example Communication Lower Bound Randomized 1-way Communication Complexity of the INDEX problem
- 4. Communication Lower Bounds imply space lower bounds for data stream algorithms
- 5. Techniques for Multi-Player Communication

Discrete Distributions

- Consider distributions p over a finite support of size n:
 - $p = (p_1, p_2, p_3, ..., p_n)$
 - $p_i \in [0,1]$ for all i
 - $\sum_i p_i = 1$
- X is a random variable with distribution p if $Pr[X = i] = p_i$

Entropy

- Let X be a random variable with distribution p on n items
- (Entropy) $H(X) = \sum_{i} p_{i} \log_{2} (1/p_{i})$

• If
$$p_i = 0$$
 then $p_i \log_2\left(\frac{1}{p_i}\right) = 0$

- $H(X) \le \log_2 n$. Equality holds when $p_i = \frac{1}{n}$ for all i.
- Entropy measures "uncertainty" of X.
- (Binary Input) If B is a bit with bias p, then $H(B) = p \log_2 \frac{1}{p} + (1-p) \log_2 \frac{1}{1-p}$

(symmetric)

Conditional and Joint Entropy

- Let X and Y be random variables
- (Conditional Entropy) $H(X \mid Y) = \sum_{y} H(X \mid Y = y) \Pr[Y = y]$
- (Joint Entropy)

 $H(X, Y) = \sum_{x,y} Pr[(X,Y) = (x,y)] \log(1/Pr[(X,Y) = (x,y)])$

Chain Rule for Entropy

- (Chain Rule) H(X,Y) = H(X) + H(Y | X)
- Proof:

$$H(X,Y) = \sum_{x,y} \Pr[(X,Y) = (x,y)] \log\left(\frac{1}{\Pr((X,Y)=(x,y))}\right)$$

= $\sum_{x,y} \Pr[X = x] \Pr[Y = y | X = x] \log\left(\frac{1}{\Pr(X=x) \Pr(Y=y | X=x)}\right)$
= $\sum_{x,y} \Pr[X = x] \Pr[Y = y | X = x] (\log\left(\frac{1}{\Pr(X=x)}\right) + \log(\frac{1}{\Pr[Y=y | X=x]}))$
= $H(X) + H(Y | X)$

Conditioning Cannot Increase Entropy

- Let X, Y be random variables. Then $H(X | Y) \leq H(X)$
- To prove this, we need Jensen's Inequality: continuous Recall a concave function f means $f\left(\frac{a+b}{2}\right) \ge \frac{f(a)}{2} + \frac{f(b)}{2}$ for all a,b Recall the expectation $E[W] = \sum_{w} \Pr[W = w] \cdot w$

(Jensen's Inequality) For concave f, $E[f(W)] \le f(E[W])$ We will use that $f(x) = \log(x)$ is concave

Conditioning Cannot Increase Entropy

• Proof:

$$H(X | Y) - H(X) = \sum_{xy} \Pr[Y = y] \Pr[X = x | Y = y] \log(\frac{1}{\Pr[X = x | Y = y]})$$

- $\sum_{x} \Pr[X = x] \log(\frac{1}{\Pr[X = x]}) \sum_{y} \Pr[Y = y | X = x]$
= $\sum_{x,y} \Pr[X = x, Y = y] \log(\frac{\Pr[X = x]}{\Pr[X = x | Y = y]})$
= $\sum_{x,y} \Pr[X = x, Y = y] \log(\frac{\Pr[X = x] \Pr[Y = y]}{\Pr[(X,Y) = (x,y)]})$
 $\leq \log(\sum_{x,y} \Pr[X = x, Y = y] \cdot \frac{\Pr[X = x] \Pr[Y = y]}{\Pr[(X,Y) = (x,y)]})$
= 0

where the inequality follows by Jensen's inequality. If X and Y are independent H(X | Y) = H(X).

Mutual Information

(Mutual Information) I(X ; Y) = H(X) – H(X | Y)
 = H(Y) – H(Y | X)
 = I(Y ; X)

Note: I(X ; X) = H(X) - H(X | X) = H(X)

• (Conditional Mutual Information)

I(X ; Y | Z) = H(X | Z) - H(X | Y, Z)

Chain Rule for Mutual Information

•
$$I(X, Y; Z) = I(X; Z) + I(Y; Z | X)$$

• Proof:
$$I(X, Y ; Z) = H(X, Y) - H(X, Y | Z)$$

= $H(X) + H(Y | X) - H(X | Z) - H(Y | X, Z)$
= $I(X ; Z) + I(Y; Z | X)$

By induction, $I(X_1, ..., X_n; Z) = \sum_i I(X_i; Z | X_1, ..., X_{\{i-1\}})$

Fano's Inequality

• For any estimator X': X -> Y -> X' with $P_e = \Pr[X' \neq X]$, we have $H(X | Y) \le H(P_e) + P_e \cdot \log(|X| - 1)$

Here X -> Y -> X' is a Markov Chain, meaning X' and X are independent given Y.

"Past and future are conditionally independent given the present"

To prove Fano's Inequality, we need the data processing inequality

Data Processing Inequality

- Suppose X -> Y -> Z is a Markov Chain. Then, $I(X;Y) \ge I(X;Z)$
- That is, no clever combination of the data can improve estimation
- I(X; Y, Z) = I(X; Z) + I(X; Y | Z) = I(X; Y) + I(X; Z | Y)
- So, it suffices to show I(X ; Z | Y) = 0
- I(X ; Z | Y) = H(X | Y) H(X | Y, Z)
- But given Y, then X and Z are independent, so H(X | Y, Z) = H(X | Y).
- Data Processing Inequality implies $H(X | Y) \leq H(X | Z)$

Proof of Fano's Inequality

• For any estimator X' such that X-> Y -> X' with $P_e = \Pr[X \neq X']$, we have $H(X | Y) \le H(P_e) + P_e(\log_2|X| - 1)$.

Proof: Let E = 1 if X' is not equal to X, and E = 0 otherwise. H(E, X | X') = H(X | X') + H(E | X, X') = H(X | X') $H(E, X | X') = H(E | X') + H(X | E, X') \le H(P_{\rho}) + H(X | E, X')$ But H(X | E, X') = Pr(E = 0)H(X | X', E = 0) + Pr(E = 1)H(X | X', E = 1) $\leq (1 - P_{\rho}) \cdot 0 + P_{\rho} \cdot \log_2(|X| - 1)$ Combining the above, $H(X \mid X') \leq H(P_{\rho}) + P_{\rho} \cdot \log_2(|X| - 1)$ By Data Processing, $H(X \mid Y) \leq H(X \mid X') \leq H(P_e) + P_e \cdot \log_2(|X| - 1)$

Tightness of Fano's Inequality

- Suppose the distribution p of X satisfies $p_1 \ge p_2 \ge ... \ge p_n$
- Suppose Y is a constant, so I(X ; Y) = H(X) H(X | Y) = 0.
- Best predictor X' of X is X = 1.
- $P_e = \Pr[X' \neq X] = 1 p_1$
- H(X | Y) $\leq H(p_1) + (1 p_1) \log_2(n 1)$ predicted by Fano's inequality
- But H(X) = H(X | Y) and if $p_2 = p_3 = \dots = p_n = \frac{1-p_1}{n-1}$ the inequality is tight

Talk Outline

- 1. Information Theory Concepts
- 2. Distances Between Distributions
- 3. An Example Communication Lower Bound Randomized 1-way Communication Complexity of the INDEX problem
- 4. Communication Lower Bounds imply space lower bounds for data stream algorithms
- 5. Techniques for Multi-Player Communication

Distances Between Distributions

- Let p and q be two distributions with the same support
- (Total Variation Distance) $D_{TV}(p,q) = \frac{1}{2}|p-q|_1 = \frac{1}{2}\sum_i |p_i q_i|$
 - $D_{TV}(p,q) = \max_{events E} |p(E) q(E)|^2$
- Sometimes abuse notation and say $D_{TV}(X,Y)$ to mean $D_{TV}(p,q)$ where X has distribution p and Y has distribution q
- (Hellinger Distance)
 - Define $\sqrt{p} = (\sqrt{p_1}, \sqrt{p_2}, \dots, \sqrt{p_n}), \ \sqrt{q} = (\sqrt{q_1}, \sqrt{q_2}, \dots, \sqrt{q_n})$
 - Note that \sqrt{p} and \sqrt{q} are unit vectors

• h(p,q) =
$$\frac{1}{\sqrt{2}} |\sqrt{p} - \sqrt{q}|_2 = \frac{1}{\sqrt{2}} \left(\sum_i \left(\sqrt{p_i} - \sqrt{q_i} \right)^2 \right)^2$$

• Note: $D_{TV}(p,q)$ and h(p,q) satisfy the triangle inequality

Why Hellinger Distance?

- Useful for independent distributions
- Suppose X and Y are independent random variables with distributions p and q, respectively

 $\Pr[(X,Y) = (x,y)] = p(x) \cdot q(y)$

 Suppose A and B are independent random variables with distributions p' and q', respectively

$$\Pr[(A,B) = (a,b)] = p'(a) \cdot q'(b)$$

• (Product Property) $h^{2}((X,Y),(A,B)) = 1 - (1 - h^{2}(X,A)) \cdot (1 - h^{2}(Y,B))$ No easy product structure for variation distance

No easy product structure for variation distance

Product Property of Hellinger Distance

•
$$h^{2}((p,q),(p',q')) = \frac{1}{2} |\sqrt{p,q} - \sqrt{p'q'}|_{2}^{2}$$

 $= \frac{1}{2} (1 + 1 - 2 \langle \sqrt{p,q}, \sqrt{p'q'} \rangle)$
 $= 1 - \sum_{i,j} \sqrt{p_{i}} \sqrt{q_{j}} \sqrt{p'_{i}} \sqrt{q'_{j}}$
 $= 1 - \sum_{i} \sqrt{p_{i}} \sqrt{p'_{i}} \cdot \sum_{j} \sqrt{q_{j}} \sqrt{q'_{j}}$
 $= 1 - (1 - h^{2}(p,p')) \cdot (1 - h^{2}(q,q'))$

Jensen-Shannon Distance

- (Kullback-Leiber Divergence) KL(p,q) = $\sum_{i} p_i \log\left(\frac{p_i}{q_i}\right)$
 - KL(p,q) can be infinite!
- (Jensen-Shannon Distance) $JS(p,q) = \frac{1}{2}(KL(p,r) + KL(q,r))$, where r = (p+q)/2 is the average distribution
- Why Jensen-Shannon Distance?
- (Jensen-Shannon Lower Bounds Information) Suppose X, B are possibly dependent random variables and B is a uniform bit. Then, $I(X; B) \ge JS(X | B = 0, X | B = 1)$

Relations Between Distance Measures

- (Squared Hellinger Lower Bounds Jensen-Shannon) $JS(p,q) \ge h^2(\mathsf{p},\mathsf{q})$
- (Squared Hellinger Lower Bounded by Squared Variation Distance) $h^2(\mathbf{p},\mathbf{q}) \geq D^2_{TV}(p,q)$
- (Variation Distance Upper Bounds Distinguishing Probability) If you can distinguish distribution p from q with a sample w.pr. δ , $D_{TV}(p,q) \ge \delta$

Talk Outline

- 1. Information Theory Concepts
- 2. Distances Between Distributions
- 3. An Example Communication Lower Bound Randomized 1-way Communication Complexity of the INDEX problem
- 4. Communication Lower Bounds imply space lower bounds for data stream algorithms
- 5. Techniques for Multi-Player Communication

Randomized 1-Way Communication Complexity

- Alice sends a single message M to Bob
- Bob, given M and j, should output x_j with probability at least 2/3
- Note: The probability is over the coin tosses, not inputs
- Prove that for some inputs and coin tosses, M must be $\Omega(n)$ bits long...

1-Way Communication Complexity of Index

- Consider a uniform distribution μ on X
- Alice sends a single message M to Bob
- We can think of Bob's output as a guess $X'_i to X_i$

• For all j,
$$\Pr[X'_j = X_j] \ge \frac{2}{3}$$

• By Fano's inequality, for all j,

$$H(X_j \mid M) \le H(\frac{2}{3}) + \frac{1}{3}(\log_2 2 - 1) = H(\frac{1}{3})$$

1-Way Communication of Index Continued

- Consider the mutual information I(M; X)
- By the chain rule,

 $I(X; M) = \Sigma_i I(X_i; M | X_{< i})$

$$= \Sigma_{i} H(X_{i} | X_{< i}) - H(X_{i} | M, X_{< i})$$

- Since the coordinates of X are independent bits, $H(X_i | X_{< i}) = H(X_i) = 1$.
- Since conditioning cannot increase entropy,

 $H(X_i \mid M, X_{< i}) \leq H(X_i \mid M)$

So,
$$I(X; M) \ge n - \sum_{i} H(X_i|M) \ge n - H\left(\frac{1}{3}\right)n$$

So, $|M| \ge H(M) \ge I(X; M) = \Omega(n)$

Talk Outline

- 1. Information Theory Concepts
- 2. Distances Between Distributions
- 3. An Example Communication Lower Bound Randomized 1-way Communication Complexity of the INDEX problem
- 4. Communication Lower Bounds imply space lower bounds for data stream algorithms
- 5. Techniques for Multi-Player Communication