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Streaming Models

• Long sequence of items appear one-by-one

– numbers, points, edges, …

– (usually) adversarially ordered

– one or a small number of passes over the stream

• Goal: approximate a function of the underlying stream

– use small amount of space (in bits)

• Efficiency: usually necessary for algorithms to be both 
randomized and approximate
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Example: Statistical Problems

• Sequence of updates to an underlying vector x

• Initially, x = 0n

• t-th update (i, Deltat) causes 

xi Ã xi + Deltat

• Approximate a function f(x)

– Order-invariant function f

• If all Deltat > 0, called the insertion model

• Otherwise, called the turnstile model

• Examples: f(x) = |x|p, f(x) = H(x/|x|1), |supp(x)|



Example: Geometric Problems

• Sequence of points p1, …, pn in Rd

• Clustering problems
– Family F of shapes (points, lines, subspaces)

– Output: argmin{S ½ F, |S|=k} sumi d(pi, S)z

• d(pi, S) = minf in S d(pi, f)
z

• k-median, k-means, PCA

• Distance problems
– Typically points p1, …, p2n in R2

– Estimate minimum cost perfect matching

– If n points are red, and n points are blue, estimate 
minimum cost bi-chromatic matching (EMD)



Example: String Processing

• Sequence of characters σ1, σ2, …, σn 2 Σ

• Often problem is not order-invariant

• Example: Longest Increasing 
Subsequence (LIS)

– σ1, σ2, …, σn is a permutation of numbers 
from 1, 2, …, n

– Find the longest length of a subsequence 
which is increasing

5,3,0,7,10,8,2,13,15,9,2,20,2,3.    LIS=6
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Communication Complexity

• Why are streaming problems hard? 

• Don’t know what will be important in the 

future and can’t remember everything…

• How to formalize?

• Communication Complexity



Typical Communication Reduction

a 2 {0,1}n

Create stream s(a)

b 2 {0,1}n

Create stream s(b)

Lower Bound Technique

1. Run Streaming Alg on s(a), transmit state of Alg(s(a)) to Bob

2. Bob computes Alg(s(a), s(b))

3. If Bob solves g(a,b), space complexity of Alg at least the 1-

way communication complexity of g 



Example: Distinct Elements

• Give a1, …, am in [n], how many distinct numbers are 
there?

• Index problem:
– Alice has a bit string x in {0, 1}n

– Bob has an index i in [n]

– Bob wants to know if xi = 1

• Reduction:
– s(a) = i1, …, ir, where ij appears if and only if xij

= 1

– s(b) = i

– If Alg(s(a), s(b)) = Alg(s(a))+1 then xi = 0, otherwise xi = 1

• Space complexity of Alg at least the 1-way 
communication complexity of Index



1-Way Communication of Index

• Alice has uniform X 2 {0,1}n

• Bob has uniform I in [n]

• Alice sends a (randomized) message M to Bob

• I(M ; X) = sumi I(M ; Xi | X< i)

¸ sumi I(M; Xi)

= n – sumi H(Xi | M)

• By Fano’s inequality, H(Xi | M) < H(δ) if Bob can predict Xi

with probability > 1- δ

• CCδ(Index) > I(M ; X) ¸ n(1-H(δ))

• Computing distinct elements requires (n) space



Indexing is Universal for Product 

Distributions [Kremer, Nisan, Ron]
• If inputs drawn from a product distribution, then 1-way 

communication of a Boolean function is £(VC-dimension) of its 

communication matrix (up to δ dependence) 

• Implies a reduction from Index is optimal

– Entropy, linear algebra, spanners, norms, etc.

– Not always obvious how to build a reduction, e.g., Gap-Hamming

0 0 1 

1 0 0 

0 0 0 

0 1 0

0 0 1

1 1 0



Gap-Hamming Problem

x 2 {0,1}n y 2 {0,1}n

• Promise: Hamming distance satisfies Δ(x,y) > n/2 + εn or Δ(x,y) < n/2 - εn 

• Lower bound of Ω(ε-2) for randomized 1-way communication [Indyk, W], 

[W], [Jayram, Kumar, Sivakumar]

• Gives Ω(ε-2) bit lower bound for approximating number of distinct elements

• Same for 2-way communication [Chakrabarti, Regev]



Gap-Hamming From Index [JKS]

E[Δ(y,z)] = t/2 + xi ¢t1/2

x 2 {0,1}t i 2 [t]

t = ε-2

Public coin = r1, …, rt , each in {0,1}t

a 2 {0,1}t b 2 {0,1}t

ak = Majorityj such that xj = 1
rk

j bk = rk
i



Augmented Indexing

• Augmented-Index problem:

– Alice has x 2 {0, 1}n

– Bob has i 2 [n], and x1, …, xi-1

– Bob wants to learn xi

• Similar proof shows (n) bound

• I(M ; X) = sumi I(M ; Xi | X< i)

= n – sumi H(Xi | M, X< i)

• By Fano’s inequality, H(Xi | M, X< i) < H(δ) if Bob can 
predict Xi with probability > 1- δ from M, X< i

• CCδ(Augmented-Index) > I(M ; X) ¸ n(1-H(δ))

• Surprisingly powerful implications



Indexing with Low Error

• Index Problem with 1/3 error probability and 0 error 
probability both have £(n) communication

• In some applications want lower bounds in terms of error 

probability

• Indexing on Large Alphabets:

– Alice has x 2 {0,1}n/δ with wt(x) = n, Bob has i 2 [n/δ]

– Bob wants to decide if xi = 1 with error probability δ

– [Jayram, W] 1-way communication is (n log(1/δ))



Compressed Sensing

• Compute a sketch S¢x with a small number of 
rows (also known as measurements)

– S is oblivious to x

• For all x, with constant probability over S, from 
S¢x, we can output x’ which approximates x: 

|x’-x|2 · (1+ε) |x-xk|2
where xk is an optimal k-sparse approximation to 

x (xk is a “top-k” version of x)

• Optimal lower bound on number of rows of S via  
reduction from Augmented-Indexing

• Bob’s partial knowledge about x is crucial in 
the reduction 

x

x2



Recognizing Languages

-2-way communication tradeoff for Augemented Indexing: if 

Alice sends n/2b bits then Bob sends (b) bits 

[Chakrabarti, Cormode, Kondapally, McGregor]

- Streaming lower bounds for recognizing DYCK(2) 

[Magniez, Mathieu, Nayak]

((([])()[])) ∈ DYCK(2)               ([([]])[])) ∉ DYCK(2)

- Multi-pass (n1/2) space lower bound for length-n streams

- Interestingly, one forward pass plus one backward pass 

allows for an O~(log n) bits of space 
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Non-Product Distributions
• Needed for stronger lower bounds

• Example: approximate |x|1 up to a multiplicative factor of B in a stream

– Lower bounds for heavy hitters, p-norms, etc.

• Promise: |x-y|1 · 1 or |x-y|1 ¸ B

• Hard distribution non-product

• (n/B2) 2-way lower bound [Saks, Sun] [Bar-Yossef, Jayram, Kumar, 
Sivakumar]

x 2 {-B, …, B}n y 2 {-B, …, B}n

Gap1(x,y)

Problem



Direct Sums

• Gap1(x,y) doesn’t have a hard product distribution, but 
has a hard distribution μ = λn in which the coordinate 
pairs (x1, y1), …, (xn, yn) are independent

– w.pr. 1-1/n, (xi, yi) random subject to |xi – yi| · 1

– w.pr. 1/n, (xi, yi) random subject to |xi – yi| ¸ B

• Direct Sum: solving Gap1(x,y) requires solving n single-
coordinate sub-problems f

• In f, Alice and Bob have J,K 2 {-M, …, M}, and want to 
decide if |J-K| · 1 or |J-K| ¸ B



Direct Sum Theorem

• π is the transcript between Alice and Bob

• For X, Y » μ, I(π ; X, Y) = H(X,Y) – H(X,Y | π ) is the (external) 
information cost

• [BJKS]: ?!?!?!?! the protocol has to be correct on every input, so 
why not measure I(π ; X, Y) when (X,Y) satisfy |X-Y|1 · 1?

– Is I(π ; X, Y) large?

• Redefine μ = λn , where (Xi, Yi) » λ is random subject to |Xi-Yi| · 1

• IC(f) = infψ I(ψ ; A, B), where ψ ranges over all 2/3-correct 
protocols for f, and A,B » ¸

Is I(π ; X, Y) = (n) ¢IC(f)?



The Embedding Step

• I(π ; X, Y) ¸ i I(π ; Xi, Yi)

• We need to show I(π ; Xi, Yi) ¸ IC(f) for each i

J K

Alice

i-th

coordinate

Bob

X Y

J K

Suppose Alice and Bob 

could fill in the remaining 

coordinates j of X, Y so 
that (Xj, Yj) » λ

Then we get 

a correct 

protocol for f!



Conditional Information Cost

• (Xj, Yj) » λ is not a product distribution

• [BJKS] Define D = ((P1, V1)…, (Pn, Vn)):
– Pj uniform in {Alice, Bob} 

– Vj uniform {-B+1, …, B-1}

– If Pj = Alice, then Xj = Vj and Yj is uniform in {Vj, Vj-1, Vj+1}

– If Pj = Bob, then Yj = Vj and Xj is uniform in {Vj, Vj-1, Vj+1}

X and Y are independent conditioned on D!

• I(π ; X, Y | D) = (n) ¢IC(f | (P,V)) 

• IC(f) = infψ I(ψ ; A, B | (P,V)), where ψ ranges over all 
2/3-correct protocols for f, and A,B »  ̧



Primitive Problem

• Need to lower bound IC(f | (P,V))

• For fixed P = Alice and V = v, this is I(ψ ; K) where K is 
uniform over v, v+1

• Basic information theory: I(ψ ; K) ¸ DJS(ψv,v , ψv, v+1)

• IC(f | (P,V)) ¸ Ev [DJS(ψv,v , ψv, v+1) + DJS(ψv,v , ψv+1, v)]

Forget about distributions, let’s move to unit vectors!



Hellinger Distance 

• For distribution ¹, let S(¹) be the vector 

with coordinate i equal to ¹i
1/2

• DJS(ψv,v , ψv, v+1) ¸ |S(ψv,v) - S(ψv,v+1)|2
2

(*) IC(f | (P,V)) ¸ Ev [|S(ψv,v) - S(ψv,v+1)|2
2 + |S(ψv,v) -S(ψv+1,v)|2

2 ]

• Because ψ is a protocol, 

– (Cut-and-paste): |S(ψa,b) - S(ψc,d)|2
2 = |S(ψa,d) -S(ψb,c)|2

2 ]

– (Correctness): |S(ψ0,0) - S(ψ0,B)|2
2 = (1)

• Minimizing (*) subject to these properties, IC(f | (P,V)) = (1/B2)

- This proof just needs the 

triangle inequality of Euclidean 

distance

- Other properties sometimes 

useful, such as short 

diagonals [Jayram, W]



Direct Sum Wrapup

• (n/B2) bound for Gap1(x,y) 

• Similar argument gives (n) bound for disjointness [BJKS]

• [MYW] Sometimes can “beat” a direct sum: solving all n copies 

simultaneously with constant probability as hard as solving each copy 

with probability 1-1/n

– E.g., 1-way communication complexity of Equality

• Direct sums are nice, but often a problem can’t be split into simpler 

smaller problems, e.g., no known embedding step in gap-Hamming
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Earthmover Distance

• For multisets A, B of points in [∆]2, |A|=|B|=N,







Aa
BA

aaBA )(min),EMD(
:




EMD( , ) = 6 + 3√2

i.e., min cost of perfect matching between A and B

Upper bound: 

O(1/γ)-approximation using

∆γ bits of space, for any γ > 0

Lower bound:

log ∆ bits, even for (1+ε)-approx.

Can we close this huge gap?



Longest Increasing Subsequence

• Permutation of 1, 2, …, n given one number at a time

• Find the longest length of an increasing subsequence 

• 5,3,0,7,10,8,2,13,15,9,2,20,2,3.    LIS=6

• For finding the exact length, £~(|LIS|) is optimal for 
randomized algorithms

• For finding a (1+ε)-approximation, £~(n1/2) is optimal for 
deterministic algorithms

• For randomized algorithms we know nothing!

Is polylog(n) bits of space possible for (1+ε)-approximation?



Matchings

• Given a sequence of edges e1, …, em, output an approximate 

maximum matching in O~(n) bits of space

• Greedy algorithm gives a ½-approximation

• [Kapralov] no 1-1/e approximation is possible in O~(n) bits of space

Is there anything better than the trivial greedy algorithm?

• Suppose we allow edge deletions, so we have a sequence of 

insertions and deletions to edges that have already appeared

Can one obtain a (1)-approximation in o(n2) bits of space?



Matrix Norms

• Let A be an n x n matrix of integers of magnitude at most 

poly(n)

• Suppose you see the entries of A one-by-one in a stream in 

an arbitrary order

How much space is needed to estimate the operator norm  

|A|2 = supx |Ax|2/|x|2 up to a factor of 2?

[Li, Nguyen, W], [Regev]: if the entries of A are real numbers 
and L:Rn2

! Rk is a linear map chosen independent of A, 

then k = (n2) to estimate |A|2 up to a factor of 2

– Can we even rule out linear maps in the discrete case?


