Lower Bounds for Data Streams: A Survey

> David Woodruff IBM Almaden

Outline

- 1. Streaming model and examples
- 2. Background on communication complexity for streaming
 - 1. Product distributions
 - 2. Non-product distributions
- 3. Open problems

- Long sequence of items appear one-by-one
 - numbers, points, edges, ...
 - (usually) adversarially ordered
 - one or a small number of passes over the stream
- Goal: approximate a function of the underlying stream

 use small amount of space (in bits)
- Efficiency: usually necessary for algorithms to be both randomized and approximate

Example: Statistical Problems

- Sequence of updates to an underlying vector x
- Initially, $x = 0^n$
- t-th update (i, Delta_t) causes

$$\mathbf{x}_{\mathsf{i}} \leftarrow \mathbf{x}_{\mathsf{i}} + \mathsf{Delta}_{\mathsf{t}}$$

- Approximate a function f(x)
 Order-invariant function f
- If all $Delta_t > 0$, called the insertion model
- Otherwise, called the turnstile model
- Examples: $f(x) = |x|_p$, $f(x) = H(x/|x|_1)$, |supp(x)|

Example: Geometric Problems

- Sequence of points $p_1, ..., p_n$ in R^d
- Clustering problems
 - Family F of shapes (points, lines, subspaces)
 - Output: $argmin_{\{S \ \subset \ F, \ |S|=k\}} sum_i \ d(p_i, \ S)^z$
 - $d(p_i, S) = min_{f \text{ in } S} d(p_i, f)^z$
 - k-median, k-means, PCA
- Distance problems
 - Typically points $p_1, ..., p_{2n}$ in \mathbb{R}^2
 - Estimate minimum cost perfect matching
 - If n points are red, and n points are blue, estimate minimum cost bi-chromatic matching (EMD)

Example: String Processing

- Sequence of characters $\sigma_1,\,\sigma_2,\,\ldots,\,\sigma_n\in\Sigma$
- Often problem is not order-invariant
- Example: Longest Increasing Subsequence (LIS)
 - $-\sigma_1, \sigma_2, ..., \sigma_n$ is a permutation of numbers from 1, 2, ..., n
 - Find the longest length of a subsequence which is increasing

5,3,0,7,10,8,2,13,15,9,2,20,2,3. LIS=6

Outline

1. Streaming model and examples

- 2. Background on communication complexity for streaming
 - 1. Product distributions
 - 2. Non-product distributions
- 3. Open problems

Communication Complexity

• Why are streaming problems hard?

• Don't know what will be important in the future and can't remember everything...

• How to formalize?

Communication Complexity

Typical Communication Reduction

 $a \in \{0,1\}^n$ Create stream s(a) $b \in \{0,1\}^n$ Create stream s(b)

Lower Bound Technique

- 1. Run Streaming Alg on s(a), transmit state of Alg(s(a)) to Bob
- 2. Bob computes Alg(s(a), s(b))

3. If Bob solves g(a,b), space complexity of Alg at least the 1way communication complexity of g

Example: Distinct Elements

- Give a₁, ..., a_m in [n], how many *distinct* numbers are there?
- Index problem:
 - Alice has a bit string x in $\{0, 1\}^n$
 - Bob has an index i in [n]
 - Bob wants to know if $x_i = 1$
- Reduction:
 - $s(a) = i_1, ..., i_r$, where i_j appears if and only if $x_{i_j} = 1$

$$- s(b) = i$$

- If Alg(s(a), s(b)) = Alg(s(a))+1 then $x_i = 0$, otherwise $x_i = 1$
- Space complexity of Alg at least the 1-way communication complexity of Index

1-Way Communication of Index

- Alice has uniform $X \in \{0,1\}^n$
- Bob has uniform I in [n]
- Alice sends a (randomized) message M to Bob
- $I(M ; X) = sum_i I(M ; X_i | X_{< i})$ $\geq sum_i I(M; X_i)$ $= n - sum_i H(X_i | M)$
- By Fano's inequality, H(X_i | M) < H(δ) if Bob can predict X_i with probability > 1- δ
- $CC_{\delta}(Index) > I(M; X) \ge n(1-H(\delta))$
- Computing distinct elements requires $\Omega(n)$ space

Indexing is Universal for Product Distributions [Kremer, Nisan, Ron]

If inputs drawn from a *product distribution*, then 1-way communication of a Boolean function is Θ(VC-dimension) of its communication matrix (up to δ dependence)

- Implies a reduction from Index is optimal
 - Entropy, linear algebra, spanners, norms, etc.
 - Not always obvious how to build a reduction, e.g., Gap-Hamming

- Promise: Hamming distance satisfies $\Delta(x,y) > n/2 + \epsilon n$ or $\Delta(x,y) < n/2 \epsilon n$
- Lower bound of $\Omega(\epsilon^{-2})$ for randomized 1-way communication [Indyk, W], [W], [Jayram, Kumar, Sivakumar]
- Gives $\Omega(\epsilon^{-2})$ bit lower bound for approximating number of distinct elements
- Same for 2-way communication [Chakrabarti, Regev]

Gap-Hamming From Index [JKS]

Public coin = r^1 , ..., r^t , each in $\{0,1\}^t$

 $E[\Delta(y,z)] = t/2 + x_i \cdot t^{1/2}$

Augmented Indexing

- Augmented-Index problem:
 - Alice has $x \in \{0, 1\}^n$
 - Bob has $i \in$ [n], and $x_1,\, ...,\, x_{i\text{-}1}$
 - Bob wants to learn x_i
- Similar proof shows $\Omega(n)$ bound
- $I(M ; X) = sum_i I(M ; X_i | X_{< i})$ = n - sum_i H(X_i | M, X_{< i})
- By Fano's inequality, H(X_i | M, X_{< i}) < H(δ) if Bob can predict X_i with probability > 1- δ from M, X_{< i}
- $CC_{\delta}(Augmented-Index) > I(M; X) \ge n(1-H(\delta))$
- Surprisingly powerful implications

Indexing with Low Error

- Index Problem with 1/3 error probability and 0 error probability both have ⊖(n) communication
- In some applications want lower bounds in terms of error probability
- Indexing on Large Alphabets:
 - Alice has $x \in \{0,1\}^{n/\delta}$ with wt(x) = n, Bob has $i \in [n/\delta]$
 - Bob wants to decide if $x_i = 1$ with error probability δ
 - [Jayram, W] 1-way communication is $\Omega(n \log(1/\delta))$

Compressed Sensing

- Compute a sketch S·x with a small number of rows (also known as measurements)
 – S is oblivious to x
- For all x, with constant probability over S, from S⋅x, we can output x' which approximates x: |x'-x|₂ ≤ (1+ε) |x-x_k|₂ where x_k is an optimal k-sparse approximation to x (x_k is a "top-k" version of x)
- Optimal lower bound on number of rows of S via reduction from Augmented-Indexing
 - Bob's partial knowledge about x is crucial in the reduction

X

Recognizing Languages

-2-way communication tradeoff for Augemented Indexing: if
 Alice sends n/2^b bits then Bob sends Ω(b) bits
 [Chakrabarti, Cormode, Kondapally, McGregor]

- Streaming lower bounds for recognizing DYCK(2) [Magniez, Mathieu, Nayak]

 $((([])()[])) \in DYCK(2)$ $([([]])[])) \notin DYCK(2)$

- Multi-pass $\Omega(n^{1/2})$ space lower bound for length-n streams

- Interestingly, one forward pass plus one backward pass allows for an O~(log n) bits of space

Outline

1. Streaming model and examples

- 2. Background on communication complexity for streaming
 - 1. Product distributions
 - 2. Non-product distributions
- 3. Open problems

Non-Product Distributions

- Needed for stronger lower bounds
- Example: approximate $|x|_{\infty}$ up to a multiplicative factor of B in a stream
 - Lower bounds for heavy hitters, p-norms, etc.

- Hard distribution non-product
- Ω(n/B²) 2-way lower bound [Saks, Sun] [Bar-Yossef, Jayram, Kumar, Sivakumar]

Direct Sums

• $Gap_{\infty}(x,y)$ doesn't have a hard product distribution, but has a hard distribution $\mu = \lambda^n$ in which the coordinate pairs $(x_1, y_1), \dots, (x_n, y_n)$ are independent

- w.pr. 1-1/n, (x_i, y_i) random subject to $|x_i - y_i| \leq 1$

- w.pr. 1/n, (x_i, y_i) random subject to $|x_i - y_i| \ge B$

- Direct Sum: solving Gap_∞(x,y) requires solving n singlecoordinate sub-problems f
- In f, Alice and Bob have J,K \in {-M, ..., M}, and want to decide if |J-K| \leq 1 or |J-K| \geq B

Direct Sum Theorem

- π is the transcript between Alice and Bob
- For X, Y $\sim \mu$, I(π ; X, Y) = H(X,Y) H(X,Y | π) is the (external) information cost
- [BJKS]: ?!?!?!?! the protocol has to be correct on every input, so why not measure I(π; X, Y) when (X,Y) satisfy |X-Y|_∞ ≤ 1?
 Is I(π; X, Y) large?
- Redefine $\mu = \lambda^n$, where $(X_i, Y_i) \sim \lambda$ is random subject to $|X_i Y_i| \leq 1$
- IC(f) = inf_{ψ} I(ψ ; A, B), where ψ ranges over all 2/3-correct protocols for f, and A,B $\sim \lambda$

Is $I(\pi; X, Y) = \Omega(n) \cdot IC(f)$?

The Embedding Step

Conditional Information Cost

- $(X_j,\,Y_j)\sim\lambda$ is not a product distribution
- [BJKS] Define $D = ((P_1, V_1)..., (P_n, V_n))$:
 - P_j uniform in {Alice, Bob}
 - $-V_{j}$ uniform {-B+1, ..., B-1}
 - If P_j = Alice, then $X_j = V_j$ and Y_j is uniform in $\{V_j, V_j-1, V_j+1\}$
 - If $P_j = Bob$, then $Y_j = V_j$ and X_j is uniform in $\{V_j, V_j 1, V_j + 1\}$

X and Y are independent conditioned on D!

- $I(\pi; X, Y \mid D) = \Omega(n) \cdot IC(f \mid (P,V))$
- IC(f) = inf_{ψ} I(ψ ; A, B | (P,V)), where ψ ranges over all 2/3-correct protocols for f, and A,B $\sim \lambda$

Primitive Problem

- Need to lower bound IC(f | (P,V))
- For fixed P = Alice and V = v, this is I(ψ; K) where K is uniform over v, v+1
- Basic information theory: $I(\psi; K) \ge D_{JS}(\psi_{v,v}, \psi_{v,v+1})$
- IC(f | (P,V)) $\geq E_v [D_{JS}(\psi_{v,v}, \psi_{v,v+1}) + D_{JS}(\psi_{v,v}, \psi_{v+1,v})]$

Forget about distributions, let's move to unit vectors!

 $(*) \ IC(f \mid (P,V)) \geq E_v [|S(\psi_{v,v}) - S(\psi_{v,v+1})|_2^2 + |S(\psi_{v,v}) - S(\psi_{v+1,v})|_2^2]$

• Because ψ is a protocol,

- (Cut-and-paste): $|S(\psi_{a,b}) - S(\psi_{c,d})|_2^2 = |S(\psi_{a,d}) - S(\psi_{b,c})|_2^2$]

- (Correctness): $|S(\psi_{0,0}) - S(\psi_{0,B})|_2^2 = \Omega(1)$

• Minimizing (*) subject to these properties, $IC(f | (P,V)) = \Omega(1/B^2)$

Direct Sum Wrapup

- $\Omega(n/B^2)$ bound for $Gap_{\infty}(x,y)$
- Similar argument gives $\Omega(n)$ bound for disjointness [BJKS]
- [MYW] Sometimes can "beat" a direct sum: solving all n copies simultaneously with constant probability as hard as solving each copy with probability 1-1/n
 - E.g., 1-way communication complexity of Equality
- Direct sums are nice, but often a problem can't be split into simpler smaller problems, e.g., no known embedding step in gap-Hamming

Outline

1. Streaming model and examples

- 2. Background on communication complexity for streaming
 - 1. Product distributions
 - 2. Non-product distributions
- 3. Open problems

Earthmover Distance

• For multisets A, B of points in $[\Delta]^2$, |A|=|B|=N,

$$\operatorname{EMD}(A,B) = \min_{\pi:A \to B} \sum_{a \in A} \left\| a - \pi(a) \right\|$$

i.e., min cost of perfect matching between A and B

Upper bound:

O(1/ γ)-approximation using Δ^{γ} bits of space, for any $\gamma > 0$

Lower bound:

log Δ bits, even for (1+ ϵ)-approx.

Can we close this huge gap?

Longest Increasing Subsequence

- Permutation of 1, 2, ..., n given one number at a time
- Find the longest length of an increasing subsequence
 - 5,3,0,7,10,8,2,13,15,9,2,20,2,3. LIS=6
- For finding the exact length, *Θ*~(|LIS|) is optimal for randomized algorithms
- For finding a (1+ε)-approximation, Θ~(n^{1/2}) is optimal for deterministic algorithms
- For randomized algorithms we know nothing!

Is polylog(n) bits of space possible for $(1+\varepsilon)$ -approximation?

Matchings

- Given a sequence of edges e₁, ..., e_m, output an approximate maximum matching in O~(n) bits of space
- Greedy algorithm gives a ¹/₂-approximation
- [Kapralov] no 1-1/e approximation is possible in O~(n) bits of space

Is there anything better than the trivial greedy algorithm?

• Suppose we allow edge deletions, so we have a sequence of insertions and deletions to edges that have already appeared

Can one obtain a $\Omega(1)$ -approximation in $O(n^2)$ bits of space?

Matrix Norms

- Let A be an n x n matrix of integers of magnitude at most poly(n)
- Suppose you see the entries of A one-by-one in a stream in an arbitrary order

How much space is needed to estimate the operator norm $|A|_2 = \sup_x |Ax|_2/|x|_2$ up to a factor of 2?

[Li, Nguyen, W], [Regev]: if the entries of A are real numbers and L: $\mathbb{R}^{n^2} \to \mathbb{R}^k$ is a linear map chosen independent of A, then $k = \Omega(n^2)$ to estimate $|A|_2$ up to a factor of 2

- Can we even rule out linear maps in the discrete case?