Lower Bounds for Data Streams: A Survey

> David Woodruff IBM Almaden

Outline

- 1. Streaming model and examples
- 2. Background on communication complexity for streaming
	- 1. Product distributions
	- 2. Non-product distributions
- 3. Open problems

Streaming Models ⁴ ³ ⁷ ³ ¹ ¹ ² …

- Long sequence of items appear one-by-one
	- numbers, points, edges, …
	- (usually) adversarially ordered
	- one or a small number of passes over the stream
- Goal: approximate a function of the underlying stream – use small amount of space (in bits)
- Efficiency: usually necessary for algorithms to be both randomized and approximate

Example: Statistical Problems

- Sequence of updates to an underlying vector x
- Initially, $x = 0^n$
- t-th update (i, Delta $_{t}$) causes

$$
\mathsf{x_i} \leftarrow \mathsf{x_i} + \mathsf{Delta_t}
$$

- Approximate a function $f(x)$ – Order-invariant function f
- If all Delta_t > 0 , called the insertion model
- Otherwise, called the turnstile model
- Examples: $f(x) = |x|_p$, $f(x) = H(x/|x|_1)$, $|supp(x)|$

Example: Geometric Problems

- Sequence of points $p_1, ..., p_n$ in R^d
- Clustering problems
	- Family F of shapes (points, lines, subspaces)
	- Output: argmin_{S ⊂ F, |S|=k} sum_i d(p_i, S)^z
		- $d(p_i, S) = min_{f in S} d(p_i, f)^z$
		- k-median, k-means, PCA
- Distance problems
	- $-$ Typically points $\mathsf{p}_1,$ $...,$ $\mathsf{p}_{2\mathsf{n}}$ in R^2
	- Estimate minimum cost perfect matching
	- If n points are red, and n points are blue, estimate minimum cost bi-chromatic matching (EMD)

Example: String Processing

- Sequence of characters $\sigma_1, \sigma_2, ..., \sigma_n \in \Sigma$
- Often problem is not order-invariant
- Example: Longest Increasing Subsequence (LIS)
	- $-\sigma_1, \sigma_2, ..., \sigma_n$ is a permutation of numbers from 1, 2, …, n
	- Find the longest length of a subsequence which is increasing

5,3,0,7,10,8,2,13,15,9,2,20,2,3. LIS=6

Outline

1. Streaming model and examples

- 2. Background on communication complexity for streaming
	- 1. Product distributions
	- 2. Non-product distributions
- 3. Open problems

Communication Complexity

• Why are streaming problems hard?

• Don't know what will be important in the future and can't remember everything…

• How to formalize?

• Communication Complexity

Typical Communication Reduction

 $a \in \{0,1\}^n$ Create stream s(a) $b \in \{0,1\}^n$ Create stream s(b)

Lower Bound Technique

- 1. Run Streaming Alg on s(a), transmit state of Alg(s(a)) to Bob
- 2. Bob computes Alg(s(a), s(b))

3. If Bob solves g(a,b), space complexity of Alg at least the 1 way communication complexity of g

Example: Distinct Elements

- Give $a_1, ..., a_m$ in [n], how many *distinct* numbers are there?
- Index problem:
	- Alice has a bit string x in $\{0, 1\}^n$
	- Bob has an index i in [n]
	- Bob wants to know if $x_i = 1$
- Reduction:
	- $-$ s(a) = i₁, ..., i_r, where i_j appears if and only if x_{ij} $= 1$

$$
- s(b) = i
$$

- If Alg(s(a), $s(b)$) = Alg(s(a))+1 then $x_i = 0$, otherwise $x_i = 1$
- Space complexity of Alg at least the 1-way communication complexity of Index

1-Way Communication of Index

- Alice has uniform $X \in \{0,1\}^n$
- Bob has uniform I in [n]
- Alice sends a (randomized) message M to Bob
- $I(M; X) = sum_i I(M; X_i | X_{i})$ \geq sum_i I(M; X_i) $=$ n $-$ sum_i H(X_i | M)
- By Fano's inequality, $H(X_i | M) < H(\delta)$ if Bob can predict X_i with probability $> 1 - δ$
- $CC_{\delta}(\text{Index}) > I(M; X) \geq n(1-H(\delta))$
- Computing distinct elements requires $\Omega(n)$ space

Indexing is Universal for Product Distributions [Kremer, Nisan, Ron]

• If inputs drawn from a *product distribution*, then 1-way communication of a Boolean function is Θ (VC-dimension) of its communication matrix (up to δ dependence)

- Implies a reduction from Index is optimal
	- Entropy, linear algebra, spanners, norms, etc.
	- Not always obvious how to build a reduction, e.g., Gap-Hamming

- Promise: Hamming distance satisfies $\Delta(x,y) > n/2 + \epsilon n$ or $\Delta(x,y) < n/2 \epsilon n$
- Lower bound of $\Omega(\epsilon^2)$ for randomized 1-way communication [Indyk, W], [W], [Jayram, Kumar, Sivakumar]
- Gives $\Omega(\epsilon^2)$ bit lower bound for approximating number of distinct elements
- Same for 2-way communication [Chakrabarti, Regev]

Gap-Hamming From Index [JKS]

Public coin = r^1 , ..., r^t , each in $\{0,1\}^t$

 $E[\Delta(y, z)] = t/2 + x_i \cdot t^{1/2}$

Augmented Indexing

- Augmented-Index problem:
	- Alice has $x \in \{0, 1\}^n$
	- $-$ Bob has $i \in [n]$, and $x_1, \, ... , \, x_{i\text{-}1}$
	- $-$ Bob wants to learn x_i
- Similar proof shows $\Omega(n)$ bound
- $I(M; X) = sum_i I(M; X_i | X_{i})$ $=$ n $-$ sum_i H(X_i | M, X_{<i})
- By Fano's inequality, $H(X_i | M, X_{\leq i}) < H(\delta)$ if Bob can predict X_i with probability > 1- δ from M, X_{ci}
- $CC_{\delta}(\text{Augmented-Index}) > I(M; X) \geq n(1-H(\delta))$
- Surprisingly powerful implications

Indexing with Low Error

- Index Problem with 1/3 error probability and 0 error probability both have $\Theta(n)$ communication
- In some applications want lower bounds in terms of error probability
- Indexing on Large Alphabets:
	- Alice has $x \in \{0,1\}^{n/\delta}$ with wt(x) = n, Bob has $i \in [n/\delta]$
	- Bob wants to decide if $x_i = 1$ with error probability δ
	- [Jayram, W] 1-way communication is $\Omega(n \log(1/\delta))$

Compressed Sensing

- Compute a sketch S x with a small number of rows (also known as measurements)
	- S is oblivious to x
- For all x, with constant probability over S, from $S \cdot x$, we can output x' which approximates x: $\left|x^{\prime}\text{-}x\right|_2 \leq (1+\epsilon)\left|x\text{-}x_{\mathsf{k}}\right|_2$ where x_k is an optimal k-sparse approximation to x (x $_{\mathsf{k}}$ is a "top-k" version of x)
- Optimal lower bound on number of rows of S via reduction from Augmented-Indexing
	- Bob's partial knowledge about x is crucial in the reduction

x

Recognizing Languages

-2-way communication tradeoff for Augemented Indexing: if Alice sends $n/2^b$ bits then Bob sends $\Omega(b)$ bits [Chakrabarti, Cormode, Kondapally, McGregor]

- Streaming lower bounds for recognizing DYCK(2) [Magniez, Mathieu, Nayak]

 $((([])))([])\in DYCK(2)$ $([([]])[])\oplus DYCK(2)$

- Multi-pass $\Omega(n^{1/2})$ space lower bound for length-n streams

- Interestingly, one forward pass plus one backward pass allows for an O~(log n) bits of space

Outline

1. Streaming model and examples

- 2. Background on communication complexity for streaming
	- 1. Product distributions
	- 2. Non-product distributions
- 3. Open problems

Non-Product Distributions

- Needed for stronger lower bounds
- Example: approximate $|x|_{\infty}$ up to a multiplicative factor of B in a stream
	- Lower bounds for heavy hitters, p-norms, etc.

- Hard distribution non-product
- $\Omega(n/B^2)$ 2-way lower bound [Saks, Sun] [Bar-Yossef, Jayram, Kumar, Sivakumar]

Direct Sums

• Gap_{∞}(x,y) doesn't have a hard product distribution, but has a hard distribution $\mu = \lambda^n$ in which the coordinate pairs (x₁, y₁), ..., (x_n, y_n) are independent

- w.pr. 1-1/n, (x_i, y_i) random subject to $|x_i - y_i| \leq 1$

 $-$ w.pr. 1/n, (x_i, y_i) random subject to $|x_{\sf i}-{\sf y}_{\sf i}|\geq{\sf B}$

- Direct Sum: solving $Gap_\infty(x,y)$ requires solving n singlecoordinate sub-problems f
- In f, Alice and Bob have $J,K \in \{-M, \ldots, M\}$, and want to decide if $|J-K| \leq 1$ or $|J-K| \geq B$

Direct Sum Theorem

- π is the transcript between Alice and Bob
- For X, Y $\sim \mu$, I(π ; X, Y) = H(X,Y) H(X,Y | π) is the (external) information cost
- [BJKS]: ?!?!?!?! the protocol has to be correct on every input, so why not measure $I(\pi; X, Y)$ when (X,Y) satisfy $|X-Y|_{\infty} \leq 1$? $-$ Is I(π ; X, Y) large?
- Redefine $\mu = \lambda^n$, where $(X_i, Y_i) \sim \lambda$ is random subject to $|X_i Y_i| \leq 1$
- IC(f) = $inf_{\psi} I(\psi; A, B)$, where ψ ranges over all 2/3-correct protocols for f, and A,B $\sim \lambda$

Is $I(\pi; X, Y) = \Omega(n) \cdot IC(f)?$

The Embedding Step

Conditional Information Cost

- $(X_j, Y_j) \sim \lambda$ is not a product distribution
- [BJKS] Define D = $((P_1, V_1)...,(P_n, V_n))$:
	- P_i uniform in {Alice, Bob}
	- $-$ V_i uniform {-B+1, ..., B-1}
	- If P_j = Alice, then $X_j = V_j$ and Y_j is uniform in $\{V_j, V_j$ -1, V_j+1}
	- If P_j = Bob, then Y_j = V_j and X_j is uniform in {V_j, V_j-1, V_j+1}

X and Y are independent conditioned on D!

- $I(\pi; X, Y | D) = \Omega(n) \cdot IC(f | (P,V))$
- $IC(f) = inf_{\psi} I(\psi; A, B | (P,V))$, where ψ ranges over all 2/3-correct protocols for f, and A,B $\sim \lambda$

Primitive Problem

- Need to lower bound $IC(f | (P,V))$
- For fixed P = Alice and V = v, this is $I(\psi; K)$ where K is uniform over v, v+1
- Basic information theory: $I(\psi; K) \geq D_{JS}(\psi_{VV}, \psi_{V,V+1})$
- IC(f | (P,V)) $\geq E_v[D_{JS}(\psi_{v,v}, \psi_{v,v+1}) + D_{JS}(\psi_{v,v}, \psi_{v+1,v})]$

Forget about distributions, let's move to unit vectors!

(*) IC(f | (P,V)) $\geq \mathsf{E}_\mathsf{v}\left[|\mathsf{S}(\psi_{\mathsf{v},\mathsf{v}})-\mathsf{S}(\psi_{\mathsf{v},\mathsf{v+1}})|_2{}^2+|\mathsf{S}(\psi_{\mathsf{v},\mathsf{v}})-\mathsf{S}(\psi_{\mathsf{v+1},\mathsf{v}})|_2{}^2\right]$

• Because ψ is a protocol,

— (Cut-and-paste): $|S(\psi_{a,b}) - S(\psi_{c,d})|_2^2 = |S(\psi_{a,d}) - S(\psi_{b,c})|_2^2$]

— (Correctness): $|S(\psi_{0,0}) - S(\psi_{0,B})|_2^2 = \Omega(1)$

• Minimizing (*) subject to these properties, $IC(f | (P,V)) = \Omega(1/B^2)$

Direct Sum Wrapup

- $\Omega(n/B^2)$ bound for $\text{Gap}_{\infty}(x,y)$
- Similar argument gives $\Omega(n)$ bound for disjointness [BJKS]
- [MYW] Sometimes can "beat" a direct sum: solving all n copies simultaneously with constant probability as hard as solving each copy with probability 1-1/n
	- E.g., 1-way communication complexity of Equality
- Direct sums are nice, but often a problem can't be split into simpler smaller problems, e.g., no known embedding step in gap-Hamming

Outline

1. Streaming model and examples

- 2. Background on communication complexity for streaming
	- 1. Product distributions
	- 2. Non-product distributions
- 3. Open problems

Earthmover Distance

• For multisets *A*, *B* of points in [∆]² , |*A*|=|*B*|=*N*,

$$
EMD(A, B) = \min_{\pi:A\to B} \sum_{a\in A} ||a - \pi(a)||
$$

i.e., min cost of perfect matching between A and B

Upper bound:

O(1/γ)-approximation using Δ ^γ bits of space, for any $y > 0$

Lower bound:

log Δ bits, even for (1+ε)-approx.

Can we close this huge gap?

Longest Increasing Subsequence

- Permutation of 1, 2, ..., n given one number at a time
- Find the longest length of an increasing subsequence
	- \cdot 5,3,0,7,10,8,2,13,15,9,2,20,2,3. LIS=6
- For finding the exact length, $\Theta \sim (|\text{LIS}|)$ is optimal for randomized algorithms
- For finding a (1+ε)-approximation, $\Theta \sim (n^{1/2})$ is optimal for deterministic algorithms
- For randomized algorithms we know nothing!

Is polylog(n) bits of space possible for (1+ε)-approximation?

Matchings

- Given a sequence of edges $e_1, ..., e_m$, output an approximate maximum matching in $O_{(\n}n)$ bits of space
- Greedy algorithm gives a 1/2-approximation
- [Kapralov] no 1-1/e approximation is possible in $O_{\leq}(n)$ bits of space

Is there anything better than the trivial greedy algorithm?

• Suppose we allow edge deletions, so we have a sequence of insertions and deletions to edges that have already appeared

Can one obtain a (1)-approximation in o(n²) bits of space?

Matrix Norms

- Let A be an n x n matrix of integers of magnitude at most poly(n)
- Suppose you see the entries of A one-by-one in a stream in an arbitrary order

How much space is needed to estimate the operator norm |A|² = sup^x |Ax|² /|x|² up to a factor of 2?

[Li, Nguyen, W], [Regev]: if the entries of A are real numbers and $\text{L:R}^{n^2} \rightarrow \mathbb{R}^k$ is a linear map chosen independent of A, then k = $\Omega(n^2)$ to estimate $|A|_2$ up to a factor of 2

– *Can we even rule out linear maps in the discrete case?*