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k-party Number-In-Hand Model

P.| xt
- Point-to-point
2 P, M> P\ communication
NG
- Protocol transcript
x> | Ps determines who
P, | speaks next

Goals:
- compute a function f(x1, ..., xK)
- minimize communication complexity



k-party Number-In-Hand Model

T

Py P> P3 Py

x1 X2 X3 XK

Convenient to introduce a “coordinator’ C
All communication goes through the coordinator

Communication only affected by a factor of 2
(plus one word per message)



Model Motivation

 Data distributed and stored In the cloud
— For speed
— Just doesn’t fit on one device

 Sensor networks / Network routers
— Communication very power-intensive
— Bandwidth limitations

 Distributed functional monitoring
— Continuously monitor a statistic of distributed data
— Don’t want to keep sending all data to one place



Randomized Communication
Complexity

 Randomized communication complexity R(f) of a
function f:

« The communication cost of a protocol is the
sum of all individual message lengths,
maximized over all inputs and random coins

* R(f) is the minimal cost of a protocol, which for
every set of inputs, fails in computing f with
probability < 1/3
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Database Problems

Some well-studied problems

- Server i has x

- x=x1+x2+ ... +xkK

- f(x) = x|, = (Z; xP)HP

- for binary vectors x', ||, is the number of
distinct values (focus of this talk)



Exact Number of Distinct Elements

« Q(n) randomized complexity for exact computation of |x|,

« Lower bound holds already for 2 players

« Reduction from 2-Player Set-Disjointness (DISJ)
 Either|SNT|=00r|SNT|=1
¢« |ISNT|=1—DISJS,T)=1,|SNT|=0—DISJ(S,T) =0
« [KS, R] Q(n) communication
* Xlo=1ISI +[T|-21SNT|




Approximate Answers

Output an estimate f(x) with f(x)e(1 % €) |X|,

What is the randomized communication cost
as a function of k, €, and n?

Note that understanding the dependence on € is
critical, e.g., € < .01



An Upper Bound

Player I interprets its input as the i-th set in a data stream

Players run a data stream algorithm, and pass the state
of the algorithm to each other

There Is a data stream algorithm for estimating # of
distinct elements using O(1/ €2 + log n) bits of space

Gives a protocol with O(k/ €2 + k log n) communication



Lower Bound

* This approach is optimal

« We show an Q(k/ €2 + k log n)
communication lower bound

 First show an Q(k/ €2) bound [W, Zhang 12]

— Start with a simpler problem GAP-
THRESHOLD



Lower Bound for Approximate |x|,

 GAP-THRESHOLD problem:
— Player P; holds a bit Z,
— Z; are 1.1.d. Bernoulli(1/2)
— Decide if
Yk Zy > K2 + kY2 or XK Z; < ki2 - k12

Otherwise don't care (distributional problem)

 Intuitively Q(k) bits of communication is required
« Sampling doesn’t work...
 How to prove such a statement??



Rectangle Property

Claim: for any protocol transcript 7, it holds that
Z,, Z,, ..., Z, are independent conditioned on 7

Can assume players are deterministic by Yao’s minimax
principle

The input vector Z in {0,1} giving rise to a transcript 7 is

a combinatorial rectangle: S=S; X S, X ... X S, where S,
in {0,1}

Since the Z; are i.1.d. Bernoulli(1/2), conditioned on being
In S, they are still independent!



GAP-THRESHOLD

T

Py P> P3 Py

Z Z, Z; Zy

* The Z, are i.i.d. Bernoulli(1/2)

* Coordinator wants to decide if:
2 “Z >kl2+ kY2 or 3. Z <k/2- k1?2

* By independence of the Z; | 7, it is equivalent to fixing some
Z; 1o be 0 or 1, and the remaining Z, to be Bernoulli(1/2)



The Proof

 Lemma [Unbiased Conditional Expectation]: W.pr. 2/3,
over the transcript ,

|E[Z i:]_k Zi | 7_] — k/2 | <100 k1/2

 Otherwise, since Var[2 _,XZ | 7] < k for any 7, by
Chebyshev s inequality, w.p. r.> 1/2,

2 =K Z; — k/2| > 50k*/2
contradicting concentration

« Lemma [Lots of Randomness After Conditioning]: If the
communication is o(k), then w.pr. 1-o(1), over the
transcript 7, for a 1-0(1) fraction of the indices i,

Z; | 7i1s Bernoulli(1/2)



The Proof Continued

« Let's condition on a 7 satisfying the previous two lemmas
 Lemma [Anti-Concentration]:

W.pr. .001, overthe Z; | T
E[X i XZ| 7] - X i-.¥Z;| 7 > 100 k%2

W.pr. .001, over the Z; | 7
E[2 izlk Zi| 1] -2 izlk Z | <100 k1/2

« These follow by anti-concentration

« S0 the protocol fails with this probability



Generalizations

Generalizes to: Z; are i.i.d. Bernoulli(B), B > 1/k

Coordinator wants to decide If;
Yk Z;> Bk + (B K)Y2 or X, Z; < Bk — (Bk)V2

When the players have internal randomness, the proof
generalizes: any successful protocol must satisfy:

Pr_[for 1-o(1) fraction of indices i, H(Z; | ) = 0o(1)] > 2/3

How to get a lower bound for approximating |x|,?



Composition Idea

C D
Wv 1 DI‘S\,
P4 P, P3 Py
Ty T, T3 Tk
- Let S be arandom set from {1, 2, ..., m}

-If Z, = 1, give P; a random set T, so that DISJ(S,T)) = 1, else give
P. a random set T, so that DISJ(S,T;) =0

-Is 2.,XDISJ(S,T) > ki2 + k¥2 or Y.._,k DISJI(S, T)< k/2 - k%2 ?
Equivalently, is >._,kZ > k/2 + kK¥2 or Y. ._,kZ <k/2 - k12

-Our Result: total communication is Q(mk)



Composition Idea Continued

For this composed problem, a correct protocol satisfies:
Pr_[for 1-o(1) fraction of indices i, H(Z; | 7) = 0o(1)] > 2/3

Most DISJ instances are “solved” by the protocol
How to formalize?

Suppose the communication were o(km)

By averaging, there is a player P, so that

* The communication between C and P;is o(m)
* H(Z | 7) = o(1) with large probability



The Punch Line

C
Pl ..

P\

Reduce to a 2-player problem!

T, T, T;
Let the two players in the 2-player DISJ problem be the
coordinator C and P,

C can sample the inputs of all players P, for J I=

Run the multi-player protocol. Messages between C and
P; Is sent, for ] I=1, can be simulated locally'

So total communication is o(m) to solve DISJ with large
probabllity, a contradiction!



Reduction to |x|,

C D
W I DIN
I:)1 PZ P3 I:)k
T, T, T, T,
e m=1/g2

 Coordinator wants to decide if:
i€ Z;> Bk + (B k)Y2 or 2., ¢ Z; < Bk — (Bk)12
Set probability 8 of intersection to be 1/(ke?)

« Approximating |x|, up to 1+¢ solves this problem



Other Lower Bound for x|,

« Overall lower bound is Q(k/ €2 + k log n)

* The k log n lower bound also a reduction
to a 2-player problem! [W, Zhang 14]

— This time to a 2-player Equality problem
(details omitted)



Talk Outline

Database Problems
Graph Problems
Linear-Algebra Problems

Recent Work / Conclusions



Graph Problems [W,Zhang13]

« Canonical hard-multiplayer problem for graph problems:

* k xn binary matrix A
— Each player has a row of A

— Is the number of columns with at least one 1 larger
than n/2?

« Requires Q(kn) bits of communication to solve with
probabllity at least 2/3

Q(kn) lower bound for connectivity and bipartiteness
without edge duplications
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Linear Algebra [Li,Sun,Wang,W]

k players each have an n x n matrix in a finite field of p
elements

Players want to know if the sum of their matrices is
Invertible

Randomized Q(kn? log p) communication lower bound

Same lower bound for rank, solving linear equations
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Recent Work

« Braverman et al. obtain Q(kn) lower bound for k-player
disjointness

— Strengthens canonical hard problem for graphs
(additional applications like diameter)

« Chattopadhyay, Radhakrishnan, Rudra study multiplayer
communication in topologies other than star topology

— Obtain bounds that depend on 1-median of the
network



Conclusion

lllustrated techniques for lower bounds for multiplayer
communication via the distinct elements problem

Many tight lower bounds known
— Statistical problems (Ip norms)
— Graph problems

— Linear algebra problems

Future directions
— Rounds vs. communication
— Topology-sensitive problems



