The Message Passing Communication Model

David Woodruff IBM Almaden

Joint w/Yi Li, Xiaoming Sun, Chengu Wang, Qin Zhang

k-party Number-In-Hand Model

- Point-to-point communication

Protocol transcript
 determines who
 speaks next

Goals:

- compute a function $f(x^1, ..., x^k)$
- minimize communication complexity

k-party Number-In-Hand Model

Convenient to introduce a "coordinator" C

All communication goes through the coordinator

Communication only affected by a factor of 2 (plus one word per message)

Model Motivation

- Data distributed and stored in the cloud
 - For speed
 - Just doesn't fit on one device

- Sensor networks / Network routers
 - Communication very power-intensive
 - Bandwidth limitations
- Distributed functional monitoring
 - Continuously monitor a statistic of distributed data
 - Don't want to keep sending all data to one place

Randomized Communication Complexity

- Randomized communication complexity R(f) of a function f:
 - The communication cost of a protocol is the sum of all individual message lengths, maximized over all inputs and random coins
 - R(f) is the minimal cost of a protocol, which for every set of inputs, fails in computing f with probability < 1/3

Talk Outline

Database Problems

- Graph Problems
- Linear-Algebra Problems

Recent Work / Conclusions

Some well-studied problems

- Server i has xⁱ
- $x = x^1 + x^2 + \dots + x^k$
- $f(x) = |x|_p = (\Sigma_i x_i^p)^{1/p}$

- for binary vectors x^i , $|x|_0$ is the number of distinct values (focus of this talk)

Exact Number of Distinct Elements

- $\Omega(n)$ randomized complexity for exact computation of $|x|_0$
- Lower bound holds already for 2 players

- Reduction from 2-Player Set-Disjointness (DISJ)
 - Either $|S \cap T| = 0$ or $|S \cap T| = 1$
 - $|S \cap T| = 1 \rightarrow DISJ(S,T) = 1$, $|S \cap T| = 0 \rightarrow DISJ(S,T) = 0$
 - [KS, R] $\Omega(n)$ communication
 - $|\mathbf{x}|_0 = |\mathbf{S}| + |\mathbf{T}| 2 |\mathbf{S} \cap \mathbf{T}|$

Approximate Answers

Output an estimate f(x) with $f(x) \in (1 \pm \epsilon) |x|_0$

What is the randomized communication cost as a function of k, ε , and n?

Note that understanding the dependence on ϵ is critical, e.g., ϵ < .01

An Upper Bound

- Player i interprets its input as the i-th set in a data stream
- Players run a data stream algorithm, and pass the state of the algorithm to each other

- There is a data stream algorithm for estimating # of distinct elements using O(1/ ϵ^2 + log n) bits of space
- Gives a protocol with O(k/ ϵ^2 + k log n) communication

Lower Bound

• This approach is optimal!

 We show an Ω(k/ ε² + k log n) communication lower bound

- First show an $\Omega(k/\epsilon^2)$ bound [W, Zhang 12]
 - Start with a simpler problem GAP-THRESHOLD

Lower Bound for Approximate $|\mathbf{x}|_0$

- GAP-THRESHOLD problem:
 - Player P_i holds a bit Z_i
 - Z_i are i.i.d. Bernoulli(1/2)
 - Decide if

 $\sum_{i=1}^k Z_i > k/2 + k^{1/2}$ or $\sum_{i=1}^k Z_i < k/2$ - $k^{1/2}$

Otherwise don't care (distributional problem)

- Intuitively $\Omega(k)$ bits of communication is required
 - Sampling doesn't work...
 - How to prove such a statement??

Rectangle Property

- Claim: for any protocol transcript τ , it holds that $Z_1, Z_2, ..., Z_k$ are independent conditioned on τ
- Can assume players are deterministic by Yao's minimax principle
- The input vector Z in $\{0,1\}^k$ giving rise to a transcript τ is a combinatorial rectangle: S = S₁ x S₂ x ... x S_k where S_i in $\{0,1\}$
- Since the Z_i are i.i.d. Bernoulli(1/2), conditioned on being in S, they are still independent!

- Z_1 Z_2 Z_3
- The Z_i are i.i.d. Bernoulli(1/2)
- Coordinator wants to decide if: $\sum_{i=1}^{k} Z_i > k/2 + k^{1/2}$ or $\sum_{i=1}^{k} Z_i < k/2 - k^{1/2}$
- By independence of the $Z_i \mid \tau$, it is equivalent to fixing some Z_i to be 0 or 1, and the remaining Z_i to be Bernoulli(1/2)

 Z_k

The Proof

• Lemma [Unbiased Conditional Expectation]: W.pr. 2/3, over the transcript τ ,

$$|E[\sum_{i=1}^{k} Z_i | \tau] - k/2 | < 100 k^{1/2}$$

• Otherwise, since $Var[\sum_{i=1}^{k} Z_i | \tau] < k$ for any τ , by Chebyshev's inequality, w.p.r. > 1/2, $|\sum_{i=1}^{k} Z_i - k/2| > 50k^{1/2}$

contradicting concentration

• Lemma [Lots of Randomness After Conditioning]: If the communication is o(k), then w.pr. 1-o(1), over the transcript τ , for a 1-o(1) fraction of the indices i, $Z_i \mid \tau$ is Bernoulli(1/2)

The Proof Continued

- Let's condition on a τ satisfying the previous two lemmas
- Lemma [Anti-Concentration]:

W.pr. .001, over the
$$Z_i \mid \tau$$

E[$\sum_{i=1}^{k} Z_i \mid \tau$] - $\sum_{i=1}^{k} Z_i \mid \tau$ > 100 k^{1/2}

W.pr. .001, over the
$$Z_i \mid \tau$$

E[$\sum_{i=1}^{k} Z_i \mid \tau$] - $\sum_{i=1}^{k} Z_i \mid \tau < 100 \ k^{1/2}$

- These follow by anti-concentration
- So the protocol fails with this probability

Generalizations

- Generalizes to: Z_i are i.i.d. Bernoulli(β), $\beta > 1/k$
- Coordinator wants to decide if: $\sum_{i=1}^{k} Z_i > \beta k + (\beta k)^{1/2} \text{ or } \sum_{i=1}^{k} Z_i < \beta k - (\beta k)^{1/2}$
- When the players have internal randomness, the proof generalizes: any successful protocol must satisfy:
 Pr_τ [for 1-o(1) fraction of indices i, H(Z_i | τ) = o(1)] > 2/3
- How to get a lower bound for approximating $|x|_0$?

Composition Idea

- Let S be a random set from {1, 2, ..., m}

-If $Z_i = 1$, give P_i a random set T_i so that DISJ(S,T_i) = 1, else give P_i a random set T_i so that DISJ(S,T_i) = 0

-Is $\sum_{i=1}^{k} \text{DISJ}(S,T_i) > k/2 + k^{1/2} \text{ or } \sum_{i=1}^{k} \text{DISJ}(S,T_i) < k/2 - k^{1/2} ?$ - Equivalently, is $\sum_{i=1}^{k} Z_i > k/2 + k^{1/2} \text{ or } \sum_{i=1}^{k} Z_i < k/2 - k^{1/2}$

-Our Result: total communication is $\Omega(mk)$

Composition Idea Continued

- For this composed problem, a correct protocol satisfies:
 Pr_τ [for 1-o(1) fraction of indices i, H(Z_i | τ) = o(1)] > 2/3
- Most DISJ instances are "solved" by the protocol
- How to formalize?
- Suppose the communication were o(km)
- By averaging, there is a player P_i so that
 - The communication between C and P_i is o(m)
 - $H(Z_i | \tau) = o(1)$ with large probability

The Punch Line

- Reduce to a 2-player problem!
- Let the two players in the 2-player DISJ problem be the coordinator C and P_i

P:

T₁

 T_2 T_3

- C can sample the inputs of all players P_i for j != i
- Run the multi-player protocol. Messages between C and P_i is sent, for j != i, can be simulated locally!
- So total communication is o(m) to solve DISJ with large probability, a contradiction!

- $m = 1/\epsilon^2$.
- Coordinator wants to decide if: $\sum_{i=1}^{k} Z_i > \beta k + (\beta k)^{1/2} \text{ or } \sum_{i=1}^{k} Z_i < \beta k - (\beta k)^{1/2}$ Set probability β of intersection to be $1/(k\epsilon^2)$
- Approximating $|x|_0$ up to $1+\epsilon$ solves this problem

Other Lower Bound for $|x|_0$

• Overall lower bound is $\Omega(k/\epsilon^2 + k \log n)$

- The k log n lower bound also a reduction to a 2-player problem! [W, Zhang 14]
 - This time to a 2-player Equality problem (details omitted)

Talk Outline

Database Problems

- Graph Problems
- Linear-Algebra Problems

Recent Work / Conclusions

Graph Problems [W,Zhang13]

- Canonical hard-multiplayer problem for graph problems:
- k x n binary matrix A
 - Each player has a row of A
 - Is the number of columns with at least one 1 larger than n/2?
- Requires Ω(kn) bits of communication to solve with probability at least 2/3

 $\Omega(kn)$ lower bound for connectivity and bipartiteness without edge duplications

Talk Outline

Database Problems

- Graph Problems
- Linear-Algebra Problems

Recent Work / Conclusions

Linear Algebra [Li,Sun,Wang,W]

- k players each have an n x n matrix in a finite field of p elements
- Players want to know if the sum of their matrices is invertible
- Randomized $\Omega(kn^2 \log p)$ communication lower bound
- Same lower bound for rank, solving linear equations

Talk Outline

Database Problems

- Graph Problems
- Linear-Algebra Problems

Recent Work / Conclusions

Recent Work

- Braverman et al. obtain $\Omega(kn)$ lower bound for k-player disjointness
 - Strengthens canonical hard problem for graphs (additional applications like diameter)
- Chattopadhyay, Radhakrishnan, Rudra study multiplayer communication in topologies other than star topology
 - Obtain bounds that depend on 1-median of the network

Conclusion

- Illustrated techniques for lower bounds for multiplayer communication via the distinct elements problem
- Many tight lower bounds known
 - Statistical problems (lp norms)
 - Graph problems
 - Linear algebra problems
- Future directions
 - Rounds vs. communication
 - Topology-sensitive problems