
Homework#1 Union-Find 
 
Question 1 

Union-find with specific canonical element. Add a method find() to 

the union-find data type so that find(i) returns the largest element in 

the connected component containing i. The operations, union(), 

connected(), and find() should all take logarithmic time or better. 

For example, if one of the connected components is {1,2,6,9}, then 

the find() method should return 9 for each of the four elements in the 

connected components. 

 

Question 2  

Successor with delete. Given a set of N integers S={0,1,...,N−1} 

and a sequence of requests of the following form: 

 

• Remove x from S 

• Find the successor of x: the smallest y in S such that y ≥ x. 

 

Design a data type so that all operations (except construction) should take 

logarithmic time or better. 

 

Question 3 

Union-by-height. Develop a union-find implementation that uses the 

same basic strategy as weighted quick-union but keeps track of tree 

height and always links the shorter tree to the taller one. Prove a logN 

upper bound on the height of the trees for N sites with your algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Hint: 

1. 

1) 5 5 5 5 5 5 5 5 5 5 

2) 7 7 5 4 1 5 7 2 2 1 

3) 7 7 7 4 1 7 7 7 2 1 

4) 7 2 5 2 2 5 2 2 2 1  

 

2. Use weighted union, and maintain an array max[i] to record the 

maximum element in the tree rooted at i. Update max[] when union 

happens. 

 

3. Initialize: 0-N-1 independent sites, 

remove(x), if x = 0, do nothing; otherwise, union(x-1,x), update max[] 

succ(x) = max[root of x] + 1 

 

4. proof 

 


