Homework#2 Fundamentals

Textbook:

- 1.17. Find two monotonically increasing functions f(n) and g(n) such that $f(n) \neq O(g(n))$ and $g(n) \neq O(f(n))$.
- 1.34. Write an algorithm to find the maximum and minimum of a sequence of n integers stored in array A[1..n] such that its time complexity is
 - (a) O(n).
 - (b) $\Omega(n \log n)$.
- 1.35. Let A[1..n] be an array of integers, where n > 2. Give an O(1) time algorithm to find an element in A that is neither the maximum nor the minimum.
- 1.37. Give an algorithm that evaluates an input polynomial

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

for a given value of x in time

- (a) $\Omega(n^2)$.
- (b) O(n).

Egg drop. Suppose that you have an *N*-story building and plenty of eggs. An egg breaks if it is dropped from floor *T* or higher and does not break otherwise. Your goal is to devise a strategy to determine the value of *T* given the following limitations on the number of eggs and tosses:

- Version 0: 1 egg, $\leq T$ tosses.
- Version 1: logN eggs and logN tosses.
- Version 2: log*T* eggs and 2log*T* tosses.
- (Advanced) Version 3: 2 eggs and $2\sqrt{N}$ tosses.
- (Advanced) Version 4: 2 eggs and $\leq c\sqrt{T}$ tosses for some fixed constant c.