
Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z

The shortest path from u to v that passes none vertex

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z

The shortest path from u to v that passes none vertex

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z

The shortest path from u to v that passes none vertex

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z

The shortest path from u to v that passes none vertex

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12

The shortest path from u to v that passes none vertex

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12

The shortest path from u to v that passes none vertex

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that passes none vertex

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that passes none vertex

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s

 11

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s

 11

4 2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s

 11

4 2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t

 11

4 2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t

 11

4 2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t

 11 15

4 2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t

 11 15

5

4 2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t

 11 15

5

4 2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t, x

 11 15

5

4 2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t, x

 11 15

5

4 2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t, x

 11 15

5

 7

4 2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t, x

 11 15

5

 7

4

4 2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t, x

 11 15

5

 7

4

10
4 2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t, x

 11 15

5

 7

4

10
4

8

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t, x

 11 15

5

 7

4

10
4

8 9

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t, x

 11 15

5

 7

4

10
4

8 9

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t, x, y

 11 15

5

 7

4

10
4

8 9

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t, x, y

 11 15

5

 7

4

10
4

8 9

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t, x, y

 11 15

5

 7

4

10

11

4

8 9

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t, x, y

 11 15

5

 7

4

10

11

4 4

8 9

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t, x, y

 11 15

5

 7

4

10

11

4

14

4

8 9

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t, x, y

 11 15

5

 7

4

10

11

4

14 6

4

8 9

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t, x, y

 11 15

5

 7

4

10

11

4

14 6

6

4

8 9

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t, x, y

 11 15

5

 7

4

10

11

4

14 6

6

4

8 9

2

Xiaojuan Cai, School of Software, SJTU.

Floyd-Warshall algorithm
24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.
Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

2

66664

0 10 1 5 1
1 0 1 2 1
1 1 0 1 4
1 3 9 0 2
2 1 6 1 0

3

77775

s t x y z

s
t
x
y
z 12 7

The shortest path from u to v that may passes s, t, x, y, z

 11 15

5

 7

4

10

11

4

14 6

6

4

8 9

2

