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a b s t r a c t

The applied pi calculus proposed by Abadi and Fournet is successful in the analysis of secu-
rity protocols. Its semantics mainly depends on several structural rules. Structural rules are
convenient for specification, but inefficient for implementation. In this paper, we establish
a new semantics for applied pi calculus based upon pure labeled transition system and pro-
pose a new formulation of labeled bisimulation. We prove that the new labeled bisimular-
ity coincides with observational equivalence. A zero-knowledge protocol is given as an
example to illustrate the effectiveness of this new semantics.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Process calculi are a family of related approaches to modeling concurrent systems formally. They provide a tool for the
high-level description of interactions and communications between agents or processes. They also provide algebraic laws
to analyze process descriptions, and allow formal reasoning about equivalences between processes (e.g. using bisimulation).
Leading examples of process calculi include CSP [25], CCS [31], and ACP [7,8]. More recent additions to the family include the
pi calculus [32], the ambient calculus [11].

Using process calculi to analyze security protocols was first studied by [28] with CSP. Then Abadi and Gordon extended the pi
calculus with cryptographic primitives and proposed the spi calculus [4]. The algebraic properties of the spi calculus were pre-
sented and proved in [5]. However, the spi calculus still has difficulties in describing some cryptographic operations, such as
blind signature, hash function and so on. To meet expressiveness requirements, in [3] Abadi and Fournet introduced the applied
pi calculus, which is a simple extension of the pi calculus with value passing, primitive functions and equations among terms. It
has been used to model security protocols [1,26]. Verification of authentication using the applied pi calculus has been studied in
[17]. Moreover, researchers begun to develop tools to check bisimulation in the applied pi calculus. One of the most important
work was done by Blanchet et al. [10]. They implemented automation of checking bisimulation in the tool ProVerif [9].

We usually view the context as an active attacker when using process calculi to analyze protocols. In the spi calculus and
the applied pi calculus, security properties such as secrecy, authenticity or anonymity are formally stated, and the verifica-
tion of these properties is done by checking observational equivalence between two processes. Observational equivalence
indicates that two given processes cannot be distinguished by any context. It is natural to use observational equivalence
to capture some security properties. However, it is hard to check because one needs to consider all the contexts.

In the applied pi calculus, the operational semantics consists of some structural and internal reduction rules. Based on
these rules, an auxiliary labeled transition system (LTS for short) [27] is defined to propose a labeled bisimulation, which
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is proved to coincide with observational equivalence. Therefore, instead of showing two processes are observationally equiv-
alent, we prove that they are bisimilar.

To prove that two processes are bisimilar, the standard approach is to show that the pair of them is contained in some
bisimulation. The structural rules will increase the size of this bisimulation relation dramatically which we have to check,
because one needs to consider all the possible forms of a process (by applying structural rules repeatedly) and the corre-
sponding derivatives. A pure labeled transition system without relying on structural rules will definitely free us from check-
ing the ever increasing size of the bisimulation relation.

The contributions of this paper are threefold:

� We try to define the operational semantics purely on LTS and give a new formulation of labeled bisimulation.
� We study the algebraic theory of this calculus with new semantics, and the coincidence result in the domain of closed

plain processes is established with detailed proofs.
� An example is given to illustrate the effectiveness of checking labeled bisimulation in this new semantics.

1.1. Related work

To our best knowledge, the study on the bisimulation of the applied pi calculus is limited. Among them there is symbolic
bisimulation proposed by Delaune et al. [14]. A notion of intermediate process was defined to make sure all the restrictions
are at the beginning of a process. The symbolic bisimulation is established based on the operational semantics and the
labeled bisimulation in [3].

Pure LTS is beneficial for a lot of process calculi. For example, most studies [29,30,20] on ambient calculi are devoted to
proposing an appropriate LTS to make bisimilarity equivalent to barbed congruence or observational equivalence which is
based on structural rules.

The applied pi calculus has been successfully used to analyze some protocols [1,26]. Therefore, a more effective semantics
is necessary. We think that pure LTS will make the application of the applied pi calculus more popular.

1.2. Outline of the paper

The rest of the paper is organized as follows: Section 2 briefly introduces the applied pi calculus. Section 3 defines the new
operational semantics of the applied pi calculus and proposes a new labeled bisimulation. Section 4 shows that the labeled
bisimulation coincides with the observational equivalence. Section 5 gives a practical example, and Section 6 concludes. The
appendix includes some proofs.

2. The applied pi calculus

In this section, we introduce some basic concepts in the applied pi calculus. More details can be found in [3].

2.1. Some definitions

The set of terms, plain processes and extended processes are defined below:

L;M;N ::¼ term
a; b; c; . . . ; k; . . . ;m; n name
x; y; z variable
f ðM1; . . . ;MlÞ function application

P;Q ;R ::¼ plain processes
0 null process
PjQ parallel composition
!P replication
mn.P name restriction
if M = N then P else Q conditional
u(x).P message input
�uhNi:P message output

A, B, C:¼ extended processes
P plain process
AjB parallel composition
mn.A name restriction
mx.A variable restriction
{M/x} active substitution

X. Cai / Information Sciences 180 (2010) 4436–4458 4437



Author's personal copy

Here terms are extended with data names and function applications. We rely on a sort system for terms as in [3]. We use a, b
and c as channel names, s, k as data names, and m, n as names of any sort. Data names are used to express data such as keys,
nonces, random numbers and so on, and function applications are proposed to model all kinds of cryptographic operations
such as encryption and decryption. A ground term is a term which has no free variables.

Equations are used to assert the relations of cryptographic primitives. For example, decðencðx; yÞ; yÞ ¼ x models symmetric
encryption where x represents a plaintext and y is a key. When describing security protocols, a signature R which consists of
some function symbols must be given together with a set of equations E, and we call this set of equations equational theory. In
the rest of this paper, we will use

fstðpairðx; yÞÞ ¼ x; sndðpairðx; yÞÞ ¼ y; decðencðx; yÞ; yÞ ¼ xf g

implicitly as the default equation theory.
We write R ‘ M ¼ N when the equation M = N is in the equational theory associated with R, and we may write M = N for

simplicity when R is clear from context. The notation R 0M ¼ N means we do not have R ‘ M ¼ N.
The differences between plain processes and extended processes are active substitutions and variable restrictions. The

notation fM=xg is an active substitution which replaces the variable x with the term M. The active substitution fM=xg typ-
ically appears when the term M has been sent to the environment. The variable restriction m x restricts the scope of active
substitutions.

The frame of an extended process consists of active substitutions and restrictions. Every extended process can be mapped
to a frame. Frame can be viewed as static knowledge exposed by an extended process to its environment. We use /;w; . . . to
range over frames and we usually write /A to denote the frame of process A.

The domain of a frame / (resp. a process A), denoted by domð/Þ (resp. domðAÞ) is the set of variables which appear in
active substitutions of / (resp. A) but not under a variable restriction. For example, If

A ¼def mn; k:ðPjfencðn; kÞ=xgjfn=ygÞ

for some plain process P, then /A ¼ mn; k:ðfencðn; kÞ=xgjfn=ygÞ; domð/AÞ ¼ fx; yg and domðAÞ ¼ domð/AÞ. Given a set
~n ¼ fn1;n2; . . . ;njg and two tuples eM ¼ hM1;M2; . . . ;Mii; ~x ¼ hx1; x2; . . . ; xii, we simply write m ~n:f eM=~xg instead of
mn1;n2; . . . ;nj:ðfM1=x1gjfM2=x2gj � � � jfMi=xigÞ.

We write / ‘ M to mean M can be deduced from /. This relation is called deduction [2], which is axiomatized by rules in
Fig. 1.

We write fnðAÞ, and bnðAÞ for free and bound names of A. We use bvðAÞ to mean the bound variables of A. The free vari-
ables of A, denoted by fvðAÞ, are all the freely appearing variables in A excluding those variables in domðAÞ. The names and
variables of A are denoted as nðAÞ ¼def bnðAÞ [ fnðAÞ and vðAÞ ¼def bvðAÞ [ f vðAÞ.

A process A is closed when fvðAÞ ¼ ;. An evaluation context, denoted by C½ � is a context whose hole is not under a repli-
cation, a condition, or a prefix. An evaluation context C½ � closes A when C½A� is closed, and C½ � is called a closing evaluation
context.

Definition 1. Given frame / ¼def m ~n:r and two terms M;N such that ~n \ ðfnðMÞ [ fnðNÞÞ ¼ ;, we say that M and N are equal in /,
written ðM ¼ NÞ/, if and only if Mr ¼ Nr.

Definition 2. We say that two closed frame / and w are statically equivalent, denoted by / �s w, if domð/Þ ¼ domðwÞ and, for
all terms M and N, we have ðM ¼ NÞ/ if and only if ðM ¼ NÞw.

Definition 3 (Static equivalence ð�sÞ). We say that two closed extended processes are statically equivalent, and write A �s B,
when their frames are statically equivalent.

Fig. 1. The deduction rules.
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2.2. Semantics

The original operational semantics of the applied pi calculus is presented in Appendix A. The structural rules denote an
equivalence relation on extended processes that is closed under a-conversion on both names and variables, and under eval-
uation contexts. The internal reduction rules describe internal communication. And the labeled rules give the situation when
the process is interacting with the environment.

We will write ) for !� where ! denotes one step of internal reduction, and )
k

for )!k ). We write A�a, read as ‘‘A
barbed on a”, to mean that A can send or receive a message on channel a immediately. Note that if A�a, then by using the
structural rules of Appendix A, the process A can be rewritten to the form of C½aðxÞ:P1� or C0 ½�ahMi:P2� where C½ � and C0½ �
are two evaluation contexts. We write A�a, read as ‘‘A weakly barbed on a”, if there exists some A0 such that A) A0�a.
We also write A a (resp. A a) if A�a (resp. A�a) does not hold.

Definition 4. A binary symmetric relation R on closed extended processes is a labeled bisimulation if for any ARB:

(i) A�sB.
(ii) if A!a A0, and fvðaÞ# domðAÞ and bnðaÞ \ fnðBÞ ¼ ; then 9B0, s.t. B)

a
B0 and A0RB0.

(iii) if A! A0, then 9B0, s.t. B) B0 and A0RB0.

The bisimilarity, denoted by �l is the largest labeled bisimulation.

Definition 5 (Observational equivalence ð �o Þ). Observational equivalence ð �o Þ is the largest symmetric relationR between
closed extended processes with the same domain such that A R B implies:

(i) if A�a, then B�a;
(ii) if A) A0, then B) B0 and A0 R B0 for some B0;

(iii) C½A� R C½B� for all closing evaluation contexts C½ �.

Theorem 1 [3]. �l ¼ �o and �o #�s.

3. Pure labeled semantics

In this section, we give a pure labeled transition system for applied pi. We also give a new definition of labeled bisimi-
larity based upon the new LTS.

3.1. New LTS

A pure LTS simplifies the manipulation and the analysis of process descriptions. We keep most of the syntax of the applied
pi calculus in [3], but change the definition of extended processes by omitting the variable restriction operators:

A;B;C ::¼ P j AjB j mn:A j fM=xg

Readers will see in Fig. 2 that an active substitution appears when the output action is done. We need not use the struc-
tural rule 0 � mx:fM=xg to produce the active substitutions, so we remove the operator mx in the syntax of extended
processes.

The new semantics of the applied pi calculus is defined purely in terms of a LTS in Fig. 2 and no structural rules are pre-
ordained. We omit the symmetric rules for INT and PAR. Here we make some comments:

1. A!a A0. Here a can be an internal action s, an input aM or an output �ax. We use the early semantics in order to model the
environment as an active attacker and to simplify the definition of bisimulation. There are two reasons of using �ax instead
of �aM. First, after doing �ax, the process will be paralleled by an active substitution, and x denotes exactly the message sent
in this action which is necessary when comparing two frames. Second, when distinguishing two processes we only care
about the channels where this output happens. The output messages will be compared in the frames of the induced pro-
cesses using static equivalence.

2. We have three rules to manage the restrictions, RES, RES-IN and RES-OUT. If the frame can deduce the message M then the
message can be input. That is to say if the restricted name m 2 nðMÞ; M still can be input because the environment
(frame) knows it. For example, when a cipher text encðm; kÞ was sent to the environment, then it can be received by any-
one even though the plain text m and key k are under restrictions which means that they are unknown to anyone.
The condition /m m:A ‘ a considers the case u ¼ a. This condition tells that if the channel name has been known by the
environment, of course one can communicate on it. This is also the reason we have /m a:A ‘ a in the rule RES-OUT.

X. Cai / Information Sciences 180 (2010) 4436–4458 4439
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3. Consider the rule INT-L. A!�a x m ~n:ðA0jfM=xgÞmeans that A has sent a message M to the environment, which is something like

the ‘‘open” rule in the pi calculus. B!aM
B0 states B receives a message M from the environment. When they are paralleled,

an interaction happens but the active substitution fM=xg disappears. This rule is similar to the ‘‘close” rule in the pi cal-
culus. The appearance of fM=xg indicates the openness of the message M. However, when this message is accepted by
another process, the message M is closed meanwhile.

4. One may notice that the name restriction operator continues to exist no matter what the process does. We benefit from
this fact in proving the theorems in Section 4.

Let’s see some examples of derivations using the LTS in Fig. 2:

Example 3.1. Readers may find in the original semantics of applied pi (see Appendix A), the following two reductions are
both available for �ahmijfm=xg.

�ahmijfm=xg � ð�ahmij0Þjfm=xg by Par-0
� ð�ahmijmy:fm=ygÞjfm=xg by Alias

� my:ð�ahmijfm=ygÞjfm=xg by New-Par

¼ my:ð�ahyifm=ygjfm=ygÞjfm=xg
� my:ð�ahyijfm=ygÞjfm=xg by Subst

!m y:�ahyi fm=ygjfm=xg by Open-Atom

�ahmijfm=xg � �ahxifm=xgjfm=xg
� �ahxijfm=xg by Subst

!
�ahxi fm=xg by Out

Our new LTS rules out the second case to avoid the unnecessary, though harmless, ambiguity.

Out;Par-l
y is fresh

�ahmijfm=xg!
�a yfm=ygjfm=xg

Example 3.2. This example considers the restrictions of channel names after being sent out.

Res

Out
x is fresh

�ahci:�chmi!�a x
�chmijfc=xg cRnð�a xÞ

mc:ð�ahci:�chmiÞ!�a x mc:ð�chmijfc=xgÞ

Note that mc still remains after the output of c on channel a. As in the pi calculus and the spi calculus, the process mc:�chmi
cannot do any actions. However, here because c, as a message, has been ‘‘open” to the environment with the active substi-
tution fc=xg, we have the following reduction:

Fig. 2. The LTS of the applied pi calculus.

4440 X. Cai / Information Sciences 180 (2010) 4436–4458
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Res� Out

Par� l
�chmi!

�c yfm=yg
�chmijfc=xg!

�c yfm=ygjfc=xg /mc:ð�chmijfc=xgÞ ‘ c

mc:ð�chmijfc=xgÞ!�c y mc:ðfm=ygjfc=xgÞ

Example 3.3. This example shows the interaction between processes.

Int� l

mk;m:�ahencðm; kÞi:�ahki!�a x mk;m:ðfencðm; kÞ=xgj�ahkiÞ

aðxÞ:bðyÞ !a encðm;kÞ
bðyÞ

mk;m:�ahencðm; kÞi:�ahkijaðxÞ:bðyÞ!s mk;m:ð�ahkijbðyÞÞ

Note that in the new semantics, the interaction!s is different from internal reduction! in the original semantics. So in

order not to confuse these two kinds of transitions, we write)
ŝ

for!s �, and)
k

for)
ŝ
!k )

ŝ
. We write A#a, read as ‘‘A barbed on

a”, to mean that A can send or receive a message on channel a, and A+a, read as ‘‘A weakly barbed on a”, for the fact that there

exists some A0 such that A)
ŝ

A0#a. Similarly, A#a (resp. A+a) means A#a (resp. A+a) does not hold. We also write A + if 8a:A+a.

It is worth mentioning that A�a implies A#a but the reverse is not true due to Con-T and Con-F rules in Fig. 2. For example,
P ¼def

if M ¼ M then a:0, we have A#a but Aj.a. However, the following lemma shows that weak barbs of plain processes are
equivalent in the original and new semantics.

Lemma 2. For any closed plain process P and any name a, P�a if and only if P+a.

Proof. First of all, according to the original semantics in Appendix A, for any closed plain process P, if P ! A0, then there must
exist some closed plain process P0 s.t. A0 � P0.

Now we proceed the proof inductively on the structure of P.

1. The null process, prefix, restriction, and replication form are direct.
2. P ¼def

if M ¼ N then P1 else P2,
� if for some a; P�a, then P1�a if R ‘ M ¼ N; P2�a if R 0M ¼ N. By induction we have P1+a if R ‘ M ¼ N; P2+a other-

wise. So according to CON-T and CON-F we have P+a.
� if for some a; P+a, then P1+a if R ‘ M ¼ N; P2+a if R 0M ¼ N. So according to THEN and ELSE we have

P ! P1�a when
R ‘ M ¼ N: Otherwise P ! P2�a:

3. P ¼def P1jP2,
� if for some name a; P�a,

– if P1�a, then P1+a, therefore, P+a; It is similar when P2�a.
– if P ! P0�a and this transition is caused by COMM rule.

Then there must exist some b; P01; P
0
2;M; ~n such that

P1jP2 � m ~n:mx:ð�bhxi:P01jbðxÞ:P
0
2jfM=xgÞ

! m ~n:mx:ðP01jP
0
2jfM=xgÞ

� m ~n:ðP01jP
0
2fM=xgÞ�a

M is ground, ~n # nðMÞ; P01 and P02fM=xg are closed plain processes. It is easy to see by rule INT-L or INT-R, we have

P1jP2!
s m ~n:ðP01jP

0
2fM=xgÞ

So P+a.
� if for some name a; P+a,

– if P1+a, then P1�a, therefore, P�a; It is similar when P2+a.
– if P!s P0+a and this transition is caused by INT-Ls rule, i.e.

P1!
�b x m ~n:ðP01jfM=xgÞ P2!

b M
P02 ~n # nðMÞ fnðMÞ \ bnðP1Þ ¼ ;

P1jP2!
s m ~n:ðP01jP

0
2Þ

X. Cai / Information Sciences 180 (2010) 4436–4458 4441
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Considering all the rules in Fig. 2, we have the conclusion that there must exist P3; P4; P
00
2 such that

P1jP2 ) P3jP4 by Then or Else

� m ~n:mx:ð�bhxi:P01jbðxÞ:P
00
2jfM=xgÞ by structural rules

! m ~n:mx:ðP01jP
00
2jfM=xgÞ by Comm

� m ~n:ðP01jP
0
2Þ�a by Subst; Alias

So P ) men:ðP01jP02Þ�a. It is similar when the transition P!s P0 is caused by INT-R rule. And we are done. h

In the rest of the paper we will use ‘‘d is a fresh name” or ‘‘for a fresh name d”, to mean that name d does not occur in any
syntactical objects under consideration. We also write �d:P instead of mm:ð�dhmi:PÞ when m R fnðPÞ; and d:Q instead of dðzÞ:Q
when z R fvðQÞ.

By the OUT rule,

�d:P ¼def mm:ð�dhmi:PÞ!
�d x mm:ðPjfm=xgÞ

Since m R fnðPÞ, the active substitution fm=xg does not influence the frames of P and P’s successors. By the IN rule we have for
any term M dðzÞ:Q !d M

Q when z R fnðQÞ. Therefore, we write �d:P!
�d

P and d:Q!d Q for simplicity.

3.2. Labeled bisimulation

We define a new labeled bisimulation based on the pure LTS discussed above. First we recall a characterization of deduc-
tion proposed by Abadi and Cortier (Proposition 1 in [2]).

Proposition 3. Let M be a closed term and m ~n:r be a frame. Then m ~n:r ‘ M if and only if there exists a term f such that
fnðfÞ \ ~n ¼ ; and M ¼ fr.

According to this proposition we define a relation to relate two terms.

Definition 6. Assume two frames /A ¼
def m ~m:f eM=~xg and /B ¼

def m ~n:feN=~xg are statically equivalent, then given two terms M;N
which can be deduced from /A and /B respectively, we say M and N are correspondingly equivalent, denoted M 	f/A ;/Bg N, if
whenever M ¼ ff eM=~xg for some term f and nðfÞ \ ð~n [ ~mÞ ¼ ;, we have N ¼ ffeN=~xg.

Definition 7. A binary symmetric relation R between closed extended processes is a labeled bisimulation if for any ARB:

1. A�sB.
2. if A!s A0, then 9B0, s.t. B)

ŝ
B0 and A0RB0.

3. if A!�a x
A0, then 9b;B0, s.t. B)

�b x
B0 with a 	f/A ;/Bg b and A0RB0.

4. if A !aM1 A0,then 9b; B0 and /B ‘ M2, s.t. B )
b M2

B0, M1 	f/A ;/Bg M2; a 	f/A ;/Bg b and A0RB0,

We write �L to denote the largest labeled bisimulation in order to distinguish from the labeled bisimilarity �l in [3]. We
give two simple examples to explain the definition of labeled bisimulation.

Example 3.4.

mc:�ahci:�chmi �L md:�ahdi:�dhmi
�ax # �ax #

mc:ð�chmijfc=xgÞ md:ð�dhmijfd=xgÞ c 	fmc:fc=xg;m d:fd=xgg d

�c y # �dy #
mc:ðfm=ygjfc=xgÞ �L md:ðfm=ygjfd=xgÞ

This example looks nonsense since mc:�ahci:�chmi is a-convertible to md:�ahdi:�chmi. However, when implementing an algorithm
to compute if two processes are bisimilar, a-convertibility is hard to check.

4442 X. Cai / Information Sciences 180 (2010) 4436–4458
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Example 3.5.

mk;m:ð�a hencðm; kÞi:cðxÞ:if x ¼ encðm; kÞ then �bhm0i else 0Þ
�L mn:ð�a hni:cðxÞ:if x ¼ n then �bhm0i else 0Þ

Assume

A ¼def mk;m:ð�a hencðm; kÞi:cðxÞ:if x ¼ encðm; kÞ then �bhm0i else 0Þ

B ¼def mn:ð�a hni:cðxÞ:if x ¼ n then �bhm0i else 0Þ

Then we have the following reduction:

A �L B
�ax # �ax #

mk;m:ðcðxÞ:if � � � jfencðm; kÞ=xgÞ mn:ðcðxÞ:if � � � jfn=xgÞ
c encðm; kÞ # c n #

�bz # �bz #
mk;m:ðfm0=zgjfencðm; kÞ=xgÞ �L mn:ðfm0=zgjfn=xgÞ

Note that encðm; kÞ 	fm k;m:fencðm;kÞ=xg;m n:fn=xgg n and

mk;m:ðfm0=zgjfencðm; kÞ=xgÞ �s mn:ðfm0=zgjfn=xgÞ:

This example shows that the cipher text which cannot be decrypted is the same as a random number.

4. Algebraic theory

In this part, we first define the observational equivalence between plain processes, and then prove labeled bisimilarity coin-
cides with observational equivalence in the domain of plain processes. In Theorem 5, we reveal labeled bisimilarity implies
observational equivalence and in Theorem 6 we show the opposite direction. The coincidence result is given in Corollary 7.

We consider observational equivalence between plain processes rather than extended ones for two reasons. First, the ini-
tial processes with which we model security protocols are always plain ones. Second, without structural rules the static
knowledge of processes cannot be captured by the environment using the rules in Fig. 2. For example, let

A ¼def mm;n:ðfm=xgjfn=ygÞ

B ¼def mm;n:ðfm=xgjfm=ygÞ

If we try to construct contexts to distinguish A and B, all possible ways can be reduced to the following two cases: (i)

C1½ � ¼def jif x ¼ y then �d; (ii) C2½ � ¼def j�xjy:�d. Since we now have no structural rules as SUBST to substitute x; y with ground names,
and we have R 0 x ¼ y, so Con-T and Con-F rules can not be applied here. We can have the conclusion that C1½A� # and C1½B� #.
Now let’s consider C2½ �. As we know, IN, OUT rules can only be applied when the channel name has been instantiated, so
C2½A� + and C2½B� +. That is to say, there is not contexts can differentiate A and B without structural rules. But A 6� L B since
A 6� s B.

In the rest of this paper we only consider plain processes and those extended processes that can be derived from some
plain ones with rules in Fig. 2. These processes are enough for us to model security protocols and capture all the abilities of
adversaries (or the environment). An coincidence result between observational equivalence and labeled bisimilarity re-
stricted to plain processes is shown in next two subsections.

We now restrict the original observational equivalence to plain processes, and give the modified definition where plain
closing evaluation contexts means closing evaluation contexts without active substitutions.

Definition 8. Observational equivalence ð �obs Þ is the largest symmetric relation R between closed plain processes such
that PR Q implies:

1. if P#a, then Q+a;
2. if P!s P0, then Q)

ŝ
Q 0 and P0 R Q 0 for some Q 0;

3. C½P� R C½Q � for all plain closing evaluation contexts C½ �.

Recall rules in Fig. 2. The interaction!s will not change a plain process into an extended one. That is to say, s-actions will
never introduce active substitutions. And this is the reason why we write P!s P0 instead of P!s A0 in above definition.

Relation �obs is shown to be equal to �o in the domain of plain processes by the following lemma.

Lemma 4. For any closed plain processes P;Q ; P �o Q if and only if P �obs Q.
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Proof. We prove by contradiction. This lemma is equivalent to

For any closed plain processes P;Q ; P 6� o Q if and only if P 6� obs Q : ð1Þ

According to Definitions 5 and 8, if P 6� o Q ðP 6� obs QÞ, then there must exists some (plain) closing evaluation context C½ � and
some name a such that C½P��a ðC½P�+aÞ but C½Q ��a ðC½Q �+aÞ or C½P��a ðC½P�+aÞ but C½Q ��a ðC½Q �+aÞ. Since �o and �obs are
symmetric relations, so the following statement implies (1).

For any closed plain processes P;Q , if there exists some closing evaluation context C½ � and name a such that C½P��a but
C½Q ��a, then we can construct a plain closing evaluation context C0½ � such that C0½P�+a but C0½Q �+a; and vice versa.

Using structural equivalence, any closing evaluation context C½ � can be rewritten to

m ~n:ðf eM=~xgjC1½ �Þ

for some ~n; eM; ~x and some plain closing evaluation context C1½ �.
In all the structural rules, only the following rule makes active substitutions influence the possible actions of processes.

Subst fM=xgjA � fM=xgjAfM=xg

However, for any closed plain process P; f vðC1½P�Þ ¼ ; and the active substitutions f eM=~xgwill not influence the transitions of
C1½P�. So if C½P��a then m ~n:C1½P��a; and if C½P��a then m ~n:C1½P��a. So it is enough to show:

For any closed plain process P, for any plain closing evaluation context C½ � and name a; C½P��a if and only if C½P�+a.

This is direct by Lemma 2. h

In the rest of this paper we will use �obs instead of �o when we say two plain processes are observationally equivalent
because the definition of �obs is convenient for the proofs.

The fact that labeled bisimilarity ð �L Þ implies observational equivalence is proved by showing labeled bisimilarity is
closed under closing evaluation context.

Theorem 5. Given any two processes A;B, if A �L B, then for any closing evaluation context C½ � we have C½A� �L C½B�.
To prove this theorem, we need to show the following relation is a labeled bisimulation:

R ¼def �L [ fðC½A�;C½B�ÞjA �L B and C½ � is a closing evaluation contextg

We proceed by considering the structure of context C½ �. See the detailed proof in Appendix B.

Theorem 6. For any plain processes P;Q, if P �obs Q, then P �L Q.

Proof (Main idea). The proof of this theorem is more technical than Theorem 5. We extend the method of proving the coin-
cidence between barbed congruence and weak bisimulation of p-calculus by Sangiorgi in his Ph.D thesis [33].

The main idea is to build up a set of context pairs, C, powerful enough to make sure observational equivalence on these
context pairs implies labeled bisimulation, i.e., we try to prove the following relation is a labeled bisimulation.

R� ¼deffðP;QÞjC1½P� �obs C2½Q �g

where P;Q are any closed plain processes and ðC1;C2Þ 2 C. The key property of C is that: Suppose P!a P0, then we can find
ðC01;C

0
2Þ 2 C such that

C1½P�)
s

C01½P
0�

And C2½Q � has to simulate the above transition with

C2½Q �)
ŝ

C 02½Q
0�

where

Q)
â

Q 0 and C 01½P
0� �obs C 02½Q

0�

Then ðP0;Q 0Þ 2 R� and R� is a labeled bisimulation.
However, the labeled transition action will introduce active substitutions which turn a plain process to an extended one.

In other words, the transition !a might turn P to some extended process A0 which will never appear in any pair of R�. So
instead of proving

R� ¼deffðP;QÞjC1½P� �obs C2½Q �g

is a labeled bisimulation, we show that the following relation is a labeled bisimulation.
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R ¼deffðD1½P�;D2½Q �ÞjC1½P� �obs C2½Q �g

where Di is an active substitution context of the form m ~n:ð jf eM=~xgÞ and is determined by Ci.
Suppose D1½P�!

a
D01½P

0�, then we can find ðC01;C
0
2Þ 2 R such that:

1. D01 is an active substitution context determined by C01.
2. C1½P�!

s
C01½P

0� and C2½Q � has to simulate the above transition with

C2½Q �)
ŝ

C 02½Q
0� �obs C 01½P

0�:

Then we can find some D02 determined by C02 and

D2½Q �)
â

D02½Q
0�

So ðD01½P
0�;D02½Q

0�Þ 2 R.

The construction of C depends on the active substitutions we need and some fresh names to make the simulation
transition obedient. We give the detailed proof in Appendix C. h

The following corollary gives the coincidence result, and the proof is directly by Theorems 5 and 6.

Corollary 7. For any plain processes P;Q ; P �obs Q if and only if P �L Q.

5. A classic zero-knowledge protocol

In this section, we analyze a classic zero-knowledge protocol [21] with two purposes: the first is to reflect the effective-
ness of the new semantics, and the second is to define some interesting properties in the applied pi calculus for zero-
knowledge protocols.

Zero-knowledge protocols or proofs are hot topics in cryptography. The notion of zero-knowledge was proposed by
Goldwasser et al. [23], and then turned out to be one of the most beautiful and attractive concepts in computer science.
Informally speaking, a proof is zero-knowledge if the prover can convince the verifier that he/she has some secret but
without revealing it. This incredibility made its applications ranging from signature schemes [12,15] to proving that many
NP-complete problems are hard even to approximate [16].

Many efforts were made to analyze zero-knowledge in formal frameworks. One of the most important work was done by
Backes et al. [6]. They established an equational theory to model the zero-knowledge property as a primitive in cryptogra-
phy. However, in this section, we do not view zero-knowledge as a primitive. Instead, we try to prove a protocol is (inter-
active) zero-knowledge. To our best knowledge, this is the first attempt to define properties for zero-knowledge protocols
in the applied pi calculus.

5.1. The protocol

It is shown by Goldreich et al. [22] that every language in NP has a zero-knowledge proof system with the assumption of
the existence of one-way functions. The protocol considered here is a very classic one given in [21].

There are two participants, prover P and verifier V. The prover P knows the hamiltonian cycle c for graph G, and P tries to
make the verifier V believe that he/she has the secret but without revealing it. The protocol depicts as follows:

� P chooses a random permutation r, generates G’s isomorphic graph G0, and sends G; G0 to V.
� V nondeterministically chooses 0 or 1 and sends the chosen one to P.
� If P gets 0 from V, P sends the permutation r to V; if P gets 1, P applies r to the hamiltonian cycle c, gets c0 and sends it to

V;
� If V sent 0 in step 2, V checks whether the received message is the permutation from G to G0; Otherwise, V checks whether

the received message is the hamiltonian cycle of G0.

Note that in the original version V chooses 0 or 1 with probability 0.5 respectively in Step 2. Here we eliminate the prob-
ability and use nondeterminism instead. However, there is no nondeterministic choice in the syntax of applied pi. So we de-
fine the following ‘‘internal” nondeterministic process:

P þ Q ¼def ma:ð�aja:Pja:QÞ

This process acts either as P or as Q because there is only one output on private channel a. Note that this process is different
from the classical non-deterministic operator of the pi calculus [32] where the semantics of P + Q is given by
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P!a P0

P þ Q!a P0
Q!a Q 0

P þ Q!a Q 0

However, this kind of ‘‘internal” nondeterminism is enough for us to model the protocol.
Let true; false, 0, and 1 be special names. The first step is to set up the signature and equational theory.

fun g=1
fun iso=2
fun hc=2
fun dei=2
equation hcðgðxÞ; xÞ ¼ true

equation hcðisoðgðxÞ; yÞ; isoðx; yÞÞ ¼ true

equation deiðisoðx; yÞ; yÞ ¼ x

In the signature we define four functions: gðcÞ is a graph with its hamiltonian cycle c; isoðG;rÞ denotes the isomorphic graph
of G given the permutation r; And hcðG; cÞ is a hamiltonian cycle checker. hcðG; cÞwill return true if c is a hamiltonian cycle of
G; If we view the hamiltonian cycle c as a graph then isoðc;rÞ actually is the hamiltonian cycle of graph gðcÞ, and this is the
meaning of the second equation. If G0 is an isomorphic graph of G by applying the permutation r, then function deiðG0;rÞ
returns G.

The three equations illustrate the mathematical properties in the protocol. The first equation reveals the fact that for any
cycle x and graph gðxÞ the hamiltonian cycle checker hc will always return true. The second equation shows that the hamil-
tonian cycle checker will return true if we apply the same permutation y to both graph gðxÞ and cycle x. The third one reflects
the function dei=2.

Assume P has the hamiltonian cycle c of the graph gðcÞ, and a1; a2; a3; a4 are channels for communications, then we use
process P and V to model the behaviors of the prover and the verifier.

P ¼def a1hgðcÞi:mr:a2hisoðgðcÞ;rÞi:a3ðxÞ:
ðif x ¼ 0 then a4hri else a4hisoðc;rÞiÞ

V ¼def a1ðxÞ:a2ðyÞ:ða3h0i:a4ðzÞ:if deiðy; zÞ ¼ x then �b

þ a3h1i:a4ðzÞ:if hcðy; zÞ ¼ true then �bÞ

The action �b reflects that V believes P has the secret.
As we know there may be many instances of such proofs running in parallel. In order to make sure there is no interference

between any two instances, the channels ~a ¼ fa1; a2; a3; a4g are restricted in every instance. So the whole system is as
follows:

ZK ¼def mc:!m~a:ðPjVÞ
A zero-knowledge proof must satisfy three properties:

1. Completeness. An honest prover will always convince an honest verifier that he/she has the secret.
2. Soundness. No cheating prover can convince the honest verifier that he/she has the secret.
3. Zero-knowledge. No cheating verifier can learn anything about the secret.

The soundness does not hold in this non-deterministic protocol. Assume there is a cheating prover P� who knows nothing
about the hamiltonian cycle of some graph G. He just sends the permutation r in the last step no matter what he received in
the third step.

P� ¼def a1hGi:mr:a2hisoðG;rÞi:a3ðxÞ:a4hri
P� can convince the verifier V by the following sequence:

P�jV ! mr:a2hisoðG;rÞi:a3ðxÞ:a4hri
ja2ðyÞ:ða3h0i:a4ðzÞ:if deiðy; zÞ ¼ G then �b

þa3h1i:a4ðzÞ:if hcðisoðG;rÞ; zÞ ¼ true then �bÞ
! a3ðxÞ:a4hri

jða3h0i:a4ðzÞ:if deiðisoðG;rÞ; zÞ ¼ G then �b

þa3h1i:a4ðzÞ:if hcðisoðG;rÞ; zÞ ¼ true then �bÞ
! a4hrija4ðzÞ:if deiðisoðG;rÞ; zÞ ¼ G then �b

! if deiðisoðG;rÞ;rÞ ¼ G then �b

However, in the probabilistic version, the soundness property holds with probability 1=2n for n rounds.
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In the applied pi calculus, frames denote the revealed information to the environment. So the zero-knowledge property
holds if the frames of all the derivatives of process mc:!P never reveal the secret c. In this paper, we will not focus on the proof
of zero-knowledge properties because it can not demonstrate the effectiveness of the new semantics. We concentrate on the
completeness of the protocol.

5.2. Completeness

Completeness means that the honest verifier will always be convinced by honest prover. So it is not difficult to write the
specification for completeness:

Vspec ¼def �b; ZKspec ¼def
!Vspec

In the specification, the verifier Vspec always outputs on channel b. So if ZK �obs ZKspec , then we are sure that V is convinced.
The following theorem tells this protocol is complete and we will illustrate the effectiveness of the new LTS in the proof.

Theorem 8. ZK �obs ZKspec.

Proof. We have �L implies �obs by Theorem 5. So we prove ZK �L ZKspec .
We first introduce some abbreviation:

P1 ¼def mr:a2hisoðgðcÞ;rÞi:a3ðxÞ:
ðif x ¼ 0 then a4hri else a4hisoðc;rÞiÞ

V1 ¼def a2ðyÞ:ða3h0i:a4ðzÞ:if deiðy; zÞ ¼ gðcÞ then �b

þ a3h1i:a4ðzÞ:if hcðy; zÞ ¼ true then �bÞ

P2ðrÞ ¼def a3ðxÞ:
ðif x ¼ 0 then a4hri else a4hisoðc;rÞiÞ

V2ðrÞ ¼def a3h0i:a4ðzÞ:if deiðisoðgðcÞ;rÞ; zÞ ¼ gðcÞ then �b

þ a3h1i:a4ðzÞ:if hcðisoðgðcÞ;rÞ; zÞ ¼ true then �b

P3ðrÞ ¼def
if 0 ¼ 0 then a4hri else a4hisoðc;rÞi

P03ðrÞ ¼
def

if 1 ¼ 0 then a4hrijif 1 ¼ 1 then a4hisoðc;rÞi

V3ðrÞ ¼def a4ðzÞ:if deiðisoðgðcÞ;rÞ; zÞ ¼ gðcÞ then �b

V 03ðrÞ ¼
def a4ðzÞ:if hcðisoðgðcÞ;rÞ; zÞ ¼ true then �b

V4ðrÞ ¼def
if deiðisoðgðcÞ;rÞ;rÞ ¼ gðcÞ then �b

V 04ðrÞ ¼
def

if hcðisoðgðcÞ;rÞ; isoðc;rÞÞ ¼ true then �b

Let ZKði; j; k; k0; r; r0Þ be the following process

mc:ð!m~a:ðPjVÞj m~a:ðP1jV1Þj � � � jm~a:ðP1jV1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
i times

j m~a:mrðP2ðrÞjV2ðrÞÞj � � � jm~a:mrðP2ðrÞjV2ðrÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
j times

j m~a:mrðP3ðrÞjV3ðrÞÞj � � � jm~a:mrðP3ðrÞjV3ðrÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k times

j m~a:mrðP03ðrÞjV
0
3ðrÞÞj � � � jm~a:mrðP03ðrÞjV

0
3ðrÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k0 times

j m~a:mrðV4ðrÞÞj � � � jm~a:mrðV4ðrÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
r times

j m~a:mrðV 04ðrÞÞj � � � jm~a:mrðV 04ðrÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
r0 times

Þ
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and let R be

fðZKði; j; k; k0; r; r0Þ; ZKspecÞj8i; j; k; k0; r; r0 P 0g

we prove R[R�1 be a labeled bisimulation.
From the LTS defined in Fig. 2, the process ZKði; j; k; k0; r; r0Þ can only have the following transitions:

ZKði; j; k; k0; r; r0Þ !s ZKðiþ 1; j; k; k0; r; r0Þ
ZKði; j; k; k0; r; r0Þ !s ZKði� 1; jþ 1; k; k0; r; r0Þ if i > 0

ZKði; j; k; k0; r; r0Þ !s ZKði; j� 1; kþ 1; k0; r; r0Þ if j > 0

ZKði; j; k; k0; r; r0Þ !s ZKði; j� 1; k; k0 þ 1; r; r0Þ if j > 0

ZKði; j; k; k0; r; r0Þ !s ZKði; j; k� 1; k0; r þ 1; r0Þ if k > 0

ZKði; j; k; k0; r; r0Þ !s ZKði; j; k; k0 � 1; r; r0 þ 1Þ if k0 > 0

ZKði; j; k; k0; r; r0Þ !
�b

ZKði; j; k; k0; r � 1; r0Þ if r > 0

ZKði; j; k; k0; r; r0Þ !
�b

ZKði; j; k; k0; r; r0 � 1Þ if r0 > 0

At the same time, the only possible transition of process ZKspec is ZKspec!
�b

ZKspec . It is easy to check that R[R�1 is a labeled
bisimulation. So ZK �L ZKspec . h

Now we consider the same proof by using the old LTS. We continue using the abbreviations and definitions in above
proof. Recall the Comm rule in Appendix A:

Comm ahxi:PjaðxÞ:Q ! PjQ

So the interaction in old LTS happens only when the output message is a variable. The transitions of ZK must have the fol-
lowing form:

ZK ¼def mc:!m~a:ðPjVÞ
� mc:ðm~a:ðPjVÞj!m~a:ðPjVÞÞ Repl

� mc:ðm~a:ða1hgðcÞi:P1j0jVÞj � � �Þ Par-0

� mc:ðm~a:ða1hgðcÞi:P1jmx:fgðcÞ=xgjVÞj � � �Þ Alias

� mc:ðm~a:mx:ða1hgðcÞi:P1jfgðcÞ=xgjVÞj � � �Þ New-Par

� mc:ðm~a:mx:ða1hxi:P1fgðcÞ=xgjfgðcÞ=xgjVÞj � � �Þ
� mc:ðm~a:mx:ða1hxi:P1jfgðcÞ=xgjVÞj � � �Þ Subst

! ZK1 ¼def mc:ðm~a:mx:ðP1jfgðcÞ=xgjV1Þj � � �Þ Comm

� ZK2 ¼def mc:ðm~a:ðP1jmx:fgðcÞ=xgjV1Þj � � �Þ New-Par

� ZK3 ¼def mc:ðm~a:ðP1j0jV1Þj � � �Þ Alias

� ZK4 ¼def mc:ðm~a:ðP1jV1Þj � � �Þ Par-0

According to the rule

Struct
A � B B!a B0 B0 � A0

A!a A0

we have four possible transitions ZK ! ZK1; ZK ! ZK2; ZK ! ZK3 and ZK ! ZK4 for a single interaction. In the new LTS, for
the same interaction we only need to add ðZKð1;0;0;0;0;0Þ; ZKspecÞ into the relation. However, in this case, we need to add
four pairs into the relation. It gets more and more complex when more internal reductions are available. So in order to prove
ZK �l ZKspec we need to construct a far more complicated relation. And this is why the old semantics is ineffective.

6. Conclusion

In this paper, we establish a new pure labeled transition system and a new definition of bisimulation for the applied pi
calculus. We study the algebraic theory of this calculus with new semantics, and prove the coincidence result. As we see in
the example the new semantics given in this paper can decrease the size of the bisimulation relation when proving two pro-
cesses are bisimilar.

As concurrency, interaction, and complexity become main characteristics of modern protocols [34], formal automatic
analysis frameworks based on process calculi deserve more studies because process calculi were born to model concurrent,
interactive systems. However, checking bisimulation is undecidable not only because of the replication in syntax but also
due to the arbitrary equational theories. So we would like to investigate the decidability of bisimulation checking on the
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sub-calculus of applied pi as one possible future work. In the example we modeled the non-deterministic version of a classic
probabilistic zero-knowledge proof. Another possible future work is to analyze the probabilistic version in probabilistic ap-
plied pi calculus proposed by Goubault-Larrecq et al. [24].
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Appendix A. The original operational semantics of the applied pi calculus

Structural Rule

Par-0 A � Aj0

Par-A AjðBjCÞ � ðAjBÞjC

Par-C AjB � BjA

Repl !P � Pj!P

New-0 mn:0 � 0

New-C mu:mv :A � mv:mu:A

New-Par Ajmu:B � mu:ðAjBÞ u R f vðAÞ [ fnðAÞ

Alias mx:fM=xg � 0

Subst fM=xgjA � fM=xgjAfM=xg

Rewrite fM=xg � fN=xg R ‘ M ¼ N

Internal Reduction Rule

Comm �ahxi:PjaðxÞ:Q ! PjQ
Then if M ¼ M then P else Q ! P

Else if M ¼ N then P else Q ! Q for any ground terms

M and N R 0M ¼ N

Labeled Rule

In aðxÞ:P !aðMÞ P fM=xg
Out� Atom �ahui:P!�ahui P

Open� Atom
A !

�ahui
A0 u–a

m u:A !m u:�ahui
A0

Scope
A!a A0 uRnðaÞ[vðaÞ

m u:A!a m u:A0

Par
A!a A0 bvðaÞ\f vðBÞ¼bnðaÞ\fnðBÞ¼;

AjB!a A0 jB

Struct
A�B B!a B0 B0�A0

A!a A0

Appendix B. The Proof of Theorem 5

In order to prove Theorem 5, we need some lemmas. The first one shows static equivalence is closed under evaluation
context.

Lemma 9. For any two processes A;B, if A �s B, then for any evaluation context C½ � we have C½A� �s C½B�.
This lemma follows directly from Lemma 1 in [3]. The second one captures some properties of corresponding equivalence.

Lemma 10. The corresponding equivalence has the following properties:

1. If M 	f/A ;/Bg N, and mn:/A ‘ M, then mn:/B ‘ N and M 	fm n:/A ;m n:/Bg N;

X. Cai / Information Sciences 180 (2010) 4436–4458 4449



Author's personal copy

2. If M 	f/A ;/Bg N, then M 	f/A j/C ;/B j/Cg N for any frame /C;

3. If M 	f/A ;/Bg N where /A ¼
def m ~m:f eM=~xg and /B ¼

def m ~n:feN=~xg, then m ~m:ðfM=xgjf eM=~xgÞ �s m ~n:ðfN=xgjfeN=~xgÞ for some fresh x.

Proof. We denote the active substitutions of /A;/B;/C as rA;rB;rC .

1. If M 	f/A ;/Bg N and mn:/A ‘ M, then there exists some term f such that M ¼ frA and n R fnðfÞ. By the definition of 	, we
have N ¼ frB. By Lemma 9 one gets mn:/A �s mn:/B. So mn:/B ‘ N and M	fm n:/A ;m n:/BgN.

2. This case is very easy.
3. First, there exists a term f such that M ¼ frA. Secondly, assume two sets:

T1 ¼
def fðM;NÞjðM ¼ NÞ/A and ðfnðMÞ [ fnðNÞÞ \ ~m ¼ ;g

T2 ¼def fðM;NÞjðM ¼ NÞ/0A and ðfnðMÞ [ fnðNÞÞ \ ~m ¼ ;g

where /0A is the frame of m ~m:ðfM=xgjf eM=~xgÞ.
Obliviously, T1 # T2, and T2 # T1 by replacing every x in terms of T2 with f. Similar result holds for /B. So we get

m ~m:ðfM=xgjf eM=~xgÞ �s m ~n:ðfN=xgjfeN=~xgÞ: �

The following lemma says if two frames are statically equivalent then they will also be statically equivalent after both
removing an active substitution with same variable.

Lemma 11. If m ~m:ðfM=xgjAÞ�sm ~n:ðfN=xg jBÞ, then m ~m:A�sm ~n:B.

Proof. It is much easier to prove the converse-negative version of this lemma:

m ~m:A 6� sm ~n:B implies m ~m:ðfM=xgjAÞ 6� sm ~n:ðfN=xg jBÞ:

If we have a witness to show that m ~m:A 6� s m ~n:B, then the same witness can show m ~m:ðfM=xgjAÞ �s m ~n:ðfN=xg jBÞ. h

Lemma 12. The symmetric relation

R ¼def ðm ~m:ðAjD1Þ; m ~n:ðBjD2ÞÞ

m ~m:ðf eM=~xgjAÞ �L m ~n:ðfeN=~xgjBÞ;
D1 ¼ Df eM=~xg and D2 ¼ DfeN=~xg

for some D; eM ; eN ; ~x
and fnðDÞ \ ð ~m [ ~nÞ ¼ ;

����������

8>>>><
>>>>:

9>>>>=
>>>>;

is a labeled bisimulation.

Proof. Given some D; eM; eN; ~x; ~m, and ~n such that fnðDÞ \ ð ~m [ ~nÞ ¼ ;, and

m ~m:ðf eM=~xgjAÞ �L m ~n:ðfeN=~xgjBÞ ð2Þ

where D1 ¼ Df eM=~xg and D2 ¼ DfeN=~xg. We use /1 to denote the frame of m ~m:ðf eM=~xgjAÞ and /2 for m ~n:ðfeN=~xgjBÞ. /01;/
0
2 are

the frames of m ~m:ðAjD1Þ; m ~n:ðBjD2Þ respectively.

1. We denote the frames of A;B;D with /A;/B;/D. By Lemma 11, one can get m ~m:A �s m ~n:B. So

m ~m:/A �s m ~n:/B

By Lemma 9

ðm ~m:/AÞj/D �s ðm ~n:/BÞj/D

Since fnðDÞ \ ð ~m [ ~nÞ ¼ ; and /D1
¼ /D2

¼ /D, we get

/01 ¼ m ~m:ð/Aj/DÞ �s ðm ~m:/AÞj/D �s ðm ~n:/BÞj/D �s m ~n:ð/Bj/DÞ ¼ /02

So we have m ~m:ðAjD1Þ �s m ~n:ðBjD2Þ.
2. If

m ~m:ðAjD1Þ!
a m ~m:ðA0jD1Þ

We consider the cases of a:
(a) if a ¼ s, then by rules RES in Fig. 2 we must have that
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AjD1!
s

A0jD1

hence, by rule PAR-L,

A!s A0

By rules PAR-L and RES in Fig. 2, we have

m ~m:ðf eM=~xgjAÞ!s m ~m:ðf eM=~xgjA0Þ:

Then there exists some B0 s.t.

m ~n:ðfeN=~xgjBÞ )ŝ m ~n:ðfeN=~xgjB0Þ
�L m ~m:ðf eM=~xgjA0Þ

So m ~n:ðBjD2Þ )
ŝ

m ~n:ðB0 jD2Þ and ðm ~m:ðA0jD1Þ; m ~n:ðB0 jD2ÞÞ 2 R.
(b) if a ¼ aM0, then by rules RES in Fig. 2 we must have that

AjD1 !
aM0

A0jD1 and /01 ‘ a; /01 ‘ M0

hence, by rule PAR-L,

A!aM0
A0

Since fnðDÞ \ ð ~m [ ~nÞ ¼ ;, therefore, /1 ‘ a and /1 ‘ M0. By rules PAR-L and RES in Fig. 2, we have

m ~m:ðf eM=~xgjAÞ !aM0 m ~m:ðf eM=~xgjA0Þ:

Then there exist some B0;N0; b, s.t. a 	f/1 ;/2g b and

m ~n:ðfeN=~xgjBÞ )b N0

m ~n:ðfeN=~xgjB0Þ
�L m ~m:ðf eM=~xgjA0Þ

By Proposition 3, there exists a term f, such that M ¼ fr/01
. Because /1 ‘ M0, so f vðfÞ \ ðdomð/DÞ [ ~xÞ ¼ ;. From

m ~m:/A �s m ~n:/B one gets

M0 	fm ~m:/A ;m ~n:/Bg N0:

By Lemma 10(1), we have

M0 	fm ~m:/A j/D ;m ~n:/B j/Dg N0:

Similarly, we can prove

a 	fm ~m:/A j/D ;m ~n:/B j/Dg b

So there exist some B0;N0; b s.t. M0 	f/01 ;/02g N0, a 	f/01 ;/02g b, and

m ~n:ðBjD2Þ )
b N0

m ~n:ðB0jD2Þ; ðm ~m:ðA0jD1Þ; m ~n:ðB0jD2ÞÞ 2 R:

(c) if a ¼ �ax, this case is similar to the previous one.
3. If m ~m:ðAjD1Þ!

a m ~m:ðAjD01Þ then by rules RES in Fig. 2 we must have that

AjD1!
a

AjD01

hence, by rule PAR-L,

D1!
a

D01

(a) a ¼ �ax for some a and x. W.l.o.g, assume D ¼def m~r:ð�fhM0i:C1jC2Þ and ff eM=~xg ¼ a, so there exists

D0 ¼def m~r:ðC1jC2jfM0=xgÞ; D01 ¼ D0f eM=~xg; D02 ¼ D0feN=~xg
such that

m ~n:ðBjD2Þ!
�b x m ~n:ðBjD02Þ and b ¼ ffeN=~xg:
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So

a 	f/01 ;/02g b; and ðm ~m:ðAjD01Þ; m ~n:ðBjD02ÞÞ 2 R:

(b) a ¼ aO1 for some a;O1 and /01 ‘ O1. W.l.o.g, assume

D ¼def m~r:ðfðzÞ:C1jC2Þ

where ff eM=~xg ¼ a and z R ~x, let

D0 ¼def m~r:ðC1jC2Þ; D01 ¼ D0f eM=~xgfO1=zg; D02 ¼ D0feN=~xgfO2=zg

where O1 	f/01 ;/02g O2.
By Lemma 10, we get

m ~m:ðAjf eM=~xgjfO1=zgÞ �L m ~n:ðBjf eM=~xgjfO2=zgÞ

So there exists b s.t. m ~n:ðBjD2Þ !
b O2 m ~n:ðBjD02Þ, and b ¼ ffeN=~xg. Therefore,

a 	f/01 ;/02g b; ðm ~m:ðAjD01Þ; m ~n:ðBjD02ÞÞ 2 R:

(c) a ¼ s. Let

D1 ¼def Df eM=~xg; D2 ¼def DfeN=~xg:
Since D1!

s
D01; D can perform s reduction too. So D!s D0 and D01 ¼ D0feN=~xg; D02 ¼ D0feN=~xg where D2!

s
D02. We get

m ~n:ðBjD2Þ!
s m ~n:ðBjD02Þ

and

ðm ~m:ðAjD01Þ; m ~n:ðBjD02ÞÞ 2 R:

4. If m ~m:ðAjD1Þ!
s m ~m:mfm0 :ðA0jD01Þ, where A!�a x mfm0 :ðA0jfM=xgÞ and D1!

aM
D01 for some a; x;M.

W.l.o.g., assume

D ¼def m~r:ðfðzÞ:C1jC2Þ;

where ff eM=~xg ¼ a and z R ~x , so there exists D0 such that

D0 ¼def m~r:ðC1jC2Þ; and D01 ¼ D0f eM=~xgfM=zg; D02 ¼ D0feN=~xgfN=zg:

Because

m ~m:ðAjf eM=~xgÞ!�a x m ~m:mfm0 :ðAjfM=xgjf eM=~xgÞ

and

m ~m:ðAjf eM=~xgÞ �L m ~n:ðBjfeN=~xgÞ
There exists some B0; b s.t. a	f/1 ;/2gb and

m ~n:ðBjfeN=~xgÞ )�b x
m ~n:m en0 :ðB0jfN=xgjfeN=~xgÞ

�L m ~m:mfm0 :ðA0jfM=xgjf eM=~xgÞ

Since a 	f/1 ;/2g b and a ¼ ff eM=~xg, therefore, b ¼ ffeN=~xg. So

m ~n:ðBjD2Þ)
s

m ~n:ðB0jD02Þ

and

ðm ~m:ðA0jD01Þ; m ~n:ðB0jD02ÞÞ 2 R:

5. If m ~m:ðAjD1Þ!
s m ~m:m~r:ðA0jD01Þ, where A!a O1 A0 and D1!

�a z m~r:ðD01jfO1=xgÞ for some a; z;O1.
W.l.o.g, let D ¼def m~r:ð�fhOi:C1jC2Þ; ff eM=~xg ¼ a and

D0 ¼def m~r:ðC1jC2Þ; D01 ¼ D0f eM=~xg; D02 ¼ D0feN=~xg:
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There exist some O2; b such that

m ~n:ðf eM=~xgjAÞ !a O1 m ~n:ðfeN=~xgjA0Þ
m ~n:ðfeN=~xgjBÞ )b O2 m ~n:ðfeN=~xgjB0Þ

�L m ~m:ðf eM=~xgjA0Þ

where O1 	f/1 ;/2g O2 and a 	f/1 ;/2g b.
Since a 	f/1 ;/2g b and a ¼ ff eM=~xg, therefore, b ¼ ffeN=~xg.
So

m ~n:ðBjD2Þ)
s

m ~n:ðB0jD02Þ

and

ðm ~m:ðA0jD01Þ; m ~n:ðB0jD02ÞÞ 2 R:

We can conclude that R is a labeled bisimulation. h

Now we are ready to prove the theorem.
Theorem 5. For any two closed processes A;B, if A �L B, then for any evaluation context C½ � we have C½A� �L C½B�.

Proof. We need to show the following relation is labeled bisimulation:

R ¼def �L [ fðC½A�;C½B�ÞjA �L B and C½ � is an evaluation contextg

To prove a relation R is labeled bisimulation, one needs to show that for any ARB we have

1. A�sB.
2. if A!s A0, then 9B0, s.t. B)

ŝ
B0 and A0RB0.

3. if A!�a x
A0, then 9b;B0, s.t. B)

�b x
B0 with a 	f/A ;/Bg b and A0RB0.

4. if A !aM1 A0,then 9b;B0 and /B ‘ M2, s.t. B )
b M2

B0, M1 	f/A ;/Bg M2; a 	f/A ;/Bg b and A0RB0,

It is clear that we only need to consider those pairs ðC½A�;C½B�Þ for some processes A;B and some evaluation context C½ �
such that A �L B. We consider the different cases of C½ �.

1. C½ � ¼ This case is trivial.
2. C½ � ¼ mn: for some name n.

(a) By Lemma 9, we get mn:A �s mn:B.
(b) If mn:A!s A00, then by inspection of the rules of Fig. 2, we have that A00 ¼ mn:A0 and A!s A0. So we have

mn:A!s mn:A0:

By the fact A �L B, there exists some B0 such that B)
ŝ

B0 and A0 �L B0. So

mn:B)
ŝ

mn:B0 and ðmn:A0ÞRðmn:B0Þ:

(c) If mn:A!�a x
A00 for some a and x, then by rule RES-OUT in Fig. 2, we have A00 ¼ mn:A0, /m n:A ‘ a and A!�a x

A0. So we have

mn:A!�a x mn:A0:

By the fact A �L B, there exists some b and B0 such that

B)
�b x

B0; a 	f/A ;/Bg b and A0 �L B0:

Since /m n:A ¼ mn:/A ‘ a, followed by (1) of Lemma 10 we have /m n:B ¼ mn:/B ‘ b and a 	f/m n:A ;/m n:Bg b. Therefore,

mn:B)
�b x

mn:B0; a 	f/m n:A ;/m n:Bg b and ðmn:A0ÞRðmn:B0Þ:

(d) The last case is when mn:A!aM
A00, by rule RES-IN, we get /m n:A ‘ a and /m n:A ‘ M, and A00 ¼ mn:A0 and A!aM

A0. We have

mn:A!aM mn:A0:
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By the fact A �L B, there exists some b;N and B0 such that

B)b N
B0; a 	f/A ;/Bg b; M 	f/A ;/Bg N; and A0 �L B0:

Since /m n:A ¼ mn:/A, followed by (1) of Lemma 10 we have

/m n:B ¼ mn:/B ‘ b; /m n:B ¼ mn:/B ‘ N

and

a 	f/m n:A ;/m n:Bg b; M 	f/m n:A ;/m n:Bg N:

Therefore,

mn:B)
b N

mn:B0; and ðmn:A0ÞRðmn:B0Þ:

3. C½ � ¼ jD for some D;
(a) By Lemma 9, we get AjD �s BjD.
(b) If AjD can perform an action a, then by rules in Fig. 2 three cases might happen:

(i) This action is caused by the same action performed by D;
(ii) This action is caused by the same action performed by A;
(iii) a ¼ s and is caused by the interaction between A and D;

We consider these cases one by one.
i. Assume a is caused by D which means D!a D0 hence AjD!a AjD0. Then directly we have

BjD!a BjD0 and ðAjD0ÞRðBjD0Þ:

ii. Assume a is caused by A, i.e. A!a A0 hence AjD!a A0jD. This case is similar to the case where C½ � ¼ mn: . The proof is the
same except that instead of using (1) of Lemma 10 the proof will refer to (2) of Lemma 10.

iii. When a ¼ s and is caused by the interaction between A and D,
� If AjD!s m ~n:ðA0jD0Þ where

D!�a x m ~n:ðfM=xgjD0Þ; A!aM
A;

and ~n # nðMÞ; fnðMÞ \ ðbnðAÞ [ bnðBÞÞ ¼ ;. Because A �L B, then M 	f/A ;/Bg M and there exists some B0; B)
aM

B0 and A0 �L B0. So
ðC0 ½A0�;C0½B0 �Þ 2 R where C0½ � ¼def m ~n:ðD0j Þ.

� If AjD!s m ~n:ðA0jD1Þ where

A!�a x m ~n:ðfM=xgjA0Þ; D!aM
D1:

and ~n # nðMÞ; fnðMÞ \ bnðD1Þ ¼ ;. Because A �L B, then there exists some B0, such that

B)
�a x

m ~n:ðfN=xgjB0Þ; m ~m:ðfM=xgjA0Þ �L m ~n:ðfN=xgjB0Þ:

Because D!a N
D2, so BjD)

ŝ
m ~n:ðB0 jD2Þ.

If D!a x
D0 then

D1 ¼ D0fM=xg; D2 ¼ D0fN=xg;
m ~m:ðfM=xgjA0Þ �L m ~n:ðfN=xgjB0Þ:

By Lemma 12, one can get

ðm ~m:ðD1jA0Þ; m ~n:ðD2jB0ÞÞ 2 R

We can conclude thatR is a labeled bisimulation, and for any two processes A;B, if A �L B, then for any evaluation context C½ �
we have C½A� �L C½B�. We are done. h

Appendix C. The proof of Theorem 6

The proof of this theorem is more technical than that of Theorem 5. We extend the method of proving the coincidence
between barbed congruence and weak bisimilarity of p-calculus by Sangiorgi in his Ph.D thesis [33].

The following lemma is a general result valid for all the equivalences we are aware of. It is originated from X-property
proposed by Nicola et al. [13] and then studied by Yuxi Fu as Bisimulation Lemma in [18,19].
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Lemma 13 (Bisimulation lemma). If P)
ŝ

P0 �obs Q and Q)
ŝ

Q 0 �obs P then P �obs Q.

Lemma 14. For any closed plain processes P;Q, if aðxÞjP �obs aðxÞjQ and a R ðfnðPÞ [ fnQÞ then PjR �obs Q jR where R is any closed
plain process.

Proof. Given context C½ � ¼def j�ahmi:ð�djdjRÞ for any plain closed process R and fresh name d. We have C½aðxÞjP� �obs C½aðxÞjQ �
from aðxÞjP �obs aðxÞjQ , so the following transitions

C½aðxÞjP� !s Pj�djdjR

!s PjR

must be simulated by

C½aðxÞjQ � )
s

Q 0j�djdjR

)
ŝ

Q 00 �obs PjR

which can be rearranged

C½aðxÞjQ � !s Q j�djdjR

!s Q jR

)
ŝ

Q 00 �obs PjR

So Q jR)
ŝ

Q 00 �obs PjR. Similarly, one has PjR)
ŝ

P00 �obs Q jR. Thus PjR �obs Q jR by Lemma 13. h

Theorem 6. For any closed plain processes P;Q, if P �obs Q, then P �L Q.

Proof. Assume R is a symmetric relation and defined as follows.

ðm ~m:ðPjf eM=~xgÞ;
m ~n:ðQ jfeN=~xgÞÞ

eM ¼ fM1;M2; . . . ;Mng; eN ¼ fN1;N2; . . . ;Nng;
~m # fnð eMÞ; ~n # fnðeNÞ;
m ~m:f eM=~xg �s m ~n:feN=~xg; and
cðyÞjm ~m:ðPj! �a1hM1ij! �a2hM2ij � � � j! �anhMniÞ
�obs

cðyÞjm ~n:ðQ j! �a1hN1ij! �a2hN2ij � � � j! �anhNniÞ
for some fresh names c; a1; a2; . . . ; an:

������������������

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

Now we prove that R is a labeled bisimulation.
To avoid long expressions, we introduce the following abbreviations:

O1 ¼def
! �a1hM1ij! �a2hM2ij � � � j! �anhMni

O2 ¼def
! �a1hN1ij! �a2hN2ij � � � j�anhNni

/1 ¼
def m ~m:f eM=~xg

/2 ¼
def m ~n:feN=~xg

For any m ~m:ðPjf eM=~xgÞRm ~n:ðQ jfeN=~xgÞ, we have

cðyÞjm ~m:ðP jO1Þ �obs cðyÞjm ~n:ðQ jO2Þ;

then by Lemma 14,

m ~m:ðPjO1ÞjR �obs m ~n:ðQ jO2ÞjR

for any closed plain process R. We will use this result without explicitly referring to it.
Now we are ready to prove R is a labeled bisimulation. For each pair

ðm ~m:ðPjf eM=~xgÞ; m ~n:ðQ jfeN=~xgÞÞ 2 R
We consider cases of the following transition:

m ~m:ðPjf eM=~xgÞ!a
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1. if a ¼ s, then the above transition must be caused by P!s P0, therefore,

cðyÞjm ~m:ðPjO1Þ!
s

cðyÞjm ~m:ðP0jO1Þ

where c is fresh. This reduction must be simulated by

cðyÞjm ~n:ðQ jO2Þ )
ŝ

cðyÞjm ~n:ðQ 0jO2Þ
�obs cðyÞjm ~m:ðP0jO1Þ

So if m ~m:ðPjf eM=~xgÞ!s m ~mðP0jf eM=~xgÞ, there exists some Q 0,

m ~n:ðQ jfeN=~xgÞ)ŝ m ~n:ðQ 0jfeN=~xgÞ
and

ðm ~m:ðP0jf eM=~xgÞ; m ~n:ðQ 0jfeN=~xgÞÞ 2 R:
2. if a ¼ �ax for some a; x, then

m ~m:ðPjf eM=~xgÞ!�a x m ~m:mfm0 :ðP0jfM=xgjf eM=~xgÞ

where fm0 # fnðMÞ. Assume C½ � be

jaðxÞ:ð�bjbj!�anþ1hxijcðyÞÞ

where b; c; anþ1 are fresh. We have

C½m ~m:ðPjO1Þ� !
s m ~m:mfm0 :ðP0jO1jð�bjbj!�anþ1hMijcðyÞÞÞ

!s m ~m:mfm0 :ðP0jO1j!�anþ1hMijcðyÞÞ

So there must exist some term N and C½m ~n:ðQ jO2Þ� has to simulate above transition with

C½m ~n:ðQ jO2Þ� )
ŝ

mfn00 :ðQ 00jO2jð�bjbj!�anþ1hNijcðyÞÞÞ

)
ŝ

Q 000 �obs m ~m:mfm0 :ðP0jO2j!�anþ1hMijcðyÞÞ

This reduction can be rearranged as

C½Q � !s m ~n:m en0 :ðQ 0jO2jð�bjbj!�anþ1hNijcðyÞÞÞ

!s m ~n:m en0 :ðQ 0jO2j!�anþ1hNijcðyÞÞ

)
ŝ

Q 000 �obs m ~m:mfm0 :ðP0jO1j!�anþ1hMijcðyÞÞ

where

m ~n:ðQ jfeN=~xgÞ!�a x m ~n:m en0 :ðQ 0jfN=xgjfeN=~xgÞ:
One can get that

m ~n:m en0 :ðQ 0jO2j!�anþ1hNijcðyÞÞ)
ŝ

Q 000 �obs m ~m:mfm0 :ðP0jO1j!�anþ1hMijcðyÞÞ

Similarly,

m ~m:mfm0 :ðP0jO1j!�anþ1hMijcðyÞÞ)
ŝ

P000 �obs m ~n:m en0 :ðQ 0jO2j!�anþ1hNijcðyÞÞ

By Lemma 13, we have

m ~m:mfm0 :ðP0jO1j!�anþ1hMijcðyÞÞ �obs m ~n:m en0 :ðQ 0jO2j!�anþ1hNijcðyÞÞ:

Because c R ~m, one has

m ~m:mfm0 :ðP0jO1j!�anþ1hMiÞjcðyÞ �obs m ~n:m en0 :ðQ 0jO2j!�anþ1hNiÞjcðyÞ

We denote m ~m:mfm0 :ðfM=xgjf eM=~xgÞ with /, and m ~n:m en0 :ðfN=xgjfeN=~xgÞ with w. Now we prove / �s w. Assume / 6� s w, then
there muse be at least two terms T1; T2 such that

ðnðT1Þ [ nðT2ÞÞ \ ðbnð/Þ [ bnðwÞÞ ¼ ;; ðT1 ¼ T2Þ/; ðT1–T2Þw:

Let C0½ � be a context as follows

ja1ðx1Þ:a2ðx2Þ: � � � :anðxnÞ:anþ1ðxÞ:if ðT1 ¼ T2Þ then b
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So

C½m ~m:mfm0 :ðPjO1j!�anþ1hMiÞ�)
ŝ

m ~m:mfm0 :ðP0jO1j!�anþ1hMijbÞ#b

However,

C½m ~n:ðQ jO1j!�anþ1hNiÞ�)
ŝ

Q 00#b

which contradicts to

m ~m:mfm0 :ðP0jO1j!�anþ1hMiÞjcðyÞ �obs m ~n:m en0 :ðQ 0jO2j!�anþ1hNiÞjcðyÞ

So there exists Q 0;N that

m ~n:ðQ jfeN=~xgÞ!�a x m ~n:m en0 :ðQ 0jfN=xgjfeN=~xgÞ
and

ðm ~m:ðP0jf eM=~xgjfM=xgÞ; m ~n:ðQ 0jfeN=~xg jfN=xgÞÞ 2 R

3. if a ¼ aM for some a;M, then /1 ‘ M, and there exists some P0 such that

m ~m:ðPjf eM=~xgÞ!aM m ~m:ðP0jf eM=~xgÞ

Since /1 ‘ M, by Proposition 3 there must exist some term f such that nðfÞ \ ð ~m [ ~nÞ ¼ ; and ff eM=~xg ¼ M. Assume C½ � be

ja1ðx1Þ:a2ðx2Þ: � � � :anðxnÞ:�ahfi:ð�bjbjcðyÞÞ

where b; c are fresh.

C½m ~m:ðPjO1Þ� )
s

m ~m:ðP0jO1j�ahMi:ð�bjbjcðyÞÞÞ

!s m ~m:ðP0jO1jð�bjbjcðyÞÞÞ

!s m ~m:ðP0jO1jcðyÞÞ

So

C½m ~n:ðQ jO2Þ� )
ŝ

m ~n:ðQ 00jO2j�ahNi:ð�bjbjcðyÞÞÞ

)
ŝ

Q 000 �obs m ~m:ðP0jO2jcðyÞÞ

where N ¼ ffeN=~xg. We have

N 	f/1 ;/2g M ¼ ff eM=~xg

This reduction can be rearranged

C½Q � )
ŝ

m ~n:ðQ jO2j�ahNi:ð�bjbjcðyÞÞÞ

)ŝ m ~n:ðQ 0jO2jð�bjbjcðyÞÞÞ

)
ŝ

Q 000 �obs m ~m:ðP0jO1jcðyÞÞ

where m ~n:ðQ jO2Þ!
a N m ~n:ðQ 0jO2Þ. One can get

m ~n:ðQ 0jO2jcðyÞÞ)
ŝ

Q 000 �obs m ~m:ðP0jO1jcðyÞÞ

Similarly,

m ~m:ðP0jO1jcðyÞÞ)
ŝ

P000 �obs m ~n:ðQ 0jO2jcðyÞÞ

By Lemma 13, we have m ~m:ðP0jO1jcðyÞÞ �obs m ~n:ðQ 0jO2jcðyÞÞ. Because c R ~m, hence m ~m:ðP0jO1ÞjcðyÞ �obs m ~n:ðQ 0jO2ÞjcðyÞ.
There exists Q 0;N that

m ~n:ðQ jfeN=~xgÞ!a N m ~n:ðQ 0jfeN=~xgÞ
M	f/1 ;/2gN, and ðm ~m:ðP0jf eM=~xg; m ~n:ðQ 0jfeN=~xgÞ 2 R.

We can conclude that R is a labeled bisimulation. Let ~m ¼ ;; ~n ¼ ; and eM ¼ ;; eN ¼ ;, if PjcðyÞ �obs Q jcðyÞ which can be
deduced from P �obs Q , then P �L Q . h
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