
Types and Programming Languages

Lecture 1. Untyped arithmetic expressions

Xiaojuan Cai

cxj@sjtu.edu.cn

BASICS Lab, Shanghai Jiao Tong University

Spring, 2016

cxj@sjtu.edu.cn

Course overview

Benjamin C. Pierce

We will discuss in this course:
1. theories of types and PLs, including

a. Operational semantics
b. Call-by-value λ-calculus
c. simple type systems and safety
d. universal and existential polymorphism
e. type reconstruction
f. subtyping
g. recursive types
h. type operators ...

2.implementation issues, including
a. the design and analysis of

type checking algorithms
b. implementation an interpreter of

a simple functional language
with OCaml

Course policy

I Final exam: 60%

I Homework: 20%

I Projects: 20%

I TA:
Mingzhang Huang, mingzhanghuang@gmail.com

I Course homepage:
http://basics.sjtu.edu.cn/~xiaojuan/tapl2016

mingzhanghuang@gmail.com
http://basics.sjtu.edu.cn/~xiaojuan/tapl2016

Outline

Introduction

Preliminaries

Untyped arithmetic expressions
Abstract syntax
Induction on terms
Semantics

Booleans
Numbers and Booleans

Types in Computer Science

Type systems is the most popular and best established lightweight
formal methods.

Definition
A type system is a tractable syntactic method for proving the
absence of certain program behaviors by classifying phrases
according to the kinds of values they compute.

Brief history

Types system (type theory) refers to a much broader field.

I 1900. Formalized, Russell’s paradox

I 1925. Simple theory of types, Ramsey

I 1940. Simply typed λ-calculus, Church

I 1973. Constructive type theory, Martin Löf

I 1992. Pure type theory, Barendregt

I ...

Some definitions

I Static type system. Type checking during compile-time

I Dynamic type system. Type checking during run-time

I Static ⇒ Conservative ⇒ prove the absence of bad behaviours

I Incapable of finding all undesired program behavirous, e.g.
divide by zero

I Type checkers
I automatic: no manual interaction
I type annotations

What types good for

I Detecting errors early.

I Maintenance tools.

I Abstracting

I Documentation

I Efficiency

Applications: network security, program analysis, theorem prover,
database, xml, ...

Language design goes hand-in-hand with type system design.

Outline

Introduction

Preliminaries

Untyped arithmetic expressions
Abstract syntax
Induction on terms
Semantics

Booleans
Numbers and Booleans

Relations

I An n-place relation is a set R ⊆ S1 × S2 × · · · × Sn.

I A two-place relation R on sets S and T is called a binary
relation. We often write s R t instead of (s, t) ∈ R.

I The ”mixfix” concrete syntax, e.g, Γ ` s : T means “the triple
(Γ, s,T) in the typing relation”.

I P is preserved by R if whenever we have s R t and P(s), we
also have P(t).

Functions

I dom(R): the domain of a relation R on sets S and T is the
set of elements s ∈ S such that (s, t) ∈ R for some t.

I A relation R on sets S and T is called a partial function if,
whenever (s, t1) ∈ R and (s, t2) ∈ R, we have t1 = t2. If
dom(R) = S , then R is a total function.

I We write f (x) ↑ to mean “f is undefined on x,” and f (x) ↓ to
mean “f is defined on x.”

Ordered sets
A binary relation R on a set S is

I Reflexive: ∀x ∈ S .x R x .

I Transitive: x R y ∧ y R z implies x R z .

I Symmetric: x R y implies y R x .

I Antisymmetric: x R y ∧ y R x implies x = y .

1. Preorder (or Quasi order): Reflexive + Transitive

2. Equivalence: Preorder + Symmetric

3. Partial order: Preorder + Antisymmetric

4. Total order: Partial oder + (∀x , y ∈ S .x R y ∨ y R x)

5. Well quasi order: Preorder + (Any infinite sequence contains
an increasing pair)

6. Well founded order: Preorder + (No infinite decreasing
sequences)

Quiz: 1. Can Transitivity + Symmetry indicate Reflexivity?
2. Give examples to differentiate these orders.

Inductions

I Ordinary induction on natural numbers
If P(0)
and for all i , P(i) implies P(i + 1),
then P(n) holds for all n.

I Complete induction on natural numbers
If, for each natural number k,

given P(i) for all i < k
we can show P(k)

then P(n) holds for all n.

Outline

Introduction

Preliminaries

Untyped arithmetic expressions
Abstract syntax
Induction on terms
Semantics

Booleans
Numbers and Booleans

Untyped systems

I Untyped arithmetic expressions

I Untyped λ-calculus

I ML implementations

Introduction

t ::= true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

I BNF grammar

I t is metavariable.

I For simplicity, we use arabic numbers, e.g. 3 stands for
(succ (succ (succ 0)))

I Currently, if (succ 0) then true else (pred 0) is a valid
term.

Other ways to give syntax definition

The set of terms is the smallest set T such that
I Inductively.

I {true, false, 0} ⊆ T ;
I if t1 ∈ T , then {succ t1, pred t1, iszero t1} ⊆ T ;
I if t1, t2, t3 ∈ T , then if t1 then t2 else t3 ∈ T

I By inference rules

true ∈ T false ∈ T 0 ∈ T

t1 ∈ T

succ t1 ∈ T

t1 ∈ T

pred t1 ∈ T

t1 ∈ T

iszero t1 ∈ T

t1, t2, t3 ∈ T

if t1 then t2 else t3 ∈ T

Other ways to give syntax definition, cont’d

I Concretely.
For each natural number i , define Si as follows:

S0 = ∅
Si+1 = {true, false, 0}

∪{succ t1, pred t1, iszero t1 | t1 ∈ Si}
∪{if t1 then t2 else t3 | t1, t2, t3 ∈ Si}

S =
⋃

i Si

Lemma. S = T.
Quiz. What if we change the concrete definition of S to

S0 = {true, false, 0}
Si+1 = {succ t1, pred t1, iszero t1 | t1 ∈ Si}

∪{if t1 then t2 else t3 | t1, t2, t3 ∈ Si}

Inductive structure

For any t ∈ T , one of three things must be true about t:

1. t is constant

2. t has form succ t1, pred t1, or iszero t1

3. t has form if t1 then t2 else t3.

Two ways to use this observation: inductive definition and
inductive proof.

Inductive defintion

consts(true) = {true}
consts(false) = {false}

consts(0) = {0}
consts(succ t1) = consts(t1)
consts(pred t1) = consts(t1)

consts(iszero t1) = consts(t1)
consts(if t1 then t2 else t3) = consts(t1) ∪ consts(t2) ∪ consts(t3)

Quiz. 1. Give an inductive definition of size, which is the size of
the syntax tree of a term t.
2. Give an inductive definition of depth, which is the height of the
syntax tree of a term t.

size(true) = 1
size(false) = 1

size(0) = 1
size(succ t1) = size(t1) + 1
size(pred t1) = size(t1) + 1

size(iszero t1) = size(t1) + 1
size(if t1 then t2 else t3) = size(t1) + size(t2) + size(t3) + 1

Lemma. |consts(t)| ≤ size(t).
Proof. By induction on the structure of t.

Principles of induction on terms

I Induction on depth:
If, for each term s,

given P(r) for all r such that depth(r) < depth(s),
we can show P(s),

then P(s) holds for all s.

I Induction on size:
If, for each term s,

given P(r) for all r such that size(r) < size(s),
we can show P(s),

then P(s) holds for all s.

I Structural Induction:
If, for each term s,

given P(r) for all immediate subterms r of s,
we can show P(s),

then P(s) holds for all s.

Outline

Introduction

Preliminaries

Untyped arithmetic expressions
Abstract syntax
Induction on terms
Semantics

Booleans
Numbers and Booleans

Semantics of languages

I Operational semantics. It specifies the behavior of PL by
defining an abstract machine.

I Denotational semantics. The meaning of a term is taken to be
some mathematical object (a number or a function).

I Axiomatic semantics. It takes the laws themselves as the
definition of the language.

A toy language – Booleans

Syntax

t ::= terms
true constant true
false constant false
if t then t else t conditional

v ::= values
true true value
false false value

Evaluation rules for Booleans

Evaluation

E-IfTrue
if true then t2 else t3 −→ t2

E-IfFalse
if false then t2 else t3 −→ t3

E-If
t1 −→ t ′1

if t1 then t2 else t3 −→ if t ′1 then t2 else t3

E-IfTrue and E-IfFalse are also called computation rules and
E-If is called congruence rule.
Quiz. Evaluate the following terms:

I true

I if true then (if false then false else false) else true

Derivation tree of One-step evaluation

s
def
= if true then false else false

t
def
= if s then false else false

u
def
= if false then false else false

E-If
E-If

E-IfTrue
s −→ false

t −→ u
if t then false else false −→ if u then false else false

Theorem 3.5.4 [Determinacy of one-step evaluation]: If
t −→ t ′ and t −→ t ′′, then t ′ = t ′′.
Proof. By induction on the depth of the derivation tree.

Normal form and multi-step evaluation

I A term t is in normal form if no evaluation rule can appliy to
it.

Theorem 3.5.7: Every value is in normal form.
Theorem 3.5.8: If t is in normal form, then it is a value.

I The multi-step evaluation relation −→∗ is the reflexive,
transitive closure of −→.

Theorem 3.5.11 [Uniqueness of normal forms]: If t −→∗ u and
t −→∗ u′ where u, u′ are normal forms, then u = u′.
Theorem 3.5.12 [Termination of evaluation]: For every term t
there is some normal form u such that t −→∗ u.

Arithmatic Expression

Syntax

t ::= terms
· · ·
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

v ::= values
· · ·
nv numeric value

nv ::= numeric values
0 zero value
succ nv successor value

Evaluation rules
Quiz. Give the definition of evaluation rules to guarantee

[Determinacy of one-step evaluation]:
If t −→ t ′ and t −→ t ′′, then t ′ = t ′′.

Evaluation

E-PredZero
pred 0 −→ 0

E-IszeroZero
iszero 0 −→ true

E-PredSucc
pred (succ nv) −→ nv

E-IszeroSucc
iszero (succ nv) −→ false

E-Pred
t1 −→ t ′1

pred t1 −→ pred t ′1
E-Iszero

t1 −→ t ′1
iszero t1 −→ iszero t ′1

E-Succ
t1 −→ t ′1

succ t1 −→ succ t ′1

Normal form and stuckness

I What if we change E-PredSucc to pred (succ t) −→ t?
Does it still satisfy [Determinacy of one-step transition]?

I Note there are meaningless terms, such as
if 0 then (succ true) else (iszeoro false).

I A term t is stuck if it is in normal form but not a value.

Conclusion

I Types are very important for PLs.

I This course will give a full view of type systems from the
simplest one to full-fledged one.

I Fundamental concepts for PLs:
I syntax, defined inductively, concretely, ...
I inductive proofs are very important for PLs, especially,

structural induction.
I operational semantics plays more and more important roles.

We define evaluation rules by using operational transitions.

I Properties such as [Determinacy of one-step evaluation],
[Uniqueness of normal forms], and [Termination] are
important for a good language design.

Homework

I 3.3.4, 3.5.10, 3.5.13, 3.5.17, 3.5.18.

I Install OCaml and get familiar with this language.
http://ocaml.org/

http://ocaml.org/

	Introduction
	Preliminaries
	Untyped arithmetic expressions
	Abstract syntax
	Induction on terms
	Semantics

