
Types and Programming Languages

Lecture 2. Introduction to OCaml

Xiaojuan Cai

cxj@sjtu.edu.cn

BASICS Lab, Shanghai Jiao Tong University

Spring, 2016

cxj@sjtu.edu.cn

Resources

I For quick start:
https://try.ocamlpro.com/

I A concise introduction:
http://www.csc.villanova.edu/~dmatusze/resources/

ocaml/ocaml.html

I For Jave/C/C++ programmer:
http://ocaml.org/learn/tutorials/

I For MLers:
http://www2.lib.uchicago.edu/keith/ocaml-class/

class-01.html

I Official documentations:
http://caml.inria.fr/pub/docs/manual-ocaml/

I OCaml install:
http://ocaml.org

Tuareg mode: https://github.com/ocaml/tuareg

https://try.ocamlpro.com/
http://www.csc.villanova.edu/~dmatusze/resources/ocaml/ocaml.html
http://www.csc.villanova.edu/~dmatusze/resources/ocaml/ocaml.html
http://ocaml.org/learn/tutorials/
http://www2.lib.uchicago.edu/keith/ocaml-class/class-01.html
http://www2.lib.uchicago.edu/keith/ocaml-class/class-01.html
http://caml.inria.fr/pub/docs/manual-ocaml/
http://ocaml.org
https://github.com/ocaml/tuareg

OCaml

I OCaml is one of the implementations of “Caml” language,
which is a descendant of ML, Meta Language.

I Paradigm: Multi-paradigm (functional, OO and imperative)

I Type system: static, strong, inferred

I OCaml is very popular with researchers all over the world as a
basis for experimental languages.

I HelloWorld in OCaml:
print string "HelloWorld!\n";;

Outline

Fundamentals

Data types

Higher-order functions

Modules

An ML implementation of untyped arithmetic expressions

Simple expressions

Expressions might be

I variables

I arithmetic expressions

I values

I conditions

I boolean expressions

I function calls

I ...

See our first program.ml.

Simple functions

I A function is a value! (No evaluation yet)

I Types of functions are called arrow types. t1->t2->t3->tr

I All the types are “magically” inferred out.

See functions.ml.

Shadowing

Expressions in variable bindings are evaluated eagerly

I Before the variable binding finishes

I Afterwards, the expression producing the value is irrelevant

There is no way to assign to a variable in ML.
Can only shadow it in a later environment.

See shadowing.ml

let and let...in.. expressions

I let binding in e, the scope of variables in binding is e

I let binding, the scope of variables in binding is the blocks
afterwards

I let a = 1343*2344*5 + (f 1343*2344)

I let a = let b = 1343*2344 in b*5 + (f b)

I Good style and more efficient

See let efficiency.ml.

Outline

Fundamentals

Data types

Higher-order functions

Modules

An ML implementation of untyped arithmetic expressions

Basic types

I int. e.g. 0, 5, 42, -17, 0x00FF, 0o77, 0b1101

I +,-,*,/,mod,abs
I 31-bits, no unary +

I float. e.g. 0., -5.3, 1.7e14, 1.7e+14, 1e-10
I +.,-.,*.,/.,**,sqrt,ceil,floor,sin,cos, ...
I Can’t start with a decimal point.
I coercions:

float of int,float,string of int,int of string,...

I bool contains two values: true, false
I not,&&,||, with short-circuit

I string. e.g. "", "one\ntwo"
I <,=,...,^,String.concat,String.length,...,
I String is mutable! s.[i],s.[i]<-c

I char. e.g. ’a’, ’\n’
I unit only has one value (), like void in C.

Tuple and lists

I Tuples: fixed “number of pieces” that may have different
types

I Syntax: e1, e2, ..., en, or (e1, e2, ..., en)
I type: ta * tb * ...* tn.
I built-in functions: fst,snd
I Usage: multiple bindings, multiple return values

I Lists: any “number of pieces” that all have the same type
I Syntax: [e1; e2; ...; en],[]
I type: t list.
I built-in functions:

::,@,List.length,List.hd,List.tl,List.nth,...
I List is very important data type in functional PLs.

Functions over lists

I List is a recursive type.

I Functions over lists are always defined recursively.

I Pattern matching is heavily used in functional programs. It
makes programs easy to write and read.

See lists functions.ml.

Types in any language

I “Each of type”:
A t value contains values of each of t1,...,tn
Example: int * bool

I “Self reference”:
A t value can refer to other t values
Example: int list

I “One of type”:
A t value contains values of one of t1,...,tn
Example: ?

In let efficiency.ml, we return 0 for empty list []. We need
some type to represent none or int.

Build your own “one of type”

type mytype = None | Int of int

I Adds a new type mytype to the environment

I Adds constructors to the environment: None, Int

I Construct the data of new types: tag + value

I Access the data of new types: pattern matching

See type bindings.ml.

Recursive types

type myintlist = Empty | Cons of int ∗ myintlist

I myintlist is the same as int list

I Can define recursive functions on it, e.g. length

See mylist.ml.

Polymorphic types

length function has type myintlist -> int. How to apply it to
the list of any types?

type ‘a mylist = Empty | Cons of ‘a ∗ ‘a mylist

I Polymorphic types: : put one or more type variables before
type name

I mylist is not a type, but a type constructor.

I Must say int mylist, string mylist, or ‘b mylist

OOP v.s. FP, (1)

Assume we want to implement a small language called Expression:

I Different variants of expressions: ints, additions,
negations,

I Different operations to perform: eval, toString, hasZero,

eval toString hasZero ...

Int

Add

Negate

...

OOP v.s. FP, (2)

eval toString hasZero ...

Int

Add

Negate

...

Implement in OCaml:

I Define a type, with one constructor for each variant

I “Fill out the grid” via one function per column

I Each function has one branch for each column entry

OOP v.s. FP, (3)

eval toString hasZero ...

Int

Add

Negate

...

Implement with Java/C++:

I Define a class, with one abstract method for each operation

I Define a subclass for each variant

I “fill out the grid” via one class per row with one method
implementation for each grid position

OOP v.s. FP, (4)

I FP and OOP often doing the same thing in exact opposite way

I Which is “most natural” may depend on what you are doing
or personal taste

I Code layout is important, but there is no perfect way since
software has many dimensions of structure

Outline

Fundamentals

Data types

Higher-order functions

Modules

An ML implementation of untyped arithmetic expressions

What is Functional programming?

“Functional programming” can mean a few different things:

I Avoiding mutation in most/all cases

I Using functions as values

I Style encouraging recursion and recursive data structures

The most important concept in FP is first-class function.

First-class functions

First-class functions: Can use them wherever we use values

I arguments,

I results,

I parts of tuples,

I bound to variables,

I ...

Most common use is as an argument/result of another function.
This “another function” is called higher-order function.

See higher order functions.ml.

Map and filter

Map andfilter are, without doubt, in the “higher-order function
hall-of-fame”.

I The name is standard

I You use them all the time once you know them: saves a little
space, but more importantly, communicates what you are
doing

I Predefined: List.map, List.filter

See map and filter.ml.

Closure

Now a function can be passed around. In scope where?
In scope where the function is defined (lexical scope).
Not where it is called (dynamic scope).

I A function value has two parts
I The code (obviously)
I The environment when the function was defined

I This pair is called a function closure – a very important
concept in FP.

See closure.ml.

Mutation

OCaml has mutations.

I ref e to create a reference with initial contents e

I e1 := e2 to update contents

I !e to retrieve contents s

I New types: t ref where t is a type.

See closure.ml.

One more famous higer-order function fold

I fold also known as reduce, inject, etc.

I It accumulates an answer by repeatedly applying f to acc so
far: fold left f acc [x1;...;xn]) = f ..(f acc x1)

...xn

See fold.ml.

Outline

Fundamentals

Data types

Higher-order functions

Modules

An ML implementation of untyped arithmetic expressions

Module and signature

Primary motivation of module is

I to package together related definitions

I for namespace management

I A module is also called a structure

module ModuleName =

struct

bindings

end

See module.ml.

Signatures

I Signatures are interfaces for structures.

I A signature specifies accessible components from the outside,
and their type.

I The real use is to hide bindings and type definitions

module type SIGNATURENAME =

sig

types for bindings

end

See module.ml.

A larger example

Abstract Data Type Rational: rational numbers supporting

I type rational = Whole of int | Frac of int*int

I make frac(x,y)

I add(r1,r2) and

I toString r

Properties [externally visible guarantees]

I Disallow denominators of 0

I Return strings in reduced form (“4” not “4/1”, “3/2” not
“9/6”)

I No infinite loops or exceptions

See rational1.ml, rational1.mli, and userational.ml.

Outline

Fundamentals

Data types

Higher-order functions

Modules

An ML implementation of untyped arithmetic expressions

Syntax

Terms

typeterm = TmTrue of info

| TmFalse of info

| TmIf of info ∗ term ∗ term ∗ term
| TmZero of info

| TmSucc of info ∗ term
| TmPred of info ∗ term
| TmIsZero of info ∗ term

Values

let rec isval t = match t with

TmTrue()→ true

| TmFalse()→ true

| t when isnumericval t→ true

| → false

Semantics – eval

Follow the single-step evaluation rules.

let rec eval t = match t with

TmIf(,TmTrue(), t2, t3)→ t2

| TmIf(,TmFalse(), t2, t3)→ t3

| TmIf(fi, t1, t2, t3)→
let t1′ = eval t1 in

TmIf(fi, t1′, t2, t3)
| ...

The whole story and Homework

file I/O
chars−→ lexing

tokens−→ parsing
terms−→ evaluating

values−→ printing

Homework:

I Download arith.tar.gz from
http://www.cis.upenn.edu/~bcpierce/tapl/

I Read and understand all the files in arith

I References to ocamllex and ocamlyacc: http://caml.

inria.fr/pub/docs/manual-ocaml/lexyacc.html

http://www.cis.upenn.edu/~bcpierce/tapl/
http://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.html
http://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.html

	Fundamentals
	Data types
	Higher-order functions
	Modules
	An ML implementation of untyped arithmetic expressions

