
Types and Programming Languages

Lecture 3. Untyped λ-calculus

Xiaojuan Cai

cxj@sjtu.edu.cn

BASICS Lab, Shanghai Jiao Tong University

Spring, 2016

cxj@sjtu.edu.cn


The history of λ-calculus

I The λ-calculus was invented by Alonzo Church in 1920s.

I In 1960s, Peter Landin observed that a complex programming
language can be understood by formulating it as a tiny core
calculus — λ-calculus.

I Landin’s work and John McCarthy’s Lisp make λ-calculus the
most widespread specifications of PL features, in both design
and implementation.



Other important calculi

I π-calculus by Milner, Parrow, and Walker, for defining
semantics of message-based concurrent languages.

I Object calculus by Abadi and Cardelli , for catching features
of object-oriented languages.



Outline

Basics

Formalities

Programming in λ-calculus

Nameless representation of terms



Syntax

I In arithmetic expression, there is no function.

I In λ-calculus, everything is a function.

Syntax.

t ::= terms
x variable
λx .t abstraction
t t application

v ::= values
λx .t functionvalue



Abstract and concrete syntax

I The concrete syntax refers to the strings of characters. It is
the input of a lexical analyzer.

I The abstract syntax is an internal representation of programs
as labeled trees, also called abstract syntax trees. It is the
output of a parser.

We focus on abstract syntax.
Two conventions of λ-terms:

1. s t u stands for (s t) u. (left associative)

2. λx .λy .s stands for λx .(λy .s).

Quiz. Please draw the syntax tree of (λx .λy .x y x) x .



Scope

I x is bound if it occurs in the body t of an abstraction λx .t.

I x is free if it is not bound.

(λx .λy .x y x) x

The third x is free, and the first two occurrence of x are
bound.

I A term is closed if it has no free variables. A closed term is
also called combinators.

id = λx .x



Operational semantics, informally

(λx .s) t is called a redex (“reducible expression”).

β-reduction
(λx .s) t −→ [x 7→ t]s

I Full β-reduction: any redex may be reduced at any time.

I Normal order strategy: the leftmost, outermost redex is
reduced first.

I Call by name: leftmost, outermost redex is reduced first, and
no redex inside abstractions is allowed to reduce.

I Call by value: outermost redexes are reduced and only its
argument part has already been reduced to a value.



Examples
Quiz. Find all the redex of this term:

id (id (λz .id z))
1.id (id (λz .id z)) 2.id (id (λz .id z)) 3.id (id (λz .id z))

I Full β-reduction allows all these redexes.

id (id (λz .id z)) −→ id (id (λz .z))

I Normal order strategy allows the first one.

id (id (λz .id z)) −→ (id (λz .id z))
−→ λz .id z −→ λz .z

I Call-by-name is more restrictive than normal order

id (id (λz .id z)) −→ (id (λz .id z))
−→ λz .id z 6−→

I Call by value requires the right-hand side to be a value.

id (id (λz .id z)) −→ id (λz .id z)
−→ λz .id z



Which strategy?

I Full β-reduction is nondeterministic.

I Call-by-value strategy is used by most languages.

I Call-by-name is sometimes called lazy strategy.

I Haskell uses an optimized version of call-by-name, and called
call-by-need.



Outline

Basics

Formalities

Programming in λ-calculus

Nameless representation of terms



Terms and variables

Terms. Let V be a set of variables. The set of terms is the
smallest set T such that:

I x ∈ T for every x ∈ V ;

I if t1 ∈ T and x ∈ V , then λx .t1 ∈ T

I if t1, t2 ∈ T , then t1 t2 ∈ T .

Free variables.

FV (x) = {x}
FV (λx .t1) = FV (t1) \ {x}
FV (t1 t2) = FV (t1) ∪ FV (t2)



Substitution

Can you find the mistake in this definition of substitution?

[x 7→ s]x = s
[x 7→ s]y = y if x 6= y

[x 7→ s]λy .t = λy .([x 7→ s]t)
[x 7→ s](t1 t2) = ([x 7→ s]t1 [x 7→ s]t2)

Revised one:

[x 7→ s]x = s
[x 7→ s]y = y if x 6= y

[x 7→ s]λx .t = λx .t
[x 7→ s]λy .t = λy .([x 7→ s]t) if y 6= x ∧ y 6∈ FV (s)

[x 7→ s](t1 t2) = ([x 7→ s]t1 [x 7→ s]t2)



Convention

Terms that differ only in the names of bound variables are
interchangeable in all contexts.

Substitution, finally

[x 7→ s]x = s
[x 7→ s]y = y if x 6= y

[x 7→ s]λy .t = λy .([x 7→ s]t) if y 6= x ∧ y 6∈ FV (s)
[x 7→ s](t1 t2) = ([x 7→ s]t1 [x 7→ s]t2)



Operational semantics, formally

Call by value.

APP1
t1 −→ t ′1

t1 t2 −→ t ′1 t2

APP2
t2 −→ t ′2

v1 t2 −→ v1 t ′2
APPABS

(λx .t) v −→ [x 7→ v ] t

Quiz. Please give the evaluation rules for call-by-name and full
λ-calculus, respectively.



Outline

Basics

Formalities

Programming in λ-calculus

Nameless representation of terms



Multiple arguments

I We do not write f = λ(x , y).s, instead, we write f = λx .λy .s.

I These two are different things. Informally, the first function
takes a pair and return s. The second one takes an x return a
function which will take a y then return s.

I The transformation of multi-argument functions into
higher-order fucntions is called currying, in honor of Haskell
Curry.



Church Booleans

tru = λt.λf .t
fls = λt.λf .f

Operators
test = λl .λm.λn.l m n
and = λm.λn.m n fls

Quiz.
1. Define boolean opertors or and not.
2. What is the difference between if then else and test we define
here?



Pairs

pair = λf .λs.λb.b f s

Operators
fst = λp.p tru

snd = λp.p fls

Example.
fst (pair v w)
−→∗ fst (λb.b v w)
−→ (λb.b v w) tru
−→ tru v w
−→∗ v



Church numerals

0 = λs.λz .z
1 = λs.λz .s z
2 = λs.λz .s (s z)
3 = λs.λz .s (s (s z))
· · ·

I A number n is a function that takes two arguments s and z
(succ and zero) and applies s, n times to z .

I 0 is syntactically equivalent to fls.

I Successor functions: succ = λn.λs.λz .s(n s z)

Quiz. Give another way to define succ .



Operators

n = λs.λz . s · · · (s z) · · · )︸ ︷︷ ︸
n times ofs

I plus = λm.λn.λs.λz .m s (n s z)

I times = λm.λn.m (plus n) 0

I power = λm.λn.n (times m) 1

I iszero = λm.m (λx .fls)tru

I pred is quite a bit more difficult than additions.

zz = pair 0 0;
ss = λp.pair (snd p) (plus 1 (snd p));

prd = λm.fst(m ss zz);



Recursion

Can all terms be evaluate to a normal form?
In λ-calculus, no. Here is a diverge term:

Ω = (λx .xx)(λx .xx)

Fix-point combinator, or Y-combinator.
Call-by-name version Y = λf .(λx .f (x x)) (λx .f (x x))
Call-by-value version Y = λf .(λx .f (λy .x x y)) (λx .f (λy .x x y))

How to define a recursive function?

g = λfact.λx .(if x = 0 then 1 else x ∗ (fact (x − 1)))
factorial = Y g

Quiz. Give the reduction of factorial 3.



Outline

Basics

Formalities

Programming in λ-calculus

Nameless representation of terms



Overview

I Conventions help us to discuss basic concepts.

I In implementations, we need to choose a single representation.

Candidates:

1. Renaming bound variables to “fresh” names;

2. Devising some “canonical” representation of variables and
terms that does not require renaming

3. Explicit substitution [Abadi, Cardelli, Curien, and Lvy, 1991]

4. Combinatory logic [Curry and Feys, 1958; Barendregt, 1984]

We will use the formulation based on a well-known technique due
to Nicolas de Bruijn.



De Bruijn terms

We can represent terms more straightforwardly by making variable
occurrences point directly to their binders, rather than referring to
them by name.

I λx .x to λ.0

I λx .λy .x (y x) to λ.λ.1 (0 1)

Definition 6.1.2. Terms
Let T be the smallest family of sets {T0,T1,T2, · · · } such that

I k ∈ Tn whenever 0 ≤ k < n;

I if t1 ∈ Tn and n > 0, then λ.t1 ∈ Tn−1;

I if t1 ∈ Tn and t2 ∈ Tn, then (t1 t2) ∈ Tn.

The elements of Tn are terms with at most n free variables.



Naming context

I Suppose we want to represent λx .y x as a nameless term.
What’s the binder for y?

I To deal with terms containing free variables, we need the idea
of naming context.

Example. Given a naming context

Γ = {x 7→ 4, y 7→ 3, z 7→ 2, a 7→ 1, b 7→ 0}

I x (y z) encoded into 4 (3 2);

I λw .y w encoded into λ.4 0;

I λw .λa.x encoded into λ.λ.6.

Definition. A naming context Γ = xn, xn−1, · · · , x1, x0 assigns to
each xi the de Bruijn index i .



Shifting and substitution

Example.
(λb.b (λa.b a)) (λb.b a)
−→ [b 7→ (λb.b a)](b (λa.b a))
= (λb.b a) (λc .(λb.b a) c)

Nameless representation under Γ = a:

(λ.0 (λ.1 0)) (λ.0 1) −→ [0 7→ (λ.0 1)](0 (λ.1 0)) = (λ.0 1) (λ.(λ.0 2) 0)

In the substitution [j 7→ s]t where t is an abstraction λ.t ′,

I j needs to be increased in t ′

I The free variables in s also need to be increased in the
substitution applied to t ′.



Shift and substitution

Definition 6.2.1:The d-place shift of a term t about cutoff c ,
written ↑dc (t) is defined as

↑dc (k) =

{
k if k < c
k + d if k ≥ c

↑dc (λ.t1) = λ. ↑dc+1 (t1)
↑dc (t1 t2) = ↑dc (t1) ↑dc (t2)

Definition 6.2.4:The substitution of a term s for variable number
j in a term t, written [j 7→ s]t, is defined as follows:

[j 7→ s]k =

{
s if k = j
k otherwise

[j 7→ s](λ.t1) = λ.[j + 1 7→ ↑1 s]t1
[j 7→ s](t1 t2) = [j 7→ s]t1 [j 7→ s]t2



Evaluation

(λ.t1) t2 −→ ↑−1 [0 7→ ↑1 t2]t1

Example.
(λb.w (λa.b a)) (λb.b a)
−→ [b 7→ (λb.b a)](b (λa.b a))
= w (λc.(λb.b a) c)

Nameless representation under Γ = wa:

(λ.2 (λ.1 0)) (λ.0 1)
−→ ↑−1 [0 7→ ↑1 (λ.0 1)](2 (λ.1 0))
= ↑−1 [0 7→ (λ.0 2)](2 (λ.1 0))
= ↑−1 (2 [0 7→ (λ.0 2)](λ.1 0)))
= ↑−1 (2λ.[1 7→ ↑1 (λ.0 2)](1 0)))
= ↑−1 (2λ.[1 7→ (λ.0 3)](1 0)))
= ↑−1 (2λ.((λ.0 3) 0))
= (1λ.((λ.0 2) 0))

Quiz. Given Γ = wa, show the de Bruijn notaton of
(λx .λa.axw)(λx .x) and evaluate it.



Conclusion

I λ-calculus is one of the most important models for
computation theory.

I Call-by-value strategy is used by most programming
languages. Call-by-name strategy is also called lazy strategy.
λ-calculus with either strategy is Turing complete.

I De Bruijn notation is a great way to tackle with bound names,
and is especially useful in the implementation.



Homework

I 5.2.3, 5.2.7, 5.2.8, 5.3.6, 6.1.4, 6.1.5, 6.2.2, 6.2.5, 6.2.8, 6.3.1

I Read Chapter 7: An ML Implementation of the
Lambda-Calculus, and extend arith with untyped λ-calculus.


	Basics
	Formalities
	Programming in -calculus
	Nameless representation of terms

