Types and Programming Languages

Lecture 4. Types, the simply typed λ -calculus

Xiaojuan Cai

cxj@sjtu.edu.cn

BASICS Lab, Shanghai Jiao Tong University

Spring, 2016

Outline

Typed arithmetic expressions

Typing relation Safety = Progress + Preservation

Simply typed λ -calculus Function types

Q: Why bother doing proofs about programming languages? They are almost always boring if the definitions are right.

A: The definitions are almost always wrong.

Arithmetic expressions

t	::=		terms
		true	constant true
		false	constant false
		if t then t else t	conditional
		0	constant zero
		succ t	successor
		pred <i>t</i>	predecessor
		iszero t	zero test
v	::=		values
		true	true value
		false	false value
		nv	numeric value
nv	::=		numeric values
		0	zero value
		succ nv	successor value

Types

- Recall that evaluating a term can either result in a value or else get stuck at some stage, by reaching a term like pred false.
- ▶ In fact, we can tell *stuck terms* without actually evaluating it.
- Coming soon: If a term is well typed, i.e., it has some type T, then it never get stuck (never goes wrong).

Typing relation

The typing relation for arithmetic expressions, written "t : T, is defined by a set of inference rules assigning types to terms.

T ::= types Bool type of booleans Nat type of natural numbers

Typing rules:

 $\begin{array}{c} \text{T-True} & \hline \text{true} : \text{Bool} & \text{T-False} & \hline \text{false} : \text{Bool} & \text{T-Zero} & \hline \text{0} : \text{Nat} \\ \\ & & \text{T-Succ} & \underbrace{t_1 : \text{Nat}}_{\text{succ} t_1 : \text{Nat}} & \text{T-Pred} & \underbrace{t_1 : \text{Nat}}_{\text{pred} t_1 : \text{Nat}} \\ \\ & & \text{T-IF} & \underbrace{t_1 : \text{Bool} \ t_2 : \text{T} \ t_3 : \text{T}}_{\text{if} \ t_1 \ \text{then} \ t_2 \ \text{else} \ t_3 \ : \ \text{T}} & \text{T-IsZero} & \underbrace{t_1 : \text{Nat}}_{\text{iszero} \ t_1 : \text{Bool}} \end{array}$

Uniqueness of types

When reasoning about the typing relation, we will often inverse the typing relation.

Lemma 8.2.2:

- 1. If true : R or false : R, then R = Bool;
- 2. If if t_1 then t_2 else $t_3 : R$, then $t_1 : Bool, t_2 : R$, and $t_3 : R$.
- 3. If 0: R, or succ $t_1: R$, or pred $t_1: R$, then R = Nat and $t_1: Nat$.
- 4. If iszero $t_1 : R$, then $R = Bool and t_1 : Nat$.

Thoerem 8.2.4 [Uniqueness of types]: Each term *t* has at most one type.

Above theorem does not hold for languages with subtyping rules.

The most basic property of type system

Safety = Progress + Preservation

- Progress: A well-typed term is not stuck (either it is a value or it can take a step according to the evaluation rules).
- Preservation: If a well-typed term takes a step of evaluation, then the resulting term is also well typed.

Porgress

Lemma 8.3.1 [Canonical forms]:

- ▶ If v is a value of type Bool, then v is either true or false.
- If v is a value of type Nat, then v is a numeric value according to the grammar.

Theorem 8.3.2 [Progress]: Suppose t is a well-typed term (that is, t : T for some T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof. By induction on a derivation of t : T.

Preservation

Theorem 8.3.3 [Preservation]: If t : T and $t \rightarrow t'$, then t' : T.

Proof. Either by induction on a derivation of t : T, or by induction on a derivation of $t \longrightarrow t'$.

Outline

Typed arithmetic expressions

Typing relation Safety = Progress + Preservation

$\begin{array}{l} \mbox{Simply typed λ-calculus} \\ \mbox{Function types} \end{array}$

Add types to λ -calculus

Coming soon: A typing relation for variables, abstractions, and applications that

- maintain type safety: satisfy the type progress and preservation;
- are not to conservative: they should assign types to most of the programs we actually care about writing.

Turing completeness of λ -calculus implies that there is no hope of giving an exact type analysis for these primitives. For example:

if $\langle \texttt{long} \texttt{ and tricky computation} \rangle$ then true else $(\lambda \texttt{x}.\texttt{x})$

Arrow type

For a function,

1. we care about the types of both arguments and results:

arrow type $T \to T$

Note the difference between $T \to T \to T$ and $(T \to T) \to T$

2. the type of an abstraction relies on the type of argument, e.g.

 $\lambda x.x: \texttt{Bool}
ightarrow \texttt{Bool} \ or \ \lambda x.x: \texttt{Nat}
ightarrow \texttt{Nat}$

3. Hence, the typing relation on abstractions should be written as

$$\lambda x : T_1 . t_2 : T_1 \rightarrow T_2$$

But how do we derive T_2 ? We assume $x : T_1!!!$ So we need an environment (context) for our typing relation:

 $\Gamma \vdash t : T$

Pure simply typed λ -calculus (λ_{\rightarrow})

Terms $t ::= x \mid \lambda x : T \cdot t \mid t t$

Values $v ::= \lambda x : T . t$

Types $T ::= T \rightarrow T$

Contexts $\Gamma ::= \emptyset | \Gamma, x : T$

Typing

$$T-VAR = \frac{x: T \in \Gamma}{\Gamma \vdash x: T} = T-ABS = \frac{\Gamma, x: T_1 \vdash t_2: T_2}{\Gamma \vdash \lambda x: T_1.t_2: T_1 \rightarrow T_2}$$

$$T-APP = \frac{\Gamma \vdash t_1: T_1 \rightarrow T_2 \quad \Gamma \vdash t_2: T_1}{\Gamma \vdash t_1 t_2: T_2}$$

Quiz: 1. Please draw the type derivation tree of the term $(\lambda x : Bool \rightarrow Nat.x true)(\lambda x : Bool.if x then 0 else (succ 0)).$ 2. What about this term $\lambda x : Bool.x x$?

Properties of typing

Lemma 9.3.1 [Inversion of the Typing Relation]:

- 1. If $\Gamma \vdash x : \mathbb{R}$, then $x : \mathbb{R} \in \Gamma$.
- 2. If $\Gamma \vdash \lambda x : T_1 . t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$.
- 3. If $\Gamma \vdash t_1 t_2 : \mathbb{R}$, then there is some type \mathbb{T}_1 such that $t_1 : \mathbb{T}_1 \to \mathbb{R}$ and $\Gamma \vdash t_2 : \mathbb{T}_1$.
- 4. for booleans \cdots

Theorem 9.3.3 [Uniqueness of types]: In a given typing context Γ , a term *t* (with free variables all in the domain of Γ) has at most one type.

Progress

Lemma 9.3.4 [Canonical forms]:

- ▶ If v is a value of type Bool, then v is either true or false.
- If v is a value of type $T_1 \rightarrow T_2$, then $v = \lambda x : T_1.t2$.

Theorem 9.3.5 [Progress]: Suppose t is a closed, well-typed term (that is, $\Gamma \vdash t$: T for some T). Then either t is a value or else there is some t with $t \longrightarrow t$.

Preservation

Theorem 9.3.9 [Preservation]: If $\Gamma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$. **Quiz.** Please try to prove above theorem and figure out what lemmas we need.

Lemma 9.3.6 [Permutation]: If $\Gamma \vdash t$: T and Δ is a permutation of Γ , then $\Delta \vdash t$: T. Moreover, the latter derivation has the same depth as the former.

Theorem 9.3.7 [Weakening]: If $\Gamma \vdash t : T$ and $x \notin dom(\Gamma)$, then $\Gamma, x : S \vdash t : T$. Moreover, the latter derivation has the same depth as the former.

Theorem 9.3.8 [Preservation of types under substitution]: If $\Gamma, x : S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$.

The Curry-Howard correspondence

Other names for typing rules from a logic view.

The \rightarrow type constructor comes with typing rules of two kinds:

- ► an introduction rule (T-ABS) describing how elements of the type can be created, and
- ► an elimination rule (T-APP) describing how elements of the type can be used.

Curry-Howard Correspondence, or isomorphism

Logic	PROGRAMMING LANGUAGES
proposition	types
proposition $P \supset Q$	type $P o Q$
proposition $P \wedge Q$	type $P imes Q$
proof of proposition P	term <i>t</i> of type <i>P</i>
proposition P is provable	type <i>P</i> is inhabited (by some term)

Erasure and Typability

Type annotations are be used during *type checking*, and will be erased before evaluation.

Definition 9.5.1 [Erasure]: The erasure of a simply typed term *t* is defined as follows:

$$erase(x) = x$$

 $erase(\lambda x : T_1.t_2) = \lambda x.erase(t_2)$
 $erase(t_1 t_2) = erase(t_1)erase(t_2)$

Definition 9.5.3 [Typability]: A term *m* in the untyped λ -calculus is said to be typable in λ_{\rightarrow} if there are some simply typed term *t*, type T, and context Γ such that erase(t) = m and $\Gamma \vdash t : T$.

Conclusion

- Typing system Γ ⊢ t : T can remove some terms before they run into stuck states.
- ► However, it also removes well-behaviored terms.
- Type safety = progress + preservation
- For proving safety, some other properties such as canonical forms, uniqueness of type are needed.
- Simply typed λ -calculus is non-Turing-complete.

Homework

8.3.4, 8.3.6, 8.3.7, 9.2.2, 9.2.3, 9.3.2, 9.4.1

Projects. Extend arith with

- Untyped lambda calculus (Chapter 7), due on Apr. 14 (*Thursday of Week 8*)
- Simple typed lambda calculus (Chapter 10) , due on May. 12 (*Thursday of Week 12*)
- Subtyping (Chapter 17), due on Jun. 9 (*Thursday of Week* 16)