
Types and Programming Languages

Lecture 4. Types, the simply typed λ-calculus

Xiaojuan Cai

cxj@sjtu.edu.cn

BASICS Lab, Shanghai Jiao Tong University

Spring, 2016

cxj@sjtu.edu.cn

Outline

Typed arithmetic expressions
Typing relation
Safety = Progress + Preservation

Simply typed λ-calculus
Function types

By anonymous

Q: Why bother doing proofs about programming languages? They
are almost always boring if the definitions are right.

A: The definitions are almost always wrong.

Arithmetic expressions

t ::= terms
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

v ::= values
true true value
false false value
nv numeric value

nv ::= numeric values
0 zero value
succ nv successor value

Types

I Recall that evaluating a term can either result in a value or
else get stuck at some stage, by reaching a term like
pred false.

I In fact, we can tell stuck terms without actually evaluating it.

I Coming soon: If a term is well typed, i.e., it has some type T ,
then it never get stuck (never goes wrong).

Typing relation

The typing relation for arithmetic expressions, written “t : T , is
defined by a set of inference rules assigning types to terms.

T ::= types
Bool type of booleans
Nat type of natural numbers

Typing rules:

T-True
true : Bool

T-False
false : Bool

T-Zero
0 : Nat

T-Succ
t1 : Nat

succ t1 : Nat
T-Pred

t1 : Nat
pred t1 : Nat

T-If
t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
T-IsZero

t1 : Nat
iszero t1 : Bool

Uniqueness of types

When reasoning about the typing relation, we will often inverse the
typing relation.
Lemma 8.2.2:

1. If true : R or false : R, then R = Bool;

2. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and
t3 : R.

3. If 0 : R, or succ t1 : R, or pred t1 : R, then R = Nat and
t1 : Nat.

4. If iszero t1 : R, then R = Bool and t1 : Nat.

Thoerem 8.2.4 [Uniqueness of types]: Each term t has at most
one type.
Above theorem does not hold for languages with subtyping rules.

The most basic property of type system

Safety = Progress + Preservation

I Progress: A well-typed term is not stuck (either it is a value
or it can take a step according to the evaluation rules).

I Preservation: If a well-typed term takes a step of evaluation,
then the resulting term is also well typed.

Porgress

Lemma 8.3.1 [Canonical forms]:

I If v is a value of type Bool, then v is either true or false.

I If v is a value of type Nat, then v is a numeric value
according to the grammar.

Theorem 8.3.2 [Progress]: Suppose t is a well-typed term (that
is, t : T for some T). Then either t is a value or else there is some
t ′ with t −→ t ′.
Proof. By induction on a derivation of t : T.

Preservation

Theorem 8.3.3 [Preservation]: If t : T and t −→ t ′, then t ′ : T.

Proof. Either by induction on a derivation of t : T, or by induction
on a derivation of t −→ t ′.

Outline

Typed arithmetic expressions
Typing relation
Safety = Progress + Preservation

Simply typed λ-calculus
Function types

Add types to λ-calculus

Coming soon: A typing relation for variables, abstractions, and
applications that

I maintain type safety: satisfy the type progress and
preservation;

I are not to conservative: they should assign types to most of
the programs we actually care about writing.

Turing completeness of λ-calculus implies that there is no hope of
giving an exact type analysis for these primitives. For example:

if 〈long and tricky computation〉 then true else (λx.x)

Arrow type
For a function,

1. we care about the types of both arguments and results:

arrow type T→ T

Note the difference between T→ T→ T and (T→ T)→ T

2. the type of an abstraction relies on the type of argument, e.g.

λx .x : Bool→ Bool or λx .x : Nat→ Nat

3. Hence, the typing relation on abstractions should be written as

λx : T1 .t2 : T1 → T2

But how do we derive T2? We assume x : T1!!! So we need an
environment (context) for our typing relation:

Γ ` t : T

Pure simply typed λ-calculus (λ→)

Terms t ::= x | λx : T .t | t t

Values v ::= λx : T .t

Types T ::= T→ T

Contexts Γ ::= ∅ | Γ, x : T

Typing

T-Var
x : T ∈ Γ
Γ ` x : T

T-Abs
Γ, x : T1 ` t2 : T2

Γ ` λx : T1 .t2 : T1 → T2

T-App
Γ ` t1 : T1 → T2 Γ ` t2 : T1

Γ ` t1 t2 : T2

Quiz: 1. Please draw the type derivation tree of the term
(λx : Bool→ Nat.x true)(λx : Bool.if x then 0 else (succ 0)).
2. What about this term λx : Bool .x x?

Properties of typing

Lemma 9.3.1 [Inversion of the Typing Relation]:

1. If Γ ` x : R, then x : R ∈ Γ.

2. If Γ ` λx : T1 .t2 : R, then R = T1 → R2 for some R2 with
Γ, x : T1 ` t2 : R2.

3. If Γ ` t1 t2 : R, then there is some type T1 such that
t1 : T1 → R and Γ ` t2 : T1.

4. for booleans · · ·

Theorem 9.3.3 [Uniqueness of types]: In a given typing context
Γ, a term t (with free variables all in the domain of Γ) has at most
one type.

Progress

Lemma 9.3.4 [Canonical forms]:

I If v is a value of type Bool, then v is either true or false.

I If v is a value of type T1 → T2, then v = λx : T1.t2.

Theorem 9.3.5 [Progress]: Suppose t is a closed, well-typed
term (that is, Γ ` t : T for some T). Then either t is a value or else
there is some t with t −→ t.

Preservation

Theorem 9.3.9 [Preservation]: If Γ ` t : T and t −→ t ′, then
Γ ` t ′ : T.
Quiz. Please try to prove above theorem and figure out what
lemmas we need.

Lemma 9.3.6 [Permutation]: If Γ ` t : T and ∆ is a permutation
of Γ, then ∆ ` t : T. Moreover, the latter derivation has the same
depth as the former.

Theorem 9.3.7 [Weakening]: If Γ ` t : T and x 6∈ dom(Γ), then
Γ, x : S ` t : T. Moreover, the latter derivation has the same depth
as the former.

Theorem 9.3.8 [Preservation of types under substitution]: If
Γ, x : S ` t : T and Γ ` s : S , then Γ ` [x 7→ s]t : T.

The Curry-Howard correspondence

Other names for typing rules from a logic view.
The → type constructor comes with typing rules of two kinds:

I an introduction rule (T-Abs) describing how elements of the
type can be created, and

I an elimination rule (T-App) describing how elements of the
type can be used.

Curry-Howard Correspondence, or isomorphism

Logic Programming languages

proposition types
proposition P ⊃ Q type P → Q
proposition P ∧ Q type P × Q
proof of proposition P term t of type P
proposition P is provable type P is inhabited (by some term)

Erasure and Typability

Type annotations are be used during type checking, and will be
erased before evaluation.

Definition 9.5.1 [Erasure]: The erasure of a simply typed term t
is defined as follows:

erase(x) = x

erase(λx : T1.t2) = λx .erase(t2)

erase(t1 t2) = erase(t1)erase(t2)

Definition 9.5.3 [Typability]: A term m in the untyped λ-calculus
is said to be typable in λ→ if there are some simply typed term t,
type T, and context Γ such that erase(t) = m and Γ ` t : T.

Conclusion

I Typing system Γ ` t : T can remove some terms before they
run into stuck states.

I However, it also removes well-behaviored terms.

I Type safety = progress + preservation

I For proving safety, some other properties such as canonical
forms, uniqueness of type are needed.

I Simply typed λ-calculus is non-Turing-complete.

Homework

I 8.3.4, 8.3.6, 8.3.7, 9.2.2, 9.2.3, 9.3.2, 9.4.1

Projects. Extend arith with

I Untyped lambda calculus (Chapter 7), due on Apr. 14
(Thursday of Week 8)

I Simple typed lambda calculus (Chapter 10) , due on May. 12
(Thursday of Week 12)

I Subtyping (Chapter 17) , due on Jun. 9 (Thursday of Week
16)

	Typed arithmetic expressions
	Typing relation
	Safety = Progress + Preservation

	Simply typed -calculus
	Function types

