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Abstract. Higher-order process calculi have been receiving much attention in recent years for its
significance in both theory and practice. Work on bisimulations has never ceased evolving, typically
represented by Thomsen and Sangiorgi for their work on bisimulation theory and encoding to and
from first-order process calculi. Fu puts forth linear higher-order π-calculus, and makes improvement
to previous work on bisimulation and builds a sound and complete equation system by exploiting
linearity of processes, which takes resource sensitiveness into account. In this paper, we establish some
recent result on bisimulation theory in linear higher-order π-calculus. By exploiting the properties of
linear higher-order processes, we work out two simpler variants than local bisimulation, which is an
intuitive observational equivalence. We prove that they both coincide with local bisimilarity. The first
variant, called local linear bisimulation, simplifies the matching of higher-order input and higher-order
output based on the feature of checking equivalence with some special processes (in input or output)
instead of general ones. The second variant, called local linear variant bisimulation, rewrites the first-
order bound output clause in local bisimulation in some more suitable form for some application on
it, by harnessing the congruence properties. We also mention some future work in the conclusion.
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1 Introduction

Compared with first-order calculi [1] [2] [3], higher-order process calculi excel in that they provide the
ability to communicate an integral program, rather than a simple value or a reference to a program. The
importance are double-fold. Firstly, theoretically higher-order features offer a broader spectrum of communi-
cation capability that can possibly compute more conveniently and efficiently, and the (technical) framework
of process calculi is widened. Secondly, practically distributed and mobile computing are increasingly ex-
panding in various forms, in which communication involving higher-order elements can be witnessed in nearly
anywhere, such as sending a small application through network or packaging and transmitting a script over
several computing nodes in the network and then configuring and running in a remote computer. To some
extent the study of higher-order process calculi can enable us to better direct the technology development.
To our knowledge, up-to-date research on bisimulation in higher-order process calculi mainly includes the
following parts.
CHOCS and plain CHOCS. Thomsen studies two kinds of higher-order CCS, which extends CCS by
higher-order communication with processes, that is CHOCS [4] [5] and Plain CHOCS [6] [7], with dynamic
and static binding of restriction respectively. The higher-order bisimulation (in CHOCS) and applicative
higher-order bisimulation (in Plain CHOCS) are examined. They are quite structural but not intuitive in
that communicated and continual processes are separated in comparison [8]. The bisimulations use delayed
approach, which prohibits internal moves after an observable action, to counter the technical obstacle in
equivalence proving.
Higher-order π-calculus. Sangiorgi studies higher-order π-calculus [9] [8] that extends first-order π-
calculus [2] [10] with communication of processes. The bisimulation he puts forth, context bisimulation [8],
improves that in Plain CHOCS by considering residual and transmitted processes in the meanwhile. However
the style is still delayed. Yet it is proven that the early and late versions of context bisimulations coincide,
which is not so obvious in the Ambient calculus. Triggered bisimulation, normal bisimulation are proposed
to simplify context bisimulation on its heavy usage of universal quantification. And barbed bisimulation [11]
is also considered in higher-order paradigm.

Nevertheless, the work mentioned above is not perfect in several points. For example,
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– Delayed bisimulations. The bisimulations are all delayed versions. That is weak transitions have no
trailing silent moves.

– Computational power. The computational power levels that of Turing machines. This leads to the status
that no axiom system is available for higher-order process calculi for a long period.

Fu attempts to settle these problems with linear higher-order π-calculus (LHOPi for short) [12], which
abstracts from the practical scene that one program can be used only once in one network application on
the client side, such as on-line games and video on demand, by demanding that a same process variable
shall never appear simultaneously in concurrent positions, typically the parallel composition and higher-
order output. Fu shows that linearity can effectively downscale the computational power, and entail a sound
and complete axiom system as well as an algorithm checking the equivalence of two processes. Besides, the
bisimulation he uses, called local bisimulation, is a general one, not delayed. The technical difficulty is solved
by the bisimulation lemma [12]. And most of the results in [12] hold in general higher-order π-calculus.

Contribution

In this paper, we put forward some recent work on linear process calculi. Our endeavor in this paper
is focused on the bisimulation theory of LHOPi. We seek for a simpler expression of local bisimulation.
This is achieved by making full use of the properties of linear processes, that is Abstraction Theorem for
higher-order input and Concretion Theorem for higher-order output. These theorems are firstly used by Fu
to lay the foundation for an axiom system, and we harness them to simplify local bisimulation, by loosening
the requirements of bisimulation. For example, we only demand the receiving of a special process in the
comparison of higher-order input rather than a general process. So (R is a certain bisimulation, and we omit
some relatively unimportant details).

If P
a(A)−−−→P ′, then Q

a(A)
=⇒Q′ for some Q′ and P ′RQ′

is simplified to

If P
a(c)−−→P ′, where c is a fresh name, then Q

a(c)
=⇒Q′ for some Q′, and P ′ R Q′

(where c abbreviates c(x).0 and c is fresh)
And in higher-order output, the demand that the transmitted process should be considered in an arbitrary

environment with the residual process is weakened to the holding of the similar property on a special
environment. Such special processes can be infinite, but we merely need one of them for checking bisimulation.
Thus we usually say ‘a’ instead of ‘every/any ’ in a simulating clause. So

If P
(ex)aA−−−−→P ′ then Q

(ey)aB
=⇒ Q′ for some ỹ, B, Q′, and for every process E[X] it holds that

(x̃)(E[A]|P ′) R (ỹ)(E[B]|Q′)

is simplified to

If P
(ex)aA−−−−→P ′, then Q

(ey)aB
=⇒ Q′ for some ỹ, B, Q′. And for a process E[X] ≡ c.(X+d), where c, d are fresh

names, it holds that (x̃)(E[A]|P ′) R (ỹ)(E[B]|Q′)

The obtained bisimulation after the modification above is called local linear bisimulation (≈ll for the cor-
responding bisimilarity). We show that Abstraction Theorem and Concretion Theorem also hold on local
linear bisimilarity, which leads to the coincidence between local bisimilarity and local linear bisimilarity.
The proofs are non-trivial.

Then we examine the first-order bound output, whose corresponding clause in local bisimulation is

If P
a(x)−−−→P ′, then Q

a(x)
=⇒Q′ for some Q′, and for every process O, (x)(O|P ′) R (x)(O|Q′)

We show in an informal way that this cannot be simplified. However, to gain a handy manipulation, we
define a variant on first-order bound output clause by using the congruence properties, and obtained the
following clause.

If P
a(x)−−−→P ′, then Q

a(x)
=⇒Q′ for some Q′, and for all processes O1 and O2 such that O1 R O2,

(x)(O1|P ′) R (x)(O2|Q′)
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The bisimulation gained after this adjustment is called local linear variant bisimulation (≈v
ll for the corre-

sponding bisimilarity). We show that local linear variant bisimilarity coincides with local linear bisimilarity.
Organization. The paper is organized as follows. Section 2 gives an introduction to linear higher-order
π-calculus by Fu [12]. We define the syntax, operational semantics, local bisimulation, and equivalence and
congruence properties of local bisimilarity. Critical results, which describe the relationship between the
equivalence of the prefixed processes and the equivalence of the continuations and lay foundation for axiom
system for linear higher-order π-calculus are also presented. In section 3, we define several variants, local
linear bisimulation and local linear variant bisimulation, which simplify yet are coincident to the original
bisimulation, that is local bisimulation (in the largest sense). The detailed proofs are given. We also make
some discussion on the possibility of simplifying first-order bound output clause in local bisimulation. Section
4 concludes our work before some future work is discussed.

2 Linear higher-order π-calculus

In this section, we give an introduction to LHOPi [12].

2.1 Syntax

Linear higher-order π (LHOPi) processes (or simply processes) are denoted by capital letters
(A, B, . . . , E, F, . . . , P, Q, . . .). They are defined by the following abstract grammar. fv(·) denotes free process
variables.

P := 0 | X | a(x).P | ax.P | a(X).P | aQ.P | P |Q | (x)P | [x=y]P | P+Q

Most of them have their usual meanings. The linearity is guaranteed by demanding fv(P ) ∩ fv(Q) = ∅ in
aQ.P and P |Q.

We have derived prefixes: τ.P , (m)(m(x)|mm.P ),m fresh and a(x).P , (x)ax.P . The first is silent ac-
tion and the latter is first-order bound output. Most conventions are standard. fn(P1, ..., Pn), bn(P1, ..., Pn),
n(P1, ..., Pn); fv(P1, ..., Pn), bv(P1, ..., Pn), v(P1, ..., Pn) denote free names, bound names, names; free vari-
ables, bound variables and variables in processes P1, ..., Pn, respectively. We generally focus on closed pro-
cesses, which contain no free variables. Sometimes we use “(closed)” before processes to indicate this. “process
expressions” indicate general processes. Name substitution on processes P{y/x} and higher-order (process or
variable) substitution on processes P{Q/X} are defined structurally on processes as usual. We demand that
higher-order substitutions do not produce an non-linear processes. σ and Σ denote name substitution and
higher-order substitution respectively. x̃ denotes a finite set of names, that is x1, x2, ..., xn. E[X1, X2, ..., Xn]
stands for the process with (at most) a series of process variables occurring in it. We write E[A1, A2, ..., An]
for E[X1, X2, ..., Xn]{A1/X1, A2/X2, ..., An/Xn}. We usually omit the process 0. Some abbreviations are: a
for a(x).0; a for ax.0; τ for τ.0. Ia is defined as a(X).X. A fresh name (variable) is a name (variable) that
does not occur in the processes under consideration. We assume structural equivalence on processes, like
that in [13].

Contexts are processes with holes for processes. It is important that process behavior has some invariance
under various contexts. We define three kinds of contexts below. Note context C[·] is different from E[X] in
that the latter should not let name capturing occur whereas the former does not take care of this.
Contexts: [·] is a context; If C[·] is a context, then a(x).C[·], ax.C[·], τ.C[·], a(X).C[·], aA.C[·], (x)C[·], P |C[·]
and [x=y]C[·] are contexts.
Full contexts: A context is a full context; If C[·] is a full context, then a[C[·]].P and C[·]+P are full contexts.
Local contexts: A full context of the form (x̃)([·]|O). The more usual form of a local context is (x̃, c̃ are all
pairwise distinct)(x1) · · · (xn)(c1x1| · · · |cnxn|[·]) (or (x̃)(c̃x|[·])).

2.2 Semantics

For the labelled transition system, we need a concept cp(P, X) of a process variable, indicating the
process variables locating at the concurrent positions of X, such as parallel composition and higher-order
output. It is due to Fu [12] and routine, so we omit the formal definition. the semantics of LHOPi is given
in Figure 1. Symmetric rules are omitted. We use α, β, λ, ... for actions.

The transition rules are mostly self-explained. In higher-order input, the received process shall not break
the linearity of processes, which is why we demand fv(A) ∩ cp(P, X) = ∅. Two actions α, β are said to be
complementary if they can form a (first-order or higher-order) communication. =⇒ is the reflexive transitive

closure of silent actions, and λ=⇒ is =⇒ λ−→ =⇒. λ̂=⇒ is =⇒ when λ is τ and λ=⇒ otherwise.
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a(x).P
a(y)−−−→P{y/x} ax.P

ax−→P

fv(A) ∩ cp(P, X) = ∅
a(X).P

a(A)−−−→P{A/X} aA.P
aA−−→P

P
λ−→P ′

P+Q
λ−→P ′

P
λ−→P ′

[x=x]P
λ−→P ′

P
λ−→P ′

P |Q λ−→P ′|Q
bn(λ) ∩ fn(Q) = ∅ P

a(x)−−−→P ′, Q
ax−→Q′

P |Q τ−→P ′|Q′
P

a(x)−−−→P ′, Q
a(x)−−−→Q′

P |Q τ−→(x)(P ′|Q′)
P

a(A)−−−→P ′, Q
(ex)a[A]−−−−→Q′

P | τ−→(ex)(P ′ |Q′)

P
λ−→P ′

(x)P
λ−→(x)P ′

x 6∈ n(λ) P
ax−→P ′

(x)P
a(x)−−−→P ′

x 6= a P
(ex)a[A]−−−−→P ′

(y)P
(y)(ex)a[A]−−−−−−→P ′

y ∈ fn(A)− {ex, a}

Fig. 1. LTS of LHOPi

The following two lemmas ensure that the LTS preserves linearity of processes. Their proofs are structure
or transition induction.

Lemma 1. Suppose E[X], F [Y ] are LHOPi processes with at most process variable X or Y . If fv(F ) ∩
cp(E,X) = ∅, then E[F [Y ]] is also a LHOPi process.

Lemma 2. Suppose P, A are LHOPi processes. It holds that: (i) If P
λ−→P ′, where λ is a first-order action

or τ , then P ′ is also a LHOPi process; (ii) If P
a(A)−−−→P ′, then P ′ is also a LHOPi process; (iii) If P

aA−−→P ′,
then P ′, A are LHOPi processes too.

The following lemmas state the properties of LTS concerning substitutions. Their proofs are basically
transition inductions.

Lemma 3. If P is a LHOPi process and P
λ−→P ′ then Pσ

λσ−−→ P ′σ.

Lemma 4. If P is a LHOPi process and fv(P ) = {X1, X2, ..., Xn}. And P1, P2, ..., Pn are LHOPi process.

If P
λ−→P ′ then P{P1/X1, P2/X2, ..., Pn/Xn} λ{P1/X1,P2/X2,...,Pn/Xn}−−−−−−−−−−−−−−−−−−→P ′{P1/X1, P2/X2, ..., Pn/Xn}.

Lemma 5. If P is a LHOPi process and fv(P ) = {X1, X2, ..., Xn}. And b1, b2, ..., bn are fresh names. If

P{b1/X1, b2/X2, ..., bn/Xn} λ{b1/X1,b2/X2,...,bn/Xn}−−−−−−−−−−−−−−−−−→P ′{b1/X1, b2/X2, ..., bn/Xn}, then P
λ−→P ′.

2.3 Bisimulation

A binary relation R on processes is closed under substitution of names if for each substitution σ,
(Pσ,Qσ) ∈ R whenever (P, Q) ∈ R. A relation closed under substitution on process variables can be
defined similarly. We first give the higher-order structural equivalence [12], which is essentially from Thom-
sen’s applicative higher-order bisimilarity [6].

Definition 1 (Structural equivalence). A symmetric binary relation R on processes is a structural
bisimulation if it is closed under substitution of names and whenever PRQ the following holds:

– If P
λ−→P ′, where λ is a silent action, first-order input, first-order output, first-order bound output, or

higher-order input. Then Q
λ−→Q′ for some Q′, and P ′RQ′;

– If P
(ex)aA−−−−→P ′, then some B, Q′ exist s.t. Q

(ex)aB−−−−→Q′, P ′RQ′, and ARB.

Two processes P, Q are structural equivalent, written P ∼ Q, if there exists a structural bisimulation R s.t.
PRQ.

∼ is both an equivalence and a congruence.

Definition 2 (Local bisimulation). A symmetric binary relation R on (closed) processes is a local bisim-
ulation, if it is closed under substitution of names, and whenever PRQ, the following properties hold:

1. If P
τ−→P ′, then Q=⇒Q′ for some Q′ and P ′RQ′;

2. If P
a(x)−−−→P ′, then Q

a(x)
=⇒Q′ for some Q′ and P ′RQ′;

3. If P
ax−→P ′, then Q

ax=⇒Q′ for some Q′ and P ′RQ′;

4. If P
a(x)−−−→P ′, then Q

a(x)
=⇒Q′ for some Q′, and for every process O, (x)(O|P ′) R (x)(O|Q′);

5. If P
a(A)−−−→P ′, then Q

a(A)
=⇒Q′ for some Q′ and P ′RQ′;



On Bisimulation Theory in Linear Higher-Order π-Calculus 5

6. If P
(ex)aA−−−−→P ′ then Q

(ey)aB
=⇒ Q′ for some ỹ, B, Q′, and for every process E[X] s.t. x̃ỹ ∩ fn(E) = ∅ it holds

that (x̃)(E[A]|P ′) R (ỹ)(E[B]|Q′).

We say P is local bisimilar to Q, written P ≈l Q (≈l is local bisimilarity), if there exists a local bisimulation
R s.t. PRQ.

The bisimulation is on closed processes, and can be extended to open processes in the following standard
way. Clauses 4, 6 are in a late style, whereas 5 is in an early style. Corresponding early cases for 4, 6 and
late case for 5 can be defined. Moreover, it is proven that the corresponding early (or late) case is equivalent
to the late (or early) case [12]. Local bisimilarity is an equivalence and congruence relation (excluding
choice operator), and what’s more, as showed by Fu, it is an observed bisimulation [12] that is a general
bisimulation satisfying the least requirements to be qualified for an observational equivalence and somewhat
like barbed bisimulation [14] [11] in that it is closed under contexts, barb preserving and reduction closed.
Up-to technique can be defined on local bisimilarity. For example local bisimulation up-to ∼ can be defined
by replacing R with ∼ R ∼ in the clauses.

The congruence under local contexts is as the following theorem specifies. 'l is built from ≈l a la Milner’s
standard congruence-construction approach [1].

Theorem 1. Suppose (z̃)(c̃z|P ) 'l (z̃)(c̃z|Q) where c̃ are pairwise distinct, then (z̃)(c̃z|C[P ]) 'l (z̃)(c̃z|C[Q]),
for every full context C[·] that has no name collision on c̃, z̃.

The next three theorems clarify the relationship between the equivalence of prefixed processes and the
equivalence of continual processes.

Theorem 2 (Localization). Suppose a /∈ c̃, x /∈ z̃, c̃(fresh) are pairwise distinct, so are z̃. Then the follow-
ing equations are equivalent: (i) (z̃)(c̃z|a(x).P ) ≈l (z̃)(c̃z|a(x).Q); (ii) (z̃)(c̃z|(x)(bx|P )) ≈l (z̃)(c̃z|(x)(bx|Q))
for a fresh name b; (iii) (z̃)(c̃z|(x)(E|P )) ≈l (z̃)(c̃z|(x)(E|Q)) for every process E.

Theorem 3 (Abstraction). Suppose x /∈ z̃, c̃(fresh) are pairwise distinct, so are z̃. Then the following
equations are equivalent: (i) (z̃)(c̃z|a(X).P ) ≈l (z̃)(c̃z|a(X).Q); (ii) (z̃)(c̃z|P{Ib/X}) ≈l (z̃)(c̃z|Q{Ib/X})
for a fresh name b; (iii) (z̃)(c̃z|P{b/X}) ≈l (z̃)(c̃z|Q{b/X}) for a fresh name b; (iv) (z̃)(c̃z|P{E/X}) ≈l

(z̃)(c̃z|Q{E/X}) for every process E.

Theorem 4 (Concretion). Suppose x /∈ z̃, c̃(fresh) are pairwise distinct, so are z̃. Then the following
equations are equivalent: (i) (z̃)(c̃z|(x̃)a[A].P ) ≈l (z̃)(c̃z|(ỹ)a[B].Q) for some name a; (ii) (z̃)(c̃z|(x̃)(b[A]|P ))
≈l (z̃)(c̃z|(ỹ)(b[B]|Q)) for a fresh name b; (iii) (z̃)(c̃z|(x̃)(d.(A+e)|P )) ≈l (z̃)(c̃z|(ỹ)(d.(B+e)|Q)) for fresh
names d, e; (iv) (z̃)(c̃z|(x̃)(E[A]|P )) ≈l (z̃)(c̃z|(ỹ)(E[B]|Q)) for every process E[X].

3 Local linear bisimulation

We will put forth a variant of local bisimulation, called local linear bisimulation, which simplifies the
former by harnessing the special properties of linear processes. Such a variant renders easy the related study,
such as axiomatization and logical characterization. The proof of the coincidence between the variant and
the original bisimilarity is basically a deep exploiting of two theorems, Theorem 3 and Theorem 4.

Definition 3 (Local linear bisimulation). A symmetric binary relation R on (closed) processes is a
local linear bisimulation, if it is closed under substitution of names, and whenever P R Q, the following
properties hold:

1. If P
τ−→P ′, then Q=⇒Q′ for some Q′, and P ′ R Q′;

2. If P
a(x)−−−→P ′, then Q

a(x)
=⇒Q′ for some Q′, and P ′ R Q′;

3. If P
ax−→P ′, then Q

ax=⇒Q′ for some Q′, and P ′ R Q′;
4. If P

a(x)−−−→P ′, then Q
a(x)
=⇒Q′ for some Q′, and for every process O, (x)(O|P ′) R (x)(O|Q′).

5. If P
a(c)−−→P ′, where c is a fresh name, then Q

a(c)
=⇒Q′ for some Q′, and P ′ R Q′;

6. If P
(ex)aA−−−−→P ′, then Q

(ey)aB
=⇒ Q′ for some ỹ, B, Q′. And for a process E[X] of the form c.(X+d), where c, d

are fresh names, it holds that (x̃)(E[A]|P ′) R (ỹ)(E[B]|Q′), that is (x̃)(c.(A+d)|P ′) R (ỹ)(c.(B+d)|Q′).

We say P is local linear bisimilar to Q, written P ≈ll Q, if there exists some local linear bisimulation R
such that PRQ. Hence ≈ll is the largest local linear bisimulation.

Note the difference from local bisimulation in higher-order input and higher-order output, which borrows
some insight into the bisimulation feature on linear higher-order processes and down-scales general higher-
order analysis. Though Theorem 2 looks like Theorem 3 and Theorem 4 in a sense, it differs in that it has
no essential down-scaling effect, as will be seen. It is clear that ∼⊆≈l⊆≈ll. Local linear bisimulation up-to
∼ can be defined in the standard way.
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3.1 Characterizing local linear bisimulation

In this section, we examine the properties of local linear bisimulation.

Lemma 6 (Bisimulation Lemma). Suppose P, Q are processes. If P=⇒· ≈ll Q and Q=⇒· ≈ll P , then
P ≈ll Q.

Lemma 7. Suppose P,Q are processes and R a local linear bisimulation. If P=⇒ · R Q and Q=⇒ · R P ,
then P ≈ll Q.

The two lemmas above serve as a basis for the lemmas henceforth, and the proof is straightforward.
Next are two lemmas forming the basis of equivalence property of ≈ll, and the second also contributes to
the Concretion Theorem (Theorem 7).

Lemma 8. Suppose O, P,Q are processes. If (x)(a.O|P ) ≈ll (x)(a.O|Q) for a fresh name a, then (x)(O|P ) ≈ll

(x)(O|Q).

Proof. As a is fresh, (x)(P |a.R) a−→(x)(P |R) must be simulated by
(x)(Q|a.R)=⇒(x)(Q1|a.R) a−→(x)(Q1|R)=⇒Q′ ≈ll (x)(P |R), which can be rewritten as
(x)(Q|a.R) a−→(x)(Q|R)=⇒Q′ ≈ll (x)(P |R). Similarly we have that (x)(P |R)=⇒P ′ ≈ll (x)(Q|R) for some
P ′. So by Bisimulation Lemma (Lemma 6), we have (x)(P |R) ≈ll (x)(Q|R). ut

Lemma 9. Suppose A, B, P, Q are processes, and a, c, d are fresh names. If (x̃)(a[A]|P ) ≈ll (ỹ)(a[B]|Q),
then (x̃)(c.(A+d)|P ) ≈ll (ỹ)(c.(B+d)|Q).

Proof. Suppose (x̃)(a[A]|P ) ≈ll (ỹ)(a[B]|Q) for a fresh name a. Then (x̃)(a[A]|P )
(fx1)a[A]−−−−−→(x̃2)P , where x̃1x̃2

is x̃. As a is fresh, this must be simulated by (for some Q1, Q
′)

(ỹ)(a[B]|Q)=⇒(ỹ)(a[B]|Q1)
( ey1)a[B]−−−−−→(ỹ2)Q1=⇒(ỹ2)Q′

, where ỹ1ỹ2 is ỹ, such that (ỹ1)(G[B]|(ỹ2)Q′) ≈ll (x̃1)(G[A]|(x̃2)P ), for a process G[X] , c.(X+d) (c, d are
fresh). By α-conversion and structure equivalence, it can be rewritten as (ỹ)(G[B]|Q′) ≈ll (x̃)(G[A]|P ).

It follows from the simulating transition sequence that Q=⇒Q1=⇒Q′, so we have (ỹ)(G[B]|Q)=⇒· ≈ll

(x̃)(G[A]|P ), where the dot is the process (ỹ)(G[B]|Q′). Similarly we know that (x̃)(G[A]|P )=⇒· ≈ll

(ỹ)(G[B]|Q). By Bisimulation Lemma (Lemma 6) we have (x̃)(G[A]|P ) ≈ll (ỹ)(G[B]|Q), which is exactly
(x̃)(c.(A+d)|P ) ≈ll (ỹ)(c.(B+d)|Q). ut

Lemma 10. ≈ll is an equivalence relation.

Proof. We need to take advantage of Lemma 8, Lemma 9 and Bisimulation Lemma (Lemma 6 or Lemma
7). The proof is quite routine after taking this into consideration. ut

Theorem 5. ≈ll is a congruence relation on all the calculus operators except the choice operator.

Proof. We use a similar approach to that in [12] [8]. That is, define the transition closure of a designed
relation saying the desired properties of the bisimilarity, as S0 ,≈ll,

Si+1 ,
{

(τ.P, τ.Q), (a(x).P, a(x).Q), (ax.P, ax.Q), (a(X).P, a(X).Q),
(aA.P, aA.Q), (P |R, Q |R), ((x)P, (x)Q)

∣∣∣∣ P Si Q

}
. And S ,

⋃
i∈ω Si.

And we then show that S is a local linear bisimulation up-to ∼. The details are routine and we skip
them here. ut

The pattern of the proof of Theorem 5 is like that in [12], [8] or even [6]. Also note an alternative approach
for proving congruence property in higher-order process calculi in [15], which is considered more uniform
and general. Related work can be found in [16] [17] [18].

Lemma 11. Suppose E[X], A are processes and E[A] α−→E′[A′], where A contributes in the action. Then

E[Ia]
a(A)−−−→E′′[A] α−→E′[A′], for a fresh name a and some E′′.

Proof. Routine by induction on the derivation height of E[A] α−→E′[A′]. Note the linearity plays an important
part in the proof, since in general E[Ia] has to make several input actions to reach the same state as from
E[A] because X can appear in several (concurrent) positions. Also note the choice operator that results in
the necessity of E′′. ut
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Lemma 12. Suppose P is a process and actions α, β are complementary. If P
α−→P1, P

β−→P2, and P
α−→P1

β−→P ′2,

for some P ′2, or P
β−→P2

α−→P ′1, for some P ′1, and α, β are not from the same sub-process of P , then P
τ−→P3,

for some P3.
Moreover, we have similar result on weak transitions. If P

α=⇒P1, P
β

=⇒P2, and P
α=⇒P1

β
=⇒P ′2, for some

P ′2, or P
β

=⇒P2
α=⇒P ′1, for some P ′1, and α, β are not from the same sub-process of P , then P

τ=⇒P3, for some
P3.

Proof. By induction on the derivation height of P
α−→P1 and P

β−→P2. It is a case analysis of the form of P ,
based on the operational semantics. It is a routine check. The weak case can be derived from the strong
case, tackling the internal action sequence with some care. ut

Remark. This lemma states an operational property. One can refine P3 to be (z̃)P ′2 or (z̃)P ′1 for some local
names z̃, which is empty when the communication involves no local names. We will apply this lemma in,
for example, the proof of the Abstraction theorem of ≈ll.

Theorem 6 (Abstraction). Suppose c̃ are pairwise distinct fresh names, and z̃ are pairwise distinct. Then
the following equations are equivalent:
(i) (z̃)(c̃z|a(X).P ) ≈ll (z̃)(c̃z|a(X).Q) for some name a; (ii) (z̃)(c̃z|P{Ib/X}) ≈ll (z̃)(c̃z|Q{Ib/X}) for
a fresh name b; (iii) (z̃)(c̃z|P{b/X}) ≈ll (z̃)(c̃z|Q{b/X}) for a fresh name b; (iv) (z̃)(c̃z|P{R/X}) ≈ll

(z̃)(c̃z|Q{R/X}) for every process R.
Or sometimes we just need the special case:
(i) a(X).P ≈ll a(X).Q for some name a; (ii) P{Ib/X} ≈ll Q{Ib/X} for a fresh name b; (iii) P{b/X} ≈ll

Q{b/X} for a fresh name b; (iv) P{R/X} ≈ll Q{R/X} for every process R.

Proof. The proof concentrates on the special cases. The general one is not far from the proof here.
(i) ⇔ (iii) is easy by definition.

(ii) ⇔ (iv)
(iii) ⇔ (iv)

}
These two cases are similar in style, and note

(a)(E{Ia/X}|a[A]) ∼ (a)(E{a/X}|a.A).

So we simply consider (iii) ⇔ (iv) here. Since (iv) ⇒ (iii) is obvious, we cope with (iii) ⇒ (iv). We define
the following relation:

R , {(P{R/X}, Q{R/X}) | P{b/X} ≈ll Q{b/X}
b is fresh, R is a process}∪ ≈ll

First we show that R is closed under name substitution. Suppose P{R/X} R Q{R/X} for P{b/X} ≈ll

Q{b/X}. Let σ be a substitution on names and d be a fresh name (not in n(P, Q) and σ). We have
Pσ{d/X} ≈ll Qσ{d/X}, since ≈ll is closed under substitution of names. Then we know
Pσ{Rσ/X} R Qσ{Rσ/X}).

Secondly we show R is a local linear bisimulation up-to ∼. Suppose P{R/X} α−→P ′. Note α is of the form
a(d) in higher-order input. There are several cases to analyze.

– The action α is caused by a copy of R, that is R
α−→R′ for some R′. Note substitution on process variables

should avoid name capturing. So P{R/X} α−→P1{R′/X} ≡ P ′. Now we have the following reasoning (for
some P1, Q1):

P{R/X} α // P1{R′/X}

P{b/X}
≈ll

b(x) // P1{0/X}
≈ll

Q{b/X} b(x) +3 Q1{0/X}

Q{R/X} α +3 Q1{R′/X}
And obviously, one can get, by a simple reasoning, P1{d/X} ≈ll Q1{d/X}, for some fresh name d. Hence
P1{R′/X} R Q1{R′/X}.
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– The action α is caused by P , that is P{R/X} α−→P1{R/X} ≡ P ′. Now we have the following reasoning
(for some P1, Q1):

P{R/X} α // P1{R/X}

P{b/X}
≈ll

α // P1{b/X}

Q{b/X} α̂ +3 Q1{b/X}

Q{R/X} α̂ +3 Q1{R/X}
If α is first-order input, output or higher-order input, the result is straightforward. If α is first-order
bound output or higher-order output, some (similar) minor manipulation is needed. We take first-order
bound output as the example. Suppose α is u(v), in this case, we have, for every process O, and some
P ′1[X] , (v)(O|P1[X]), Q′

1[X] , (v)(O|Q1[X]):

(v)(O|P1{b/X})
≡

≈ll (v)(O|Q1{b/X})
≡

P ′1{b/X} Q′1{b/X}

Then we know P ′1{R/X} R Q′1{R/X}. In summary, P{R/X} α−→P1{R/X} can be simulated by
Q{R/X} α̂=⇒Q1{R/X}.

– The action α is τ , and is caused by a communication between P and R. This is the most involved case
and has totally six sub-cases. We examine them below.

• P
u(v)−−−→P ′, R

u(v)−−−→R′, and P{R/X} τ−→(v)(P ′{R′/X}).
We have the following reasoning (for some P ′′, Q′′, Q′). Note the upper row is simulated by the lower
row, and b is fresh.

P{b/X}
≈ll

b(x) // P ′′{0/X}
≈ll

u(v) // P ′{0/X}
≈ll

Q{b/X} b(x) +3 Q′′{0/X} u(v) +3 Q′{0/X}
Moreover, from the premise we also have

P{b/X}
≈ll

u(v) // P ′{b/X}
≈ll

Q{b/X} u(v) +3 Q′{b/X}

So to summarize a little, we can have (because
u(v)
=⇒ comes from Q)

Q{R/X}u(v)
=⇒Q′{R/X},

Q{R/X}u(v)
=⇒Q′′{R′/X}u(v)

=⇒Q′{R′/X},
P ′{b/X} ≈ll Q′{b/X}.

It follows from this, Lemma 12 and (congruence) property of ≈ll that

Q{R/X} τ=⇒(v)(Q′{R′/X}),
(v)P ′{b/X} ≈ll (v)Q′{b/X}.

Now define P ′′′[X] , (v)P ′[X], Q′′′[X] , (v)Q′[X] so that

P ′′′{R′/X} , (v)(P ′{R′/X}), Q′′′{R′/X} , (v)(Q′{R′/X}).
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Thus we have in summary
P{R/X} τ−→P ′′′{R′/X},
Q{R/X} τ=⇒Q′′′{R′/X},
P ′′′{b/X} ≈ll Q′′′{b/X}.

Hence it follows that
P ′′′{R′/X} R Q′′′{R′/X}.

• P
u(v)−−−→P ′, R

uv−→R′, and P{R/X} τ−→(P ′{R′/X}). This case is similar to the last case.

• P
u(v)−−−→P ′, R

u(v)−−−→R′, and P{R/X} τ−→(v)(P ′{R′/X}).
We have the following reasoning (for some P ′′, Q′′, Q′). Note the upper row is simulated by the lower
row, and b is fresh.

P{b/X}
≈ll

b(x) // P ′′{0/X}
≈ll

u(v) // P ′{0/X}

Q{b/X} b(x) +3 Q′′{0/X} u(v) +3 Q′{0/X}

And for every process O, (v)(O|P ′{0/X}) ≈ll (v)(O|Q′{0/X}). Moreover, from the premise we also
have

P{b/X}
≈ll

u(v) // P ′{b/X}

Q{b/X} u(v) +3 Q′{b/X}

And for every process O, (v)(O|P ′{b/X}) ≈ll (v)(O|Q′{b/X}). So to summarize a little, we can
have

Q{R/X}u(v)
=⇒Q′{R/X},

Q{R/X}u(v)
=⇒Q′′{R′/X}u(v)

=⇒Q′{R′/X},
(v)(O|P ′{b/X}) ≈ll (v)(O|Q′{b/X}), for every O.

It follows from this, Lemma 12 and taking O as 0 (null process) that

Q{R/X} τ=⇒(v)(Q′{R′/X}),
(v)P ′{b/X} ≈ll (v)Q′{b/X}.

Now define P ′′′[X] , (v)P ′[X], Q′′′[X] , (v)Q′[X] so that

P ′′′{R′/X} , (v)(P ′{R′/X}), Q′′′{R′/X} , (v)(Q′{R′/X}).

Thus we have in summary
P{R/X} τ−→P ′′′{R′/X},
Q{R/X} τ=⇒Q′′′{R′/X},
P ′′′{b/X} ≈ll Q′′′{b/X}.

Hence it follows that P ′′′{R′/X} R Q′′′{R′/X}.
• P

uv−→P ′, R
u(v)−−−→R′, and P{R/X} τ−→(P ′{R′/X}). This case is similar to the last case.

• P
u(A)−−−→P ′, R

(ez)u[A]−−−−→R′, and P{R/X} τ−→(z̃)(P ′{R′/X}). This case is somewhat similar to the first
case. We have the following reasoning (for some P ′′, Q′′, Q1, P1). Note the upper row is simulated
by the lower row, and b is fresh. Suppose c is fresh.

P{b/X}
≈ll

b(x) // P ′′{0/X}
≈ll

u(c) // P1{0/X}
≈ll

Q{b/X} b(x) +3 Q′′{0/X} u(c) +3 Q1{0/X}
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where P1 ≡ P ′{c/A}. Moreover, from the premise we also have

P{b/X}
≈ll

u(c) // P1{b/X}
≈ll

Q{b/X} u(c) +3 Q1{b/X}
So to summarize a little, we can have

Q{R/X}u(c)
=⇒Q1{R/X},

Q{R/X}(ez)u[A]
=⇒ Q′′{R′/X}u(c)

=⇒Q1{R′/X},
P1{b/X} ≈ll Q1{b/X}.

Then we have (for some Q′)

Q{R/X}u(A)
=⇒Q′{R/X},

Q{R/X}(ez)u[A]
=⇒ Q′′{R′/X}u(A)

=⇒Q′{R′/X},
P ′{c/A}{b/X} ≈ll Q′{c/A}{b/X},

where Q1 ≡ Q′{c/A}. It follows from this, Lemma 12

Q{R/X} τ=⇒(z̃)(Q′{R′/X}). (1)

We define some P ′1[Y ] and Q′
1[Y ] (Y is different from X) such that

P ′1{c/Y } ≡ P1, P
′
1{A/Y } ≡ P ′;

Q′
1{c/Y } ≡ Q1, Q

′
1{A/Y } ≡ Q′.

Then P ′1{c/Y }{b/X} ≈ll Q′1{c/Y }{b/X}. Since Y and X are different, we know that
P ′1{b/X}{c/Y } ≈ll Q′1{b/X}{c/Y }. Now by the definition (structure of R) we know
P ′1{b/X}{A/Y } R Q′

1{b/X}{A/Y }. That is P ′1{A/Y }{b/X} R Q′1{A/Y }{b/X}. And this is ex-
actly P ′{b/X} R Q′{b/X}. Again by the definition (of R) we have in any case P ′{b′/X} ≈ll

Q′{b′/X}, for a fresh name b′. By the (congruence) property of ≈ll it follows that

(z̃)P ′{b′/X} ≈ll (z̃)Q′{b′/X}. (2)

Now define P ′′′[X] , (z̃)P ′[X], Q′′′[X] , (z̃)Q′[X] so that

P ′′′{R′/X} , (z̃)(P ′{R′/X}), Q′′′{R′/X} , (z̃)(Q′{R′/X}).
Thus we have in summary

P{R/X} τ−→P ′′′{R′/X},
Q{R/X} τ=⇒Q′′′{R′/X}, by (1),
P ′′′{b′/X} ≈ll Q′′′{b′/X}, by (2).

Hence it follows that P ′′′{R′/X} R Q′′′{R′/X}.
• P

(ez)u[A]−−−−→P ′, R
u(A)−−−→R′, and P{R/X} τ−→(z̃)(P ′{R′/X}).

We have the following reasoning (for some z̃′, B, P ′′, Q′′, Q′). Note the upper row is simulated by
the lower row, and b is fresh.

P{b/X}
≈ll

b(x) // P ′′{0/X}
≈ll

(ez)u[A]// P ′{0/X}

Q{b/X} b(x) +3 Q′′{0/X}(
ez′)u[B]+3 Q′{0/X}

And for a process E[X] ≡ c.(X+d) (c, d are fresh), (z̃)(E[A]|P ′{0/X}) ≈ll (z̃′)(E[B]|Q′{0/X}).
Moreover, from the premise we also have:

P{b/X}
≈ll

(ez)u[A]// P ′{b/X}

Q{b/X} (ez′)u[B]+3 Q′{b/X}



On Bisimulation Theory in Linear Higher-Order π-Calculus 11

And for a process E[X] ≡ c.(X+d) (c, d are fresh), (z̃)(E[A]|P ′{b/X}) ≈ll (z̃′)(E[B]|Q′{b/X}). So
to summarize a little, we can have (for some R′′ such that R′′ ≡ R′{B/A})

Q{R/X}(ez
′)u[B]
=⇒ Q′{R/X}, (3)

Q{R/X}u(B)
=⇒Q′′{R′′/X}(ez

′)u[B]
=⇒ Q′{R′′/X}, (4)

(z̃)(c.(A+d)|P ′{b/X}) ≈ll (z̃′)(c.(B+d)|Q′{b/X}). (5)

It follows from (3), (4), and Lemma 12 that

Q{R/X} τ=⇒(z̃′)(Q′{R′′/X}). (6)

By Concretion Theorem (Theorem 7) and (5), (z̃)(G[A]|P ′{b/X}) ≈ll (z̃′)(G[B]|Q′{b/X}), for every
G[Y ]. It is easy to know that there exists some R′′′[Y ] such that

R′′′{A/Y } ≡ R′, R′′′{B/Y } ≡ R′′.

Now choose G[Y ] ≡ b.(R′′′[Y ]+d), then we get

(z̃)(b.(R′′′{A/Y }+d)|P ′{b/X}) ≈ll (z̃′)(b.(R′′′{B/Y }+d)|Q′{b/X}),

that is (z̃)(b.(R′+d)|P ′{b/X}) ≈ll (z̃′)(b.(R′′+d)|Q′{b/X}). Thus by Lemma 14, we have
(z̃)(P ′{R′/X}) ≈ll (z̃′)(Q′{R′′/X}). Hence (z̃)(P ′{R′/X}) R (z̃′)(Q′{R′′/X}). Taking (6) into
consideration, this closes the simulation.

By here the proof is completed. ut
Below we consider the Concretion Theorem, before whose proof we give some auxiliary lemmas.

Lemma 13. Suppose a, b are fresh names, E[X] is an arbitrary process with at most process variable X,
and A is a process. We have the following properties:

1. If (x̃)E[A] λ−→P , where A takes part in the action, then (x̃)(E[a]|a.(A+b)) λ=⇒P ′ for some P ′, and P ∼ P ′;
2. The converse. If (x̃)(E[a]|a.(A+b)) λ=⇒P ′ and a, b do not appear in P ′ (and λ either), then we have

(x̃)E[A] λ=⇒P for some P , and P ′ ∼ P .

Proof. The proof is essentially the same as Lemma 22 in [12] and note linearity plays an essential part, so
we omit the detail. ut
Lemma 14. Suppose a, b, c̃ are all fresh names, and E[X], F [X] are processes. If (x̃)(c̃x|(ỹ)(a.(A+b)|E[a])) ≈ll

(x̃)(c̃x|(z̃)(a.(B+b)|F [a])), then (x̃)(c̃x|(ỹ)E[A]) ≈ll (x̃)(c̃x|(z̃)F [B]). Or we just need the special case. If
(ỹ)(a.(A+b)|E[a]) ≈ll (z̃)(a.(B+b)|F [a]), then (ỹ)E[A] ≈ll (z̃)F [B].

Proof. Since handling of local contexts is somewhat regular [12], the proof focuses on the contents in the
local environment. It is just proving the special case.

We define a relation R as follows:
R , {((ỹ)E[A], (z̃)F [B]) | (ỹ)(a.(A+b)|E[a]) ≈ll (z̃)(a.(B+b)|F [a]), a, b are fresh}∪ ≈ll. We show that R is
a local linear bisimulation up-to ∼. It is easy to show that R is closed under substitution of names, so this
is skipped. Suppose (ỹ)E[A]R(z̃)F [B], and (ỹ)E[A] λ−→P . We have the following analysis.

– A does not take part in the action λ. Then we know that there exists E1[X] such that P ≡ (ỹ)E1[A].
By this we have (ỹ)(a.(A+b)|E[a]) λ−→(ỹ)(a.(A+b)|E1[a]). From the premise, we have the next simulation
for some F1[X]: (z̃)(a.(B+b)|F [a]) λ=⇒(z̃)(a.(B+b)|F1[a]), which is the only possibility because a, b are
fresh. Therefore, we know that (z̃)F [B] λ=⇒(z̃)F1[B].
• λ is a silent action, first-order input, output or higher-order input. This case is direct. We have

(z̃)(a.(B+b)|F1[a]) ≈ll (ỹ)(a.(A+b)|E1[a]). Then (ỹ)E1[A] R (z̃)F1[B].
• λ is a first-order bound output or higher-order output. This case is a little complicated. We take the

first-order bound output as example, the higher-order output case is similar. Suppose λ is u(v). We
have for every process O, (v)(O|(ỹ)(a.(A+b)|E1[a])) ≈ll (v)(O|(z̃)(a.(B+b)|F1[a])), which results
in (ỹv)(a.(A+b)|(E1[a]|O)) ≈ll (z̃v)(a.(B+b)|(F1[a]|O)), thanks to α-conversion. Define E′

1[X] ,
E1[X]|O, F ′1[X] , F1[X]|O. So we have (ỹv)(a.(A+b)|E′

1[a]) ≈ll (z̃v)(a.(B+b)|F ′1[a]), and
(v)(O|(ỹ)E1[A]) ∼ (ỹv)(E1[A]|O) ≡ (ỹv)(E′

1[A]), also (v)(O|(z̃)F1[B]) ∼ (z̃v)(F1[B]|O) ≡ (z̃v)(F ′1[B]).
Now we know (ỹv)(E′

1[A]) R (z̃v)(F ′1[B]).
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– A is involved in the action λ. Then by Lemma 13, (ỹ)(a.(A+b)|E[a]) λ=⇒P1, for some P1, and P1 ∼ P .

From the premise, we know that (z̃)(a.(B+b)|F [a]) λ′=⇒Q1, for some Q1. A simple analysis can tell us

that neither the fresh name a nor b shall appear in Q1. So again by Lemma 13, we have (z̃)F [B] λ′=⇒Q,
for some Q, and Q ∼ Q1.
• λ is a silent action, first-order input, output or higher-order input. In this case, λ′ is just λ. We have

immediately P ∼ P1 ≈ll Q1 ∼ Q.
• λ is a first-order bound output or higher-order output. We take the higher-order output as example,

the first-order bound output case is similar. Suppose λ is (ṽ)u[H] and λ′ is (ṽ′)u[K]. We have for
a process G[X] ≡ d.(X+e) (d, e are fresh): (ṽ)(G[H]|P1) ≈ll (ṽ′)(G[K]|Q1). Since (ṽ)(G[H]|P ) ∼
(ṽ)(G[H]|P1), (ṽ′)(G[K]|Q1) ∼ (ṽ′)(G[K]|Q), we are finished.

Hence R is a local linear bisimulation up-to ∼. ut
Theorem 7 (Concretion). Suppose c̃ are pairwise distinct fresh names, and z̃ are pairwise distinct. Then
the following equations are equivalent:
(i) (z̃)(c̃z|(x̃)a[A].P ) ≈ll (z̃)(c̃z|(ỹ)a[B].Q) for some name a; (ii) (z̃)(c̃z|(x̃)(b[A]|P ) ≈ll (z̃)(c̃z|(ỹ)(b[B]|Q)
for a fresh name b; (iii) (z̃)(c̃z|(x̃)(c.(A+d)|P ) ≈ll (z̃)(c̃z|(ỹ)(c.(B+d)|Q)) for fresh names c, d;
(iv) (z̃)(c̃z|(x̃)(E[A]|P ) ≈ll (z̃)(c̃z|(ỹ)(E[B]|Q) for every process E[X].
Or we just need the special case:
(i) (x̃)a[A].P ≈ll (ỹ)a[B].Q for some name a; (ii) (x̃)(b[A]|P ) ≈ll (ỹ)(b[B]|Q) for a fresh name b;
(iii) (x̃)(c.(A+d)|P ) ≈ll (ỹ)(c.(B+d)|Q) for fresh names c, d; (iv) (x̃)(E[A]|P ) ≈ll (ỹ)(E[B]|Q) for every
process E[X].

Proof. The proof as usual focuses on the contents in the local environment. We prove this theorem in the
following strategy:
1 definition⇐⇒ 3 lemma 14

=⇒ 4

direct

x¡ xx
xx

xx
xx

xx

xx
xx

xx
xx

xx

2

lemma 9

^f FFFFFFFFFF

FFFFFFFFFF

Most is straightforward. Something worth noting is the ap-

plying of Lemma 14 in 3 ⇒ 4. Since ≈ll is closed under parallel composition, we have, for every process
E[X]: (x̃)(c.(A+d)|P )|E[c] ≈ll (ỹ)(c.(B+d)|Q)|E[c], which can be equivalently transformed to
(x̃)(c.(A+d)|(P |E[c])) ≈ll (ỹ)(c.(B+d)|(Q|E[c])). By defining E′[X] , P |E[X], E′′[X] , Q|E[X], we have
(x̃)(c.(A+d)|E′[c]) ≈ll (ỹ)(c.(B+d)|E′′[c]). Then by Lemma 14, (x̃)(E′[A]) ≈ll (ỹ)(E′′[B]), which is exactly
(x̃)(P |E[A]) ≈ll (ỹ)(Q|E[B]). To summary (by commutativity of ≈ll) we have (x̃)(E[A]|P ) ≈ll (ỹ)(E[B]|Q),
for every process E. We are done. ut

3.2 Coincidence with local bisimilarity

Below is the important theorem for local linear bisimilarity. It constitutes the main result of this paper.

Theorem 8. Local linear bisimilarity coincides with local bisimilarity, that is ≈l = ≈ll.

Proof. A routine checking based on the definition of the two bisimulations, by taking the following two
theorems into consideration: (i) Abstraction Theorem (Theorem 6); (ii) Concretion Theorem (Theorem 7).
We prove ≈l = ≈ll in two steps.
“⊆””. This direction is straightforward. Because by the definitions (examining each clause in the definitions),
every local bisimulation is a local linear bisimulation. That is, local linear bisimilarity is not less than local
bisimilarity.
“⊇””. We show that R , {(P,Q) | P ≈ll Q, P,Q are LHOPi processes}∪ ≈l is a local bisimulation. One
has to examine the clauses in the definition of local bisimulation one by one. The most difficult cases are
higher-order input and output. Below we analyze each of them. Suppose PRQ because P ≈ll Q.

(i). P
τ−→P ′; (ii). P

a(x)−−−→P ′

(iii). P
ax−→P ′; (iv). P

a(x)−−−→P ′

}
These cases are not hard, since the simulation clauses
in ≈ll are stating the same things as those in local bisimulation.

(v). P
a(A)−−−→P ′. Clearly we can define P ′′[X] so that P ′′{A/X} ≡ P ′. Then P

a(b)−−→P ′′{b/X}, for a fresh

name b. Since P ≈ll Q, we have Q
a(b)
=⇒Q′′{b/X} for some Q′′, and thus Q

a(A)
=⇒Q′′{A/X} , Q′, mean-

while P ′′{b/X} ≈ll Q′′{b/X}. Then by Abstraction Theorem on ≈ll (Theorem 6), P ′ ≡ P ′′{A/X} ≈ll

Q′′{A/X} ≡ Q′, which leads to P ′ R Q′.

(vi). P
(ex)a[A]−−−−→P ′. Because P ≈ll Q, we know that there exist some ỹ, B, Q′ such that Q

(ey)a[B]
=⇒ Q′, and for

a process E[X] , c.(X+d) (c, d are fresh), (x̃)(E[A]|P ′) ≈ll (ỹ)(E[B]|Q′). That is (x̃)(c.(A+d)|P ′) ≈ll
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(ỹ)(c.(B+d)|Q′). Then by Concretion Theorem on ≈ll (Theorem 7), we have, for every process G[X] (with
no name collision) (x̃)(G[A]|P ′) ≈ll (ỹ)(G[B]|Q′), which is exactly what we need to close the simulation,
that is (x̃)(G[A]|P ′) R (ỹ)(G[B]|Q′). Now the proof is completed. ut

3.3 On first-order bound output

What if we try simplifying the clause of first-order bound output in local bisimulation using Localization
Theorem (Theorem 2), in the way like what we have done for higher-order actions? Will it be effective as
in the higher-order output? Considering the characteristic of linear higher-order processes and the essence
of Localization Theorem, our answer is NO. We have the following points.

– If we try to use (ii) in Localization Theorem to simplify the local bisimulation, that is, in the simulation
step a special process bx (b is fresh) rather than an arbitrary process O is required, the obtained
bisimulation (local linear bisimulation with this modification on first-order bound output clause, we
denote it by “LLN bisimulation”) may not even have the corresponding Localization Theorem, because
the (iii) cannot be reached under a simplified simulation condition. So one cannot recover the original
local bisimilarity.

– In the “LLN bisimulation” , the first-order bound output cannot be eliminated in simulation, because
the simulation result says the same thing as before the simulation, which may cause loop definition. One
shall avoid this anytime.

– Apart from the special process bx, which contributes nothing to simplification, no other special process
is known to exist to replace the arbitrary process O without loss of generality. We tend to believe no
such process exist.

Although the first-order bound output clause in local bisimulation cannot be simplified, it can be rewrit-
ten in a form that eases discussion. In other words, the ‘simplification’ here is in the sense that it can provide
some simple means in tackling local bisimulation in the case of first-order bound output.

Definition 4. A symmetric binary relation R on (closed) processes is a local linear variant bisimulation,
if it is closed under substitution of names, and whenever P R Q, the following properties hold:

1. If P
τ−→P ′, then Q=⇒Q′ for some Q′, and P ′ R Q′;

2. If P
a(x)−−−→P ′, then Q

a(x)
=⇒Q′ for some Q′, and P ′ R Q′;

3. If P
ax−→P ′, then Q

ax=⇒Q′ for some Q′, and P ′ R Q′;
4. If P

a(x)−−−→P ′, then Q
a(x)
=⇒Q′ for some Q′, and for all processes O1 and O2 such that O1 R O2, it holds

that (x)(O1|P ′) R (x)(O2|Q′);
5. If P

a(c)−−→P ′, where c is a fresh name, then Q
a(c)
=⇒Q′ for some Q′, and P ′ R Q′;

6. If P
(ex)aA−−−−→P ′, then Q

(ey)aB
=⇒ Q′ for some ỹ, B, Q′. And for a process E[X] of the form c.(X+d), where c, d

are fresh names, it holds that (x̃)(E[A]|P ′) R (ỹ)(E[B]|Q′).
We say P is local linear variant bisimilar to Q, written P ≈v

ll Q, if there exists some local linear variant
bisimulation R such that P R Q.

It can be shown, in a fashion similar to that of ≈ll, that ≈v
ll is an equivalence relation and a congruence.

Theorem 9. ≈v
ll is an equivalence relation and a congruence relation on all the calculus operators except

the choice operator.

Theorem 10. Local linear variant bisimilarity coincides with local linear bisimilarity, that is ≈ll = ≈v
ll.

Proof. We focus on the first-order bound output case in two bisimulations, since that is where the difference
in the definitions lies. We recall the two clauses in each definition.

1. In ≈ll: If P
a(x)−−−→P ′, then Q

a(x)
=⇒Q′ for some Q′, and for every process O, (x)(O|P ′) ≈ll (x)(O|Q′).

2. In ≈v
ll: If P

a(x)−−−→P ′, then Q
a(x)
=⇒Q′ for some Q′, and for all processes O1 and O2 such that O1 ≈v

ll O2,
(x)(O1|P ′) ≈v

ll (x)(O2|Q′).

“ ⊆ ”. This case is straightforward, since 1 is a special case of 2, by choosing O2 ≡ O1.
“ ⊇ ”. This case is a little complex, in that it needs to exploit the congruence properties of ≈v

ll (The-
orem 9), specifically the closure under parallel composition and restriction. We can define a relation:
R , {(P, Q) | P ≈v

ll Q}∪ ≈v
ll, and show R is a local linear bisimulation. In the first-order bound out-

put case, we have (x)(O1|P ′) ≈v
ll (x)(O2|Q′) ≈v

ll (x)(O1|Q′), thanks to the congruence properties. Now we
conclude that ≈ll = ≈v

ll. ut
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Remark. Notice that all the bisimulations we define till now are of late style in first-order bound output
and higher-order output. We can define (respectively) the early ones on these clauses accordingly. Using a
similar approach to that in [12], one can readily prove that the early versions coincide with the corresponding
late versions. We will take advantage of this fact in the future work on logical characterization, as will be
mentioned in the conclusion.

4 Conclusion

In this paper, starting from previous work on bisimulation theory of higher-order process calculi, we arrive
at a recent result on bisimulation theory in linear higher-order π-calculus, which is proposed to reduce the
power of higher-order calculi so that an equation system is guaranteed. Local bisimulation is an intuitively
reasonable observational equivalence enjoying such characteristics as closure under substitution, equivalence,
and congruence. By exploiting the properties of linear processes, we design two variants, which simplify local
bisimulation and are coincident on bisimilarities. The first variant, called local linear bisimulation, simplifies
the higher-order input and higher-order output simulation steps in local bisimulation through examining
the essence in Abstraction Theorem and Concretion Theorem. The coincidence proof is non-trivial and new.
The second variant, called local linear variant bisimulation, adjusts the first-order bound output in local
bisimulation to make it more appropriate for some analysis like axiomatization and logical characterization,
by making use of the congruence properties.

Future work

Some future work based on the result in this paper can be addressed. We mention several of them below.

– Recursion. Our calculus here is free of recursion operator or fix-point operator. This can provide us a
complete axiom system, as shown in [12]. Albeit the inclusion of recursion would grant the calculus the
power of Turing machines, it can enrich the diversity of the behavior of processes and the description
capability, especially in cooperation with restriction and possibly relabelling which we do not include
here either. We think that the inclusion of recursion would not shatter the main result in this paper,
that is the simplification can still be obtained through a similar technical routine. The difference worth
noticing is in the proof concerning process structures, where one shall not use induction on process
structure any more, but induction on derivation height instead, because the recursion can increase the
complexity of a process during transitions.

– Logical characterization. Another immediate yet important task starting off from the bisimulation theory
in this paper is to achieve a logical characterization of local bisimulation, which can complement the
algebraic theory and enable practical modeling and verification using LHOPi. Related work on logically
characterizing bisimulations in higher-order process calculi is [19], where strong context bisimulation
in higher-order π-calculus is characterized, and [20], where weak context bisimulation in higher-order
π-calculus is characterized. The framework is likewise. We summarize a little the rough pattern of logical
characterization.
1. Target bisimulation in some process calculus;
2. Its variant(s) tailored for logical characterization;
3. The variant’s coincidence with the original bisimulation on bisimilarities;
4. The approximation of the variant bisimilarity using a chain of “bisimulations”;
5. The (modal) logic for characterizing the variant bisimulation;
6. The characteristic formulas for aiding the proof of the characterization theorem;
7. The characterization theorem, that is the coincidence between the bisimilarity and logical equiva-

lence.
A direct logical characterization of local bisimulation is possible by the results in [19] [20]. However
since we are dealing with linear processes, the bisimulation is expected to enjoy a simpler form of logical
characterization. The work in this paper indeed provides the simplification of local bisimulation. That is
we can characterize local linear variant bisimulation instead. We recall that the simplification resides in
higher-order input and output, but first-order bound output clause cannot be simplified, though some
more desirable form is available. The existence of first-order bound output results in the necessity of
using constructive implication in the logic.
In summary, we can see that the results in this paper has settled several parts in the pattern above
of logical characterization. The next task is to exercise the design of logic, for which we utilize related
results and technique in [19] [20], where the main contribution is the constructive implication operator
(⇒) that is used to specifies the property of a function process, which is a process with process variables
appearing in it. For example, ² P [X] : φ ⇒ φ′ means that when inputted with a process R satisfying
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φ, the obtained process P{R/X} shall satisfy φ′. Moreover, to accomplish the logical characterization,
one has to reformulate the calculus under a new framework to tailor the processes to be suitable for
a logical description. And the reformulation must be equivalent to the original calculus in the sense of
bisimulation. After all the preparation, we have to go through a number of technical steps to arrive at
the characterization theorem that relates logical equivalence to bisimulation equivalence. The task is not
so trivial. For now we think our logic may be composed of three parts:
1. Traditional parts from modal logic for first-order mobile processes, like those in [21];
2. Parts on constructive implication or something alike to handle first-order bound output;
3. Parts concerning the higher-order input and output based on the simplification in local linear variant

bisimulation.
We work on this task in [22]. In order to prepare for future work and make the bisimulation theory more
complete, we also adopt the traditional approach to approximate local bisimilarity in the appendix A.
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A Approximating local bisimilarity

In this section, we define a descending chain of “bisimulation” equivalence relations (indexed by ordinal
k) to approximate the local linear variant bisimilarity. We include this as an extra credit on bisimulation



16 Xian Xu

theory to make it more complete, and moreover, it can serve as a basis for further work such as a logical
characterization.

Below is the definition of the function F and a family of relations ≈k (k ≤ ω is an ordinal). We use
k, l..., λ, κ... for ordinals, I, J for index sets, and ω is the first transfinite ordinal.

Definition 5. Define the function F : Pr2
0 → Pr2

0 as below: P F(R) Q if F(R) is closed under substitution
of names and the following properties hold:

1. If P
τ−→P ′, then Q=⇒Q′ for some Q′, and P ′ R Q′;

2. If P
a(x)−−−→P ′, then Q

a(x)
=⇒Q′ for some Q′, and P ′ R Q′;

3. If P
ax−→P ′, then Q

ax=⇒Q′ for some Q′, and P ′ R Q′;

4. If P
a(x)−−−→P ′, then Q

a(x)
=⇒Q′ for some Q′, and for all (closed) processes O1 and O2 such that O1 R O2,

(x)(O1|P ′) R (x)(O2|Q′).

5. If P
a(c)−−→P ′, where c is a fresh name, then Q

a(c)
=⇒Q′ for some Q′, and P ′ R Q′;

6. If P
(ex)aA−−−−→P ′, then Q

(ey)aB
=⇒ Q′ for some ỹ, B, Q′. And for a process E[X] of the form c.(X+d), where c, d

are fresh names, it holds that (x̃)(E[A]|P ′) R (ỹ)(E[B]|Q′).
And vice versa.

Now the hierarchy ≈k (k < ω is an ordinal) can be defined as (λ is a transfinite ordinal):

≈0 = Pr2
0

≈k+1 = F(≈k)
≈λ =

⋂
k<λ ≈k

The relation ≈k can be extended to open processes in the usual fashion.

Based on the definition above, we have the following two important propositions.

Proposition 1 (F properties). Suppose 2Pr2
0 is a complete lattice with the order of set inclusion on it.

Then the following properties hold:

1. F is monotone. That is If k < k′, then ≈k′ ⊆ ≈k.
2. R is a bisimulation iff R ⊆ F(R);
3. If {Xi}i∈I is a codirected set, then F(

⋂
i∈I Xi) =

⋂
i∈I F(Xi);

4. The greatest bisimulation ≈v
ll exists and it coincides with ≈ω. That is ≈ω = ≈v

ll.

Proof. The proof is of the traditional style like that in [19] [20] [1] [21]. As an example, we focus on 4 to
show that ≈ω = ≈v

ll. The existence of ≈ω is not hard.
“⊇”. By induction on the ordinal k < ω. When k = 0, it is obvious that ≈v

ll⊆≈0. Now suppose ≈v
ll⊆≈k,

we show that ≈v
ll⊆≈k+1. Suppose P ≈v

ll Q. We have the following analysis:

1. If P
τ−→P ′, then Q=⇒Q′ for some Q′, and P ′ ≈v

ll Q′;

2. If P
a(x)−−−→P ′, then Q

a(x)
=⇒Q′ for some Q′, and P ′ ≈v

ll Q′;

3. If P
ax−→P ′, then Q

ax=⇒Q′ for some Q′, and P ′ ≈v
ll Q′;

4. If P
a(x)−−−→P ′, then Q

a(x)
=⇒Q′ for some Q′, and for all (closed) processes O1 and O2 such that O1 ≈v

ll O2,
(x)(O1|P ′) ≈v

ll (x)(O2|Q′).

5. If P
a(c)−−→P ′, where c is a fresh name, then Q

a(c)
=⇒Q′ for some Q′, and P ′ ≈v

ll Q′;

6. If P
(ex)aA−−−−→P ′, then Q

(ey)aB
=⇒ Q′ for some ỹ, B, Q′. And for a process E[X] of the form c.(X+d), where c, d

are fresh names, it holds that (x̃)(E[A]|P ′) ≈v
ll (ỹ)(E[B]|Q′).

This suffices to show that ≈v
ll⊆≈k+1, by induction hypothesis.

“⊆”. We show that ≈ω is a local linear variant bisimulation (through definition checking). Suppose
P ≈ω Q, then for every (k + 1) < ω, P ≈k+1 Q. Thus we have the analysis below:

1. If P
τ−→P ′, then Q=⇒Q′ for some Q′, and P ′ ≈k Q′;

2. If P
a(x)−−−→P ′, then Q

a(x)
=⇒Q′ for some Q′, and P ′ ≈k Q′;

3. If P
ax−→P ′, then Q

ax=⇒Q′ for some Q′, and P ′ ≈k Q′;

4. If P
a(x)−−−→P ′, then Q

a(x)
=⇒Q′ for some Q′, and for all (closed) processes O1 and O2 such that O1 ≈k O2,

(x)(O1|P ′) ≈k (x)(O2|Q′).
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5. If P
a(c)−−→P ′, where c is a fresh name, then Q

a(c)
=⇒Q′ for some Q′, and P ′ ≈k Q′;

6. If P
(ex)aA−−−−→P ′, then Q

(ey)aB
=⇒ Q′ for some ỹ, B, Q′. And for a process E[X] of the form c.(X+d), where c, d

are fresh names, it holds that (x̃)(E[A]|P ′) ≈k (ỹ)(E[B]|Q′).
In any case, P can be matched by Q, and it holds for every k + 1. By this and a standard argument on
ordinals, we conclude that ≈ω is a local linear variant bisimulation.

Another is on the congruence property of ≈k.

Proposition 2 (Congruence of ≈k). The relation ≈k (k ≤ ω) is a congruence with respect to all the
operators in the calculus except the choice operator. That is, suppose Pi ≈k Qi (i = 1, 2) and P ≈k Q, then

τ.P ≈k τ.Q
c(x).P ≈k c(x).Q, cx.P ≈k cx.Q
c(X).P ≈k c(X).Q, cP1.P2 ≈k cQ1.Q2

(x)P ≈k (x)Q
P1|P2 ≈k Q1|Q2

Proof. Routine check using similar approach to that in the proof of the congruence of ≈v
ll.


