算法设计与分析

关于两个有序数组的中位数寻找

Lecturer: 杨启哲 Last modified: 2024 年 10 月 27 日

这是一个对 Leetcode 上的题目4. 寻找两个正序数组的中位数的额外解释。本题的描述如下:

问题描述: 寻找两个正序数组的中位数

给定两个大小分别为 \mathfrak{m} 和 \mathfrak{n} 的正序(从小到大)数组 \mathfrak{A} 和 \mathfrak{B} 。请找出并返回这两个正序数组的中位数。

我们不再阐述 $O(\log(m+n))$ 的二分查找算法。事实上,我们能给出一个时间复杂度为 $O(\log(\min(m,n)))$ 的算法,算法的基本思想如下:

寻找到最大的 i,使得 $A[i] \leq B[\lfloor \frac{m+n+1}{2} \rfloor - i + 1]$

我们断言,中位数一定在 A[i+1], A[i], $B[\lfloor \frac{m+n+1}{2} \rfloor - i + 1]$, $B[\lfloor \frac{m+n+1}{2} \rfloor - i]$ 这四个数之间产生。从而我们可以通过在较小的那个数组中进行二分查找来找到这个 i,因此算法是 $O(\log(\min(m,n)))$ 的。

下面我们来解释为什么要选择这么一个 i。由对称性,不妨令 $m \le n$. 为了方便讨论,我们对每个数组添加两个虚拟元素,即 $A[0] = B[0] = -\infty$, $A[m+1] = B[n+1] = \infty$ 。注意这些元素只是更好的处理边界情况,并不计算在中位数的排序在内。

对任意的 $i \in [0,1,\ldots,m]$ 和 $j \in [0,1,\ldots,n]$,该下标对给出了两个数组的一个划分:

- $V_1 = \{A[1], \dots, A[i], B[1], \dots, B[j]\}, |V_1| = i + j_o$
- $V_2 = \{A[i+1], \dots, A[m], B[j+1], \dots, B[n]\}, |V_2| = m+n-i-j_o$

特别的,我们可以令 $\mathbf{j} = \lfloor \frac{\mathbf{m} + \mathbf{n} + 1}{2} \rfloor - \mathbf{i} (\mathbf{z} \mathbf{j} > \mathbf{m}$ 的话我们忽略该划分),则我们可以保证:

- 当 m + n 为偶数时, $|V_1| = |V_2|$ 。
- 当 m + n 为奇数时, $|V_1| = |V_2| + 1$ 。

选取满足上述条件的(i,j)时,两个集合基本上被划分为两个大小相等的部分。此时,如果有:

$$\max_{x \in V_1} x \leqslant \min_{y \in V_2} y$$

也就是说, V_1 中的最大值小于等于 V_2 中的最小值,那么我们就找到了中位数,其为 $\max_{x \in V_1} x$ 或者 $\frac{1}{2}(\max_{x \in V_1} x + \min_{y \in V_2} y)$,并且我们有:

- $\max_{\mathbf{x} \in \mathbf{V}_1} \mathbf{x} = \max\{\mathbf{A}[\mathbf{i}], \mathbf{B}[\mathbf{j}]\}.$
- $\min_{y \in V_2} y = \min\{A[i+1], B[j+1]\}.$

因此上述条件转化成了寻找 $i \in [0, 1, ..., m]$ 满足:

$$A[i] \leq B[j+1]$$
 $B[j] \leq A[i+1]$

我们进一步证明,这等价于下面的叙述:

寻找到最大的i,使得 $A[i] \leq B[j+1]$

我们分两步说明:

- 1. 最大使得 $A[i] \le B[j+1]$ 的 i,一定满足 $A[i] \le B[j+1]$ 且 $B[j] \le A[i+1]$ 。 这是因为由定义: A[i+1] > B[j].(否则 i 不是最大的)。
- 2. 这样的 i 一定存在。

考虑 A 和 B 两个数组中第 $\lfloor \frac{m+n+1}{2} \rfloor$ 大的数,其可能是 $A[i_0]$ 或者 $B[j_0]$:

• 如果是 $A[i_0]$,则取 $i = i_0$,并且由 $A[i_0]$ 的大小关系 (两个数组中第 $\lfloor \frac{m+n+1}{2} \rfloor$ 大的数),会存在 $B + \lfloor \frac{m+n+1}{2} \rfloor - i_0$ 个数比起小,从而我们有:

$$A[i_0] \leqslant B[\lfloor \frac{m+n+1}{2} \rfloor - i_0 + 1]$$

$$B[\lfloor \frac{m+n+1}{2} \rfloor - i_0] \leqslant A[i_0] \leqslant A[i_0 + 1]$$

• 如果是 $B[j_0]$,则取 $i = \lfloor \frac{m+n+1}{2} \rfloor - j_0$,类似上面的讨论,我们有:

$$\begin{split} A[\lfloor \frac{m+n+1}{2} \rfloor - j_0] \leqslant & B[j_0] \leqslant B[j_0+1] \\ & B[j_0] \leqslant & A[\lfloor \frac{m+n+1}{2} \rfloor - j_0+1] \end{split}$$

这样便完成了我们全部的证明。

最后我们再概览一下算法的流程, 令 $m \leq n$, 并且令 A 为较短的数组:

- 1. 在 A 中二分寻找最大的 i,使得 $A[i] \leq B[|\frac{m+n+1}{2}|-i+1]$ 。
- 2. A,B 两个数组中第 $\lfloor \frac{m+n+1}{2} \rfloor$ 大的数 m_1 和第 $\lfloor \frac{m+n+1}{2} \rfloor + 1$ 大的数 m_2 满足:

$$\begin{split} m_1 &= \max\{A[i], B[\lfloor \frac{m+n+1}{2} \rfloor - i]\} \\ m_2 &= \min\{A[i+1], B[\lfloor \frac{m+n+1}{2} \rfloor - i + 1]\} \end{split}$$

3. 若 m+n 为奇数,则 m_1 即为中位数,否则中位数为 $\frac{1}{2}(m_1+m_2)$ 。

Remark 0.1

本文解释的时候为了方便理解,用的数组下标是从 1 开始计算的,因此会与实际编程中的小标会存在一些误差。