离散数学 Week 1

第一次作业-solution

Lecturer: 杨启哲 Last modified: 2025 年 10 月 1 日

- 请判断下列语句哪些是命题?在是命题的句子中,哪些是简单命题?真命题?哪些命题的真值还不知道?
 - (1) 2025 年世俱杯冠军是切尔西。
 - (2) 2x + 3 < 5. 其中 x 是任意实数。
 - (3) 对于任意实数 x, 2x + 3 < 5。
 - (4) 9 是合数的充要条件是它是奇数。
 - (5) 吸烟请到吸烟室去。
 - (6) 我只知道一件事, 那就是什么都不知道。

解答.

- 命题: (1)(3)(4)。
- 简单命题: (1)(3)。
- 真命题 (1)(4)。
- 不知道真值的命题: 无。
- 2. 将下列命题符号化。
 - (1) 2 是偶数。
 - (2) 不但 π 是无理数,而且自然对数的底 e 也是无理数。
 - (3) 除非 2 < 1,否则 3 < 2。
 - (4) 如果 $\sqrt{2}^{\sqrt{2}}$ 不是有理数,那么 $\sqrt{2}^{\sqrt{2}^{2}}$ 是有理数。
 - (5) 火车比轮船快。
 - (6) 飞机比火车快。

注 0.1

思考一下, **火车比轮船快**和**飞机比火车快**这两个命题的符号化是不是有缺陷? 直观上来说, 我们应该可以得到**飞机比轮船快**的结论, 但是从符号化的角度来说我们似乎没法用<u>这两个命题</u>来表示**飞机比轮船快**; 而这就是命题逻辑的局限性。

解答. 我们可以将其符号化如下:

- (1) 令 p:2 是偶数。则该命题表示为 p.
- (2) 令 $p:\pi$ 是物理书, q: 自然对数的底 e 是无理数。则该命题表示为 $p \wedge q$.
- (3) 令 p: 2 < 1, q: 3 < 2. 则该命题表示为 $\neg p \rightarrow q$ 或者 $\neg q \rightarrow p$.
- (4) 令 $p:\sqrt{2}^{\sqrt{2}}$ 是有理数, $q:\sqrt{2}^{\sqrt{2}^{\sqrt{2}}}$ 是有理数。则该命题表示为 $\neg p \to q$.
- (5) 令 p: 火车比轮船快。则该命题表示为 p.
- (6) 令 p:飞机比火车快。则该命题表示为 p.
- 3. 当 p,q 的真值为 0,r 的真值为 1 时,求下列公式的真值。
 - (1) $p \vee (q \wedge r)$.
 - (2) $(p \leftrightarrow r) \lor (\neg q \land p)$.
 - (3) $(\neg r \land q) \leftrightarrow (p \land \neg q)$.

解答. 当 p = q = 0, r = 1 时:

- p∨(q∧r) 的真值为 0。
- $(p \leftrightarrow r) \land (\neg q \land p)$ 的真值为 0。
- $(\neg r \land q) \leftrightarrow (p \land \neg q)$ 的真值为 1。
- 4. 用真值表判断下列公式的类型,并指出它们的成真赋值和成假赋值。
 - (1) $((p \land q) \rightarrow p) \lor r$.
 - (2) $((p \rightarrow r) \land q) \rightarrow (p \rightarrow r)$.
 - (3) $(\neg(q \rightarrow p)) \land p \land r$.

解答. 这里只列出真值表最后一项:

(1) $((p \land q) \rightarrow p) \lor r$ 为重言式,所有赋值都是成真赋值。

p	q	r	$((p \land q) \to p) \lor r$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

(2) $((p \rightarrow r) \land q) \rightarrow (p \rightarrow r)$ 为重言式,所有赋值都是成真赋值。

p	q	r	$((p \to r) \land q) \to (p \to r)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

(3) $(\neg(q \rightarrow p)) \land p \land r$ 为为矛盾式,所有赋值都是成假赋值。

p	q	r	$(\neg(q \to p)) \land p \land r$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

5. 考虑下面的公式:

$$(\mathsf{A} \to (\mathsf{B} \leftrightarrow \mathsf{C})) \to (((\mathsf{A} \land \mathsf{B} \land \neg \mathsf{C}) \to (\neg \mathsf{B} \lor \mathsf{C})) \to (\mathsf{A} \to (\mathsf{B} \leftrightarrow \mathsf{C}))).$$

- (1) 用真值表的方法证明其是重言式。
- (2) 利用 $P \to (Q \to P)$ 是重言式的事实,证明该公式是重言式。

注 0.2

大家可以自己思考一下,你认为代入规则的引入,是否让重言式的证明变得更为简单?

解答. (1) $P \rightarrow (Q \rightarrow P)$ 的真值表如下:

A	В	С	$(A \to (B \leftrightarrow C)) \to (((A \land B \land \neg C) \to (\neg B \lor C)) \to (A \to (B \leftrightarrow C)))$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

从而上式为重言式。

- (2) 在 $P \rightarrow (Q \rightarrow P)$ 中, 令:
 - 将 P 替换为 A → (B ↔ C)。
 - 将 Q 替换为 $(A \land B \land \neg C) \rightarrow (\neg B \lor C)$ 。

则:

$$P \to (Q \to P) \quad \text{转换为} \quad (A \to (B \leftrightarrow C)) \to (((A \land B \land \neg C) \to (\neg B \lor C)) \to (A \to (B \leftrightarrow C)))$$
 从而 $(A \to (B \leftrightarrow C)) \to (((A \land B \land \neg C) \to (\neg B \lor C)) \to (A \to (B \leftrightarrow C)))$ 是重言式。