离散数学 Week 4

第四次作业-soluition

Lecturer: 杨启哲 Last modified: 2025 年 10 月 27 日

1. 我们考虑一个特殊的证明系统, 该系统与消解证明系统类似, 只不过一共有两个特殊的推理规则:

$$\begin{array}{ccc} & \mathsf{l} \vee \mathsf{C}_1 & & \mathsf{l} \vee \mathsf{C}_1 \\ \hline -\mathsf{l} \vee \mathsf{C}_2 & & \mathsf{l} \vee \mathsf{C}_2 \\ \hline -\mathsf{C}_1 \vee \mathsf{C}_2 & & & \mathsf{R2} \end{array}$$

即在原本的消解证明系统下添加了一个规则,请在该推理系统下构造如下三个推理的证明:

- (1) $\{p \lor q, p \to r, q \to s\} \Rightarrow r \lor s$.
- (2) $\{p \lor q, \neg p \lor r, q \lor s\} \Rightarrow r$.
- (3) $\{p \lor q, \neg p \lor r, q \lor s\} \Rightarrow \neg r$.

并思考一下,这个证明系统你认为是好的么?

注 0.1

这一问是想大家意识到,证明其实跟真值(语义)无关,它只是语法上的推导。所以当证明系统定义的不好的时候,他就会产生和语义上不一样的结果。

解答.

(1) 利用消解证明系统,实际上要证的是: $\{p \lor q, \neg p \lor r, \neg q \lor s, \neg r, \neg s\} \Rightarrow 0$, 证明如下:

(i)	$p \vee q$	前提
(ii)	$\neg p \vee r$	前提
(iii)	$q\veer$	1,2 R1
(iv)	$\neg q \vee s$	前提
(v)	$r \vee s$	3,4 R1
(vi)	$\neg \mathbf{r}$	前提
(vii)	S	5,6 R1
(viii)	\neg_{S}	前提
(ix)	0	7,8 R1

(2) 利用消解证明系统,实际上要证的是: $\{p \lor q, \neg p \lor r, q \lor s, \neg r\} \Rightarrow 0$,证明如下:

(i) $p \vee q$	前提
(ii) ¬p∨r	前提
(iii) $q \lor r$	1,2 R1
(iv) $q \lor s$	前提
(v) $r \vee s$	3,4 R2

(vi)	$\neg r$	前提
(vii)	S	5,6 R1
(viii)	r	5,7 R2
(ix)	0	7,8 R1

(3) 利用消解证明系统,实际上要证的是: $\{p \lor q, \neg p \lor r, q \lor s, r\} \Rightarrow 0$,证明如下:

$p \lor q$	前提
$\neg p \vee r$	前提
$q \lor r$	1,2 R1
$q \lor s$	前提
$r \lor s$	3,4 R2
r	前提
¬р	2,6 R2
q	1,7 R1
p	1,8 R2
0	7,9 R1
	$ \begin{array}{c} \neg p \lor r \\ q \lor r \\ q \lor s \\ r \lor s \\ r \\ \neg p \\ q \\ p \end{array} $

整个证明系统并不是一个好的证明系统,因为他会产生和语义上不一样的结果。

- 2. 分别给出一个成真和成假的解释,来说明下列公式是可满足式。
 - (1) $(\exists x F(x)) \rightarrow F(x)$.
 - (2) $\exists (F(x) \land \forall y (G(y) \land H(x, y))).$

解答. 不妨假定个体域均为自然数集合 №。

• 考察解释 \mathfrak{J}_1 , 其中 $\sigma(x) = 1$, $\mathfrak{a}(F)(x) = x > 1$, 则上述公式在该解释下为 $(\exists x \ x > 1) \to (1 > 1)$, 为假。

考察解释 \mathfrak{J}_2 , 其中 $\sigma(x)=2$, $\mathfrak{a}(F)(x)=x>1$, 则上述公式在该解释下为 $(\exists x\ x>1)\to (2>1)$, 为真。

• 考察解释 \mathfrak{J}_1 ,其中 $\mathfrak{a}(F)(x) = x > 1$, $\mathfrak{a}(G)(x) = x > 0$, $\mathfrak{a}(H)(x,y) = x > y$,则上述公式在该解释下为 $\exists x \ ((x > 1) \land \forall y ((y > 0) \land (x > y))$,为假。

考察解释 \mathfrak{J}_2 , 其中 $\mathfrak{a}(F)(x) = x > 1$, $\mathfrak{a}(G)(x) = x > 0$, $\mathfrak{a}(H)(x,y) = x + y > 0$, 则上述公式在该解释下为 $\exists x \ ((x > 1) \land \forall y ((y > 0) \land (x + y > 0))$, 为真。

- 3. 假设符号集包括常量 α , 函数 f, 谓词符号 F, G。给定解释 $I = (\mathbb{R}, \alpha)$ 和赋值 σ 如下:
 - (1) 个体域为实数集合 ℝ。
 - (2) a(a) = 0.
 - (3) a(f)(x,y) = xy + x + y.
 - (4) $\mathfrak{a}(F)(x,y) = x \equiv y$, $\mathfrak{a}(G)(x,y) = x > y$.

(5) $\sigma(x) = 1$, $\sigma(y) = -1$

给出下列公式在 I 和 σ 下的解释, 并指出它们的真值。

- (1) $\forall x(G(x,y) \rightarrow \exists y F(x,y)).$
- (2) $\forall y (F(f(x,y), a) \rightarrow \forall x G(x,y)).$

解答.

- (1) $\forall x((x > -1) \rightarrow (\exists y \ x \equiv y))$,真命题。
- (2) $\forall y((y+1+y\equiv 0)\rightarrow (\forall x x>y))$,假命题。

4. 判断下列公式的类型:

- (1) $F(x) \rightarrow \forall x F(x)$.
- (2) $\forall x(F(x) \to G(x)) \to (\forall xF(x) \to \forall xG(x)).$

解答.

- (1) 该公式为可满足式。
 - 令解释 \mathfrak{J} 取为 $\mathfrak{J} = (\mathfrak{A} = (\mathbb{R}, \mathfrak{a}), \sigma)$,其中 $\mathfrak{a}(F)(x) = x \ge 0$,赋值 σ 满足; $\sigma(x) = 1$,则该公式在 I 下为假。
 - 令解释 \mathfrak{J} 取为 $\mathfrak{J}=(\mathfrak{A}=(\mathbb{N},\mathfrak{a}),\sigma)$,其中 $\mathfrak{a}(F)(x)=x\geqslant 0$,赋值 σ 满足; $\sigma(x)=1$,则该公式在 I 下为真。
- (2) 该公式为永真式。考察任意一个解释 $\mathfrak{J}=(\mathfrak{A},\sigma)$,其中 $\mathfrak{A}=(D,\mathfrak{a})$:
 - 若在 \mathfrak{J} 下 $\forall x (F(x) \to G(x))$ 为假,则整个公式在 \mathfrak{J} 下为真。
 - 若在 \mathfrak{J} 下 $\forall x(F(x) \to G(x))$ 为真,则对任意的 $\mathfrak{a} \in D$,均有 $\mathfrak{a}(F)(\mathfrak{a}) \to \mathfrak{a}(G)(\mathfrak{a})$;若存在 \mathfrak{a} 使得 $\mathfrak{a}(F)(\mathfrak{a})$ 为假,则 $\forall xF(x)$ 在 \mathfrak{J} 下为假,从而 $\forall xF(x) \to \forall xG(x)$ 在 \mathfrak{J} 下为真;若对任意的 $\mathfrak{a} \in D$,均有 $\mathfrak{a}(F)(\mathfrak{a})$ 为真,则对任意的 $\mathfrak{a} \in D$,均有 $\mathfrak{a}(G)(\mathfrak{a})$ 为真,从而 $\forall xF(x) \to \forall xG(x)$ 在 \mathfrak{J} 下为真。

因此整个公式在 3 下为真,由 3 的任意性可知该公式为永真式。

5. 利用定义证明 $(\forall x P(x) \land \forall x Q(x)) \leftrightarrow (\forall x (P(x) \land Q(x)))$ 是永真式,并给出一个解释说明当 \land 换成 \lor 上式就不是永真式了。

解答. 考察任意一个解释 $\mathfrak{J}=(\mathfrak{A},\sigma)$, 其中 $\mathfrak{A}=(D,\mathfrak{a})$:

• 若在 \mathfrak{J} 下 $\forall x (P(x) \land Q(x))$ 为真,则对任意的 $\mathfrak{a} \in D$,均有 $\mathfrak{a}(P)(\mathfrak{a}) \land \mathfrak{a}(Q)(\mathfrak{a})$ 为真,从而 $\forall x P(x)$ 和 $\forall x Q(x)$ 在 \mathfrak{J} 下为真。

• 若在 \mathfrak{J} 下 $\forall x P(x) \land \forall x Q(x)$ 为真,则 $\forall x P(x)$ 和 $\forall x Q(x)$ 在在 \mathfrak{J} 下均为真,即对任意的 $\mathfrak{a} \in D$,均有 $\mathfrak{a}(P)(\mathfrak{a})$ 和 $\mathfrak{a}(Q)(\mathfrak{a})$ 为真,从而 $\forall x (P(x) \land Q(x))$ 在 \mathfrak{J} 下为真。

因此整个公式在 \mathfrak{J} 下为真,由 \mathfrak{J} 的任意性可知该公式为永真式。

若换成 \vee 则不再为永真式,考察如下的一个解释 \mathfrak{J} 取为 $\mathfrak{J} = (\mathfrak{A} = (\mathbb{Z}, \mathfrak{a}), \sigma)$,其中:

- $\mathfrak{a}(P)(x) = x$ 为偶数
- $\mathfrak{a}(Q)(x) = x$ 为奇数。

则 $\forall x P(x) \lor \forall x Q(x)$ 在 $\mathfrak J$ 下为假,而 $\forall x (P(x) \lor Q(x))$ 在 $\mathfrak J$ 下为真,从而上述公式为假。