第四次作业

Lecturer: 杨启哲 Last modified: 2025 年 10 月 21 日

截止日期 2025年10月27日晚24:00

1. 我们考虑一个特殊的证明系统, 该系统与消解证明系统类似, 只不过一共有两个特殊的推理规则:

$$\begin{array}{c|c} l \lor C_1 & l \lor C_1 \\ \hline \neg l \lor C_2 & (R1) & \begin{matrix} l \lor C_1 \\ l \lor C_2 \end{matrix} & R2 \end{array}$$

即在原本的消解证明系统下添加了一个规则,请在该推理系统下构造如下三个推理的证明:

- (1) $\{p \lor q, p \to r, q \to s\} \Rightarrow r \lor s$.
- (2) $\{p \lor q, \neg p \lor r, q \lor s\} \Rightarrow r$.
- (3) $\{p \lor q, \neg p \lor r, q \lor s\} \Rightarrow \neg r$.

并思考一下,这个证明系统你认为是好的么?

注 0.1

这一问是想大家意识到,证明其实跟真值(语义)无关,它只是语法上的推导。所以当证明系统定义的不好的时候,他就会产生和语义上不一样的结果。

- 2. 分别给出一个成真和成假的解释,来说明下列公式是可满足式。
 - (1) $(\exists x F(x)) \rightarrow F(x)$.
 - (2) $\exists (F(x) \land \forall y(G(y) \land H(x,y))).$

\sim	四九林口牛力七半目			$//$ \triangle \triangle D \sqrt{D}	(TD)) T		+
≺ .	假设符号集包括常量 α,	XI全V +	1月1司(十二) 上 (1	给下赃检 —	- (IK a) 7	11111111111111111111111111111111111111	7 UII N .
J.	IX X Y I J X L S I L I R X L I .				- I ш\s, u I / I		, хы і

- (1) 个体域为实数集合 ℝ。
- (2) a(a) = 0.
- (3) a(f)(x,y) = xy + x + y.
- $(4)\ \mathfrak{a}(F)(x,y)=x\equiv y,\ \mathfrak{a}(G)(x,y)=x>y.$
- (5) $\sigma(x) = 1$, $\sigma(y) = -1$

给出下列公式在 I 和 σ 下的解释,并指出它们的真值。

- (1) $\forall x(G(x,y) \rightarrow \exists yF(x,y)).$
- (2) $\forall y (F(f(x,y), a) \rightarrow \forall x G(x,y)).$

4. 判断下列公式的类型:

- (1) $F(x) \rightarrow \forall x F(x)$.
- (2) $\forall x(F(x) \to G(x)) \to (\forall xF(x) \to \forall xG(x)).$

5. 利用定义证明 $(\forall x P(x) \land \forall x Q(x)) \leftrightarrow (\forall x (P(x) \land Q(x)))$ 是永真式,并给出一个解释说明当 \land 换成 \lor 上式就不是永真式了。