第六次作业-solution

Lecturer: 杨启哲 Last modified: 2024 年 4 月 10 日

1. 写出使得下列矩阵 A 消元成上三角矩阵的消元矩阵 $E21, E_{32}$,并写出其 LU 分解。 (回顾 $A=E_{32}E_{21}U$)

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 4 & 5 \\ 0 & 4 & 0 \end{bmatrix}$$

解答. 其消元过程如下:

(1) $E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$,即将第一行的 -2 倍加到第二行。此时矩阵变为:

$$\begin{bmatrix}
1 & 1 & 1 \\
0 & 2 & 3 \\
0 & 4 & 0
\end{bmatrix}$$

(2) $E_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}$,即将第二行的 -2 倍加到第三行。此时矩阵变为:

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -6 \end{bmatrix}$$

从而其 LU 分解为:

$$A = E_{32}(2)E_{21}(2)U = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -6 \end{bmatrix}$$

2. 判断下列两个矩阵是否是可逆矩阵,如果是的话请给出其逆矩阵。

$$C = \begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{bmatrix}, F = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

解答.

• 对于矩阵 C, 通讨消元可得:

$$\begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{bmatrix} \Longrightarrow \begin{bmatrix} 2 & -1 & 0 & -1 \\ 0 & 1.5 & -1 & -0.5 \\ 0 & -1 & 2 & -1 \\ 0 & -0.5 & -1 & 1.5 \end{bmatrix} \Longrightarrow \begin{bmatrix} 2 & -1 & 0 & -1 \\ 0 & 1.5 & -1 & -0.5 \\ 0 & 0 & \frac{4}{3} & -\frac{4}{3} \\ 0 & 0 & -\frac{4}{3} & \frac{4}{3} \end{bmatrix} \Longrightarrow \begin{bmatrix} 2 & -1 & 0 & -1 \\ 0 & 1.5 & -1 & -0.5 \\ 0 & 0 & \frac{4}{3} & -\frac{4}{3} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

其没有4个首元,所以其不是可逆的。

对于矩阵 F,通过消元可得:

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

其有 4 个首元, 所以其是可逆的。我们进一步把其变成行最简形:

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

从而其逆矩阵为:

$$F^{-1} = E_{12}(1)E_{23}(1)E_{34}(1)E_{43}(1)E_{32}(1)E_{21}(1) = \begin{bmatrix} 4 & 3 & 2 & 1 \\ 3 & 3 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Remark 0.1

我们也完全可以直接对下列矩阵进行 Gauss-Jordan 消元:

$$\begin{bmatrix} F & I \end{bmatrix}$$

从而最终 I 变成的矩阵便是其逆矩阵。

3. 将下列矩阵转换成行阶梯形矩阵:

$$A = \begin{bmatrix} 1 & 2 & 2 & 4 & 6 \\ 1 & 2 & 3 & 6 & 9 \\ 0 & 0 & 1 & 2 & 3 \end{bmatrix}, \ B = \begin{bmatrix} 2 & 4 & 2 \\ 0 & 4 & 4 \\ 1 & 8 & 8 \end{bmatrix}$$

解答.

对于矩阵 A,通过消元可得:

$$\begin{bmatrix} 1 & 2 & 2 & 4 & 6 \\ 1 & 2 & 3 & 6 & 9 \\ 0 & 0 & 1 & 2 & 3 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & 2 & 2 & 4 & 6 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 & 3 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & 2 & 2 & 4 & 6 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

对于矩阵 B,通过消元可得:

$$\begin{bmatrix} 2 & 4 & 2 \\ 0 & 4 & 4 \\ 1 & 8 & 8 \end{bmatrix} \Longrightarrow \begin{bmatrix} 2 & 4 & 2 \\ 0 & 4 & 4 \\ 0 & 4 & 4 \end{bmatrix} \Longrightarrow \begin{bmatrix} 2 & 4 & 2 \\ 0 & 4 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$

4. 作为一个预热, 我们以一个例子观察一下矩阵的行空间和零空间之间的关系。考察如下的矩阵

$$A = \begin{bmatrix} 1 & 2 & 4 & 3 & 1 \\ 0 & 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 & 0 \end{bmatrix}$$

其零空间就是所有 $A\mathbf{x} = \mathbf{0}$ 的解组成的空间,记为 N(A)。显然 N(A) 也是 \mathbb{R}^5 的一个子空间。

- 请描述矩阵 A 的行空间和零空间,并分别给出其一组基和其对应的维数。
- 证明,对任意的 $\mathbf{u} \in N(A), \mathbf{v} \in C(A^T)$ 都有 $\mathbf{u} \perp \mathbf{v}$.

解答.

•

$$\begin{split} C(A^T) &= span(\{\begin{bmatrix} 1\\2\\4\\3\\1 \end{bmatrix}, \begin{bmatrix} 0\\2\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\2\\0 \end{bmatrix} \}), \ dim(C(A^T)) = 3\\ N(A) &= span(\{\begin{bmatrix} -4\\0\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\-\frac{1}{2}\\0\\0\\1 \end{bmatrix} \}), \ dim(N(A)) = 2 \end{split}$$

• 令 $\mathbf{u} \in N(A), \mathbf{v} \in C(A^T)$,则 \mathbf{u} 和 \mathbf{v} 可以写成如下的形式:

$$\mathbf{u} = c_1 \begin{bmatrix} -4\\0\\1\\0\\0 \end{bmatrix} + c_2 \begin{bmatrix} 0\\-\frac{1}{2}\\0\\0\\1 \end{bmatrix}$$

$$\mathbf{v} = d_1 \begin{bmatrix} 1\\2\\4\\3\\1 \end{bmatrix} + d_2 \begin{bmatrix} 0\\2\\0\\0\\4\\3 \end{bmatrix} + d_3 \begin{bmatrix} 0\\0\\2\\0\\0 \end{bmatrix}$$

从而有 $\mathbf{u} \cdot \mathbf{v} = 0$,即 $\mathbf{u} \perp \mathbf{v}$ 。

Remark 0.2

我们可以将其转换成行最简形后观察到 N(A) 的基:

$$\begin{bmatrix} 1 & 2 & 4 & 3 & 1 \\ 0 & 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 & 0 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & 0 & 4 & 0 & 0 \\ 0 & 1 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

分别令其不是首元的变量即 $x_3 = 1$ 和 $x_5 = 1$ 便可得到 N(A) 的一组基。

5. $\Diamond V$ 是一个向量空间, S 是 V 的一个子空间, T 是 V 的另一个子空间, 我们定义如下的运算:

$$S+T=\{\mathbf{v}+\mathbf{w}\mid \mathbf{v}\in S, \mathbf{w}\in T\}$$

- 假设 $V=\mathbb{M}_{2\times 2}(\mathbb{R}),\ S=\{\begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}\},\ T=\{\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\},\$ 描述一下 S+T。
- 证明 S+T 是一个 V 的子空间。
- 给定两个都是 m 行的矩阵 A, B,其列空间分别记为 S, T,显然 S, T 是 \mathbb{R}^m 的子空间,请尝试构造一个子空间为 S+T 的矩阵,并描述矩阵的大小。

解答.

- $\bullet \ S+T=\{\begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \mid a,b \in \mathbb{R}\}$
- 我们来验证 S+T 是一个子空间。对任意的 $\mathbf{u}_1, \mathbf{u}_2 \in S+T$,由定义存在 $\mathbf{s}_1, \mathbf{s}_2 \in S$, $\mathbf{t}_1, \mathbf{t}_2 \in T$ 使得:

$$\mathbf{u}_1 = \mathbf{s}_1 + \mathbf{t}_1$$
$$\mathbf{u}_2 = \mathbf{s}_2 + \mathbf{t}_2$$

从而:

$$\mathbf{u}_1 + \mathbf{u}_2 = (\mathbf{s}_1 + \mathbf{t}_1) + (\mathbf{s}_2 + \mathbf{t}_2) = (\mathbf{s}_1 + \mathbf{s}_2) + (\mathbf{t}_1 + \mathbf{t}_2) \in S + T$$

$$c\mathbf{u}_1 = c(\mathbf{s}_1 + \mathbf{t}_1) = c\mathbf{s}_1 + c\mathbf{t}_1 \in S + T$$

即 S+T 是 V 的子空间。

• 该矩阵可以定义为:

$$\begin{bmatrix} A & B \end{bmatrix}$$

其大小为 $m \times (n_A + n_B)$ 。

6. 最后我们对矩阵的 LU 分解再作一些讨论。令 A 是一个 $n \times n$ 的矩阵,我们已经知道如果 A 是一个可逆矩阵,并且消元法中不需要交换行,那么我们可以获得一个 LU 分解 A = LU。我们现在对这个性质进一步阐述。记矩阵左上的 $k \times k$ 的元素组成的矩阵为 A_k ,比如在下列矩阵中:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 4 & 5 \\ 0 & 4 & 0 \end{bmatrix}$$

我们有 $A_1 = \begin{bmatrix} 1 \end{bmatrix}$, $A_2 = \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix}$, $A_3 = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 4 & 5 \\ 0 & 4 & 0 \end{bmatrix}$ 。证明: 如果对于所有的 $k \in \{1, 2, \dots, n\}$ 都

有矩阵 A_k 是可逆的,那么 A 具有 LU 分解,即 A = LU.

hint: 进行消元法,并尝试说明对每个 k,我们都有 $LU = \begin{bmatrix} L_k & 0 \\ * & * \end{bmatrix} \begin{bmatrix} U_k & * \\ 0 & * \end{bmatrix}$,即可以找到 A_k 的分解。

解答. 注意到 A_k 是可逆的,从而 A_k 存在 k 个首元,这意味着对矩阵 A 进行消元时,如果在第 k 步结束时并没有进行行交换的操作,则矩阵 A' 变成了如下的形式:

$$A' = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2k} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{kk} & \cdots & a_{kn} \\ 0 & 0 & \cdots & 0 & \cdots & a_{(k+1)n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} U_k & B \\ O & C \end{bmatrix}$$

从而我们有:

$$A' = E \cdots EA = LA$$

注意到: $(E \cdots E)^{-1}$ 是一个下三角矩阵,即可以写成:

$$(E \cdots E)^{-1} = \begin{bmatrix} L_k & O \\ D & L_{n-k} \end{bmatrix}$$

从而我们有:

$$A = \begin{bmatrix} A_k & * \\ * & * \end{bmatrix} = \begin{bmatrix} L_k & O \\ D & L_{n-k} \end{bmatrix} \begin{bmatrix} U_k & B \\ O & C \end{bmatrix}$$

即: $A_k = L_k U_k + AO = L_k U_k$ 。从而我们证明了如果在整个消元过程中没有行变换,则 A 最终将有 LU 的分解形式。

下面我们利用归纳法对 k 归纳证明整个消元过程中都没有行交换的操作。

基本步骤: k=1 时由于 A_1 是可逆的,从而 $a_{11} \neq 0$ 。即第一步消元时不需要行交换。

归纳步骤: 假设对于 < k 时消元过程中不需要行交换,则在第 k-1 步后矩阵变成了如下的形式:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1(k-1)} & a_{1k} & \cdots & a_{1n} \\ 0 & a'_{22} & \cdots & a'_{2(k-1)} & a'_{2k} & \cdots & a'_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a'_{(k-1)(k-1)} & a'_{(k-1)k} & \cdots & a'_{(k-1)n} \\ 0 & 0 & \cdots & 0 & a'_{kk} & \cdots & a'_{kn} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & a'_{nk} & \cdots & a'_{nn} \end{bmatrix}$$

令此时左上的 $k \times k$ 的矩阵为 A'_k , 注意到 A'_k 是由 A_k 通过初等行变换得到的, 从而:

$$rank(A'_k) = rank(A_k) = k$$

从而 A_k' 有 k 个首元,即 $a_{kk}' \neq 0$,即第 k 步消元时不需要行交换。

Remark 0.3

正如提示所说,我们实际上对每个 A_k ,都找到了一个 LU 分解,即 $A_k = L_k U_k$ 。