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Abstract. The theory of chi processes with the mismatch operator is
studied. Two open congruence relations are investigated. These are weak
early open congruence and weak late open congruence. Complete systems
are given for both congruence relations. These systems use some new
tau laws. The results of this paper correct some popular mistakes in
literature.

1 Introduction

In recent years several publications have focused on a class of new calculi of
mobile processes. These models include χ-calculus ([1–4]), update calculus ([7])
and fusion calculus ([8, 10]). In a uniform terminology they are respectively χ-
calculus, asymmetric χ-calculus and polyadic χ-calculus. The χ-calculus has its
motivations from proof theory. In process algebraic model of classical proofs
there has been no application of mismatch operator. The χ-calculus studied so
far contains no mismatch operator. On the other hand the update and fusion
calculi have their motivations from concurrent constraint programming. When
applying process calculi to model real programming problems one finds very
handy the mismatch operator. For that reason the full update and fusion calculi
always have the mismatch combinator. Strong bisimulation congruence has been
investigated for each of the three models. It is basically the open congruence.
A fundamental difference between χ-like calculi and π-like calculi ([5]) is that
all names in the former are subject to update whereas local names in the latter
are never changed. In terms of the algebraic semantics, it says that open style
congruence relations are particularly suitable to χ-like process calculi. Several
weak observational equivalence relations have been examined. Fu studied in [1]
weak open congruence and weak barbed congruence. It was shown that a sen-
sible bisimulation equivalence on χ-processes must be closed under substitution
in every bisimulation step. In χ-like calculi closure under substitution amounts
to the same thing as closure under parallel composition and localization. This
is the property that led Fu to introduce L-congruences ([2]). These congru-
ence relations form a lattice under inclusion order. It has been demonstrated
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that L-congruences are general enough so as to subsume familiar bisimulation
congruences. The open congruence and the barbed congruence for instance are
respectively the bottom and the top elements of the lattice. This is also true
for asymmetric χ-calculus ([4]). Complete systems have been discovered for L-
congruences on both finite χ-processes and finite asymmetric χ-processes ([4]).
An important discovery in the work of axiomatizing χ-processes is that Milner’s
tau laws are insufficient for open congruences. Another basic tau law called T4

τ.P = τ.(P+[x=y]τ.P )

is necessary to deal with the dynamic aspect of name update. Parrow and Victor
have worked on completeness problems for fusion calculus ([8]). The system
they provide for the weak hypercongruence for sub-fusion calculus without the
mismatch operator is deficient because it lacks of the axiom T4. However their
main effort in the above mentioned paper is on the full fusion calculus with
the mismatch operator. This part of work is unfortunately more problematic. To
explain what we mean by that we need to take a closer look at hyperequivalence.

Process equivalence is observational in the sense that two processes are
deemed to be equal unless a third party can detect a difference between the
two processes. Usually the third party is also a process. Now to observe a pro-
cess is to communicate with it. In process calculi the communication happens
if the observer and the observee are composed via a parallel operator. It fol-
lows that process equivalences must be closed under parallel composition. Weak
hyperequivalence is basically an open equivalence. This relation is fine with the
sub-fusion calculus without the mismatch combinator. It is however a bad equiv-
alence for the full fusion calculus for the reason that it is not closed under compo-
sition. A simple counter example is as follows: Let ≈h be the hyperequivalence.
Now for distinct names x, y it holds that

(x)ax.[x6=y]τ.P ≈h (x)ax.[x6=y]τ.P+(x)ax.P

This is because the transition (x)ax.[x6=y]τ.P+(x)ax.P
a(x)−→ P can be simulated

by (x)ax.[x6=y]τ.P a(x)−→ τ−→ P . However

ay|(x)ax.[x6=y]τ.P 6≈h ay|((x)ax.[x6=y]τ.P+(x)ax.P )

for ay|((x)ax.[x6=y]τ.P+(x)ax.P ) τ−→ 0|P [y/x] can not be matched up by any
transitions from ay|(x)ax.[x6=y]τ.P . For similar reason

ax.[x6=y]τ.P ≈h ax.[x6=y]τ.P+[x6=y]ax.P

but
ay|ax.[x6=y]τ.P 6≈h ay|(ax.[x6=y]τ.P+[x6=y]ax.P )

So the theory of weak equivalences of fusion calculus need be overhauled.
In the above counter examples the mismatch operator plays a crucial part.

From a programming point of view the role of the mismatch combinator is to



terminate a process at run time. This is a useful function in practice and yet
realizable in neither CCS nor calculi of mobile processes without the mismatch
combinator. The problem caused by the mismatch combinator is mostly opera-
tional. A well known fact is that transitions are not stable under name instanti-
ations, which render the algebraic theory difficult. The mismatch operator often
creates a ‘now-or-never’ situation in which if an action does not happen right
now it might never be allowed to happen. In the calculi with the mismatch op-
erator processes are more sensible to the timing of actions. This reminds one of
the difference between early and late semantics.

The early/late dichotomy is well known in the semantic theory of π-calculus.
The weak late congruence is strictly contained in the weak early congruence in
π-calculus whether the mismatch combinator is present or not. For some time
it was taken for granted that there is no early and late distinction in weak
open congruence. At least this is true for the calculus without the mismatch
combinator. Very recently the present authors discovered to their surprise that
early and late approaches give rise to two different weak open congruences in
the π-calculus in the presence of the mismatch combinator. This has led them
to realize the problem with the weak hyperequivalence.

In this paper we study early and late open congruences for χ-calculus with
the mismatch operator. The main contributions of this paper are as follows:

– We point out that there is an early/late discrepancy in the open semantics
of calculi of mobile processes with the mismatch combinator.

– We provide a correct treatment of open semantics for χ-calculus with mis-
match. Our definitions of early and late congruences suggest immediately
how to generalize them to fusion calculus.

– We propose two new tau laws to handle free prefix operator and one to deal
with update prefix combinator. These tau laws rectify the mistaken tau laws
in [8]. We point out that the new tau laws for free prefix operator subsume
the corresponding laws for bound prefix operator.

– We give complete axiomatic systems for both early open congruence and late
open congruence. These are the first completeness result for weak congru-
ences on χ-like processes with the mismatch operator.

The structure of the paper is as follows: Section 2 summarizes some back-
ground material on χ-calculus. Section 3 defines two weak open congruences.
Section 4 proves completeness theorem. Some comments are made in the final
section.

2 The χ-Calculus with Mismatch

The π-calculus has been shown to be a powerful language for concurrent compu-
tation. From the algebraic point of view, the model is slightly inconvenient due
to the presence of two classes of restricted names. The input prefix operator a(x)
introduces the dummy name x to be instantiated by an action induced by the
prefix operator. On the other hand the localization operator (y) forces the name



y to be local, which will never be instantiated. Semantically these two restricted
names are very different. The χ-calculus can be seen as obtained from the π-
calculus by unifying the two classes of restricted names. The calculus studied in
this paper is the χ-calculus extended with the mismatch operator. This language
will be referred to as the χ6=-calculus in the rest of the paper.

We will write C for the set of χ6=-processes defined by the following grammar:

P := 0 | α[x].P | P |P | (x)P | [x=y]P | [x6=y]P | P+P

where α ∈ N ∪N . Here N is the set of names ranged over by small case letters.
The set {x | x ∈ N} of conames is denoted by N . We have left out replication
processes since we will be focusing on axiomatization of equivalences on finite
processes. The name x in (x)P is local. A name is global in P if it is not local
in P . The global names, the local names and the names of P , as well as the
notations gn(P ), ln(P ) and n(P ), are used in their standard meanings. In sequel
we will use the functions gn( ), ln( ) and n( ) without explanation. We adopt
the α-convention widely used in the literature on process algebra.

The following labeled transition system defines the operational semantics:

Sequentialization

α[x].P
α[x]−→ P

Sqn

Composition

P
ν−→ P ′ bn(ν) ∩ gn(Q)=∅

P |Q ν−→ P ′|Q Cmp0

P
[y/x]−→ P ′

P |Q [y/x]−→ P ′|Q[y/x]
Cmp1

Communication

P
α(x)−→ P ′ Q

α[y]−→ Q′

P |Q τ−→ P ′[y/x]|Q′ Cmm0

P
α(x)−→ P ′ Q

α(x)−→ Q′

P |Q τ−→ (x)(P ′|Q′) Cmm1

P
α[x]−→ P ′ Q

α[y]−→ Q′ x 6= y

P |Q [y/x]−→ P ′[y/x]|Q′[y/x] Cmm2

P
α[x]−→ P ′ Q

α[x]−→ Q′

P |Q τ−→ P ′|Q′ Cmm3

Localization

P
λ−→ P ′ x 6∈ n(λ)

(x)P λ−→ (x)P ′ Loc0
P

α[x]−→ P ′ x 6∈ {α, α}
(x)P

α(x)−→ P ′ Loc1
P

[y/x]−→ P ′

(x)P τ−→ P ′Loc2

Condition

P
λ−→ P ′

[x=x]P λ−→ P ′Mtch
P

λ−→ P ′ x6=y
[x6=y]P λ−→ P ′ Mismtch

Summation
P

λ−→ P ′

P+Q λ−→ P ′ Sum



We have omitted all the symmetric rules. In the above rules the letter ν ranges
over the set {α(x), α[x] | α ∈ N ∪ N , x ∈ N} ∪ {τ} of actions and the letter λ
over the set {α(x), α[x], [y/x] | α ∈ N ∪N , x, y ∈ N} ∪ {τ} of labels. The sym-
bols α(x), α[x], [y/x] represent restricted action, free action and update action
respectively. The x in α(x) is local.

A substitution is a function from N to N . Substitutions are usually denoted
by σ, σ′ etc.. The empty substitution, that is the identity function on N , is
written as []. The result of applying σ to P is denoted by Pσ. Suppose Y is a finite
set {y1, . . . , yn} of names. The notation [y 6∈Y ]P stands for [y 6=y1] . . . [y 6=yn]P ,
where the order of the mismatch operators is immaterial. We will write φ and ψ to
stand for sequences of match and mismatch combinators concatenated one after
another, µ for a sequence of match operators, and δ for a sequence of mismatch
operators. Consequently we write ψP , µP and δP . When the length of ψ (µ,
δ) is zero, ψP (µP , δP ) is just P . The notation φ ⇒ ψ says that φ logically
implies ψ and φ ⇔ ψ that φ and ψ are logically equivalent. A substitution σ
agrees with ψ, and ψ agrees with σ, when ψ ⇒ x=y if and only if σ(x)=σ(y).

The notations =⇒ and λ̂=⇒ are used in their standard meanings. A sequence
x1, . . . , xn of names will be abbreviated to x̃.

The following lemma is useful in later proofs.

Lemma 1. If Pσ λ−→ P1 then there exists some P ′ such that P1 ≡ P ′σ.

Notice that a substitution σ may disable an action of P . So one can not conclude
Pσ

λσ−→ P ′σ from P
λ−→ P ′. But the above lemma tells us that we may write

Pσ
λ−→ P ′σ once we know that Pσ can induce a λ transition.

3 Open Bisimilarities

In our view the most natural equivalence for mobile processes is the open equiv-
alence introduced by Sangiorgi ([9]). Technically the open equivalence is a bisim-
ulation equivalence closed under substitution of names. Philosophically the open
approach assumes that the environments are dynamic in the sense that they are
shrinking, expanding and changing all the time. After the simulation of each
computation step, the environment might be totally different. As a matter of
fact the very idea of bisimulation is to ensure that no operational difference can
be detected by any dynamic environment. So closure under substitution is a
reasonable requirement.

A simple minded definition of weak open bisimulation would go as follows:

A binary relation R on C is a weak open bisimulation if it is symmetric
and closed under substitution such that whenever PRQ and P

λ−→ P ′

then Q λ̂=⇒ Q′RP ′ for some Q′.

As it turns out this is a bad definition for processes with the mismatch operator.
Counter examples are given in the introduction. The problem here is that the



instantiation of names is delayed for any period of time. This is not always
possible in χ6=-calculus. To correct the above definition, one should adopt the
approach that name instantiations should take place in the earliest possible
occasion. This brings us to the familiar early and late frameworks.

Definition 2. Let R be a binary symmetric relation on C. It is called an early
open bisimulation if it is closed under substitution and whenever PRQ then the
following properties hold:
(i) If P τ−→ P ′ then Q′ exists such that Q =⇒ Q′RP ′.

(ii) If P
[y/x]−→ P ′ then Q′ exists such that Q

[y/x]
=⇒ Q′RP ′.

(iii) If P
α[x]−→ P ′ then for every y some Q′, Q′′ exist such that Q =⇒α[x]−→ Q′′ and

Q′′[y/x] =⇒ Q′RP ′[y/x].

(iv) If P
α(x)−→ P ′ then for every y some Q′, Q′′ exist such that Q =⇒α(x)−→ Q′′ and

Q′′[y/x] =⇒ Q′RP ′[y/x].
The early open bisimilarity ≈e

o is the largest early open bisimulation.

The clause (iv) is easy to understand. Its counterpart for weak bisimilarity of
π-calculus is familiar. The clause (iii) calls for some explanation. In χ6=-calculus

free actions can also incur name updates in suitable contexts. Suppose P
α[x]−→

P ′′. Then (x)(P |α[y].Q) τ−→ P ′′[y/x]|Q[y/x]. Even if P ′′ =⇒ P ′, one does not
necessarily have P ′′[y/x] =⇒ P ′[y/x]. Had we replace clause (iii) by

(iii’) If P
α[x]−→ P ′ then some Q′ exists such that Q

α[x]
=⇒ Q′RP ′

then we would have obtained a relation to which the second counter example
in the introduction applies. The similarity of clause (iii) and clause (iv) exhibits
once again the uniformity of the names in χ-like calculi.

Analogously we can introduce late open bisimilarity.

Definition 3. Let R be a binary symmetric relation on C. It is called a late
open bisimulation if it is closed under substitution and whenever PRQ then the
following properties hold:
(i) If P τ−→ P ′ then Q′ exists such that Q =⇒ Q′RP ′.

(i) If P
[y/x]−→ P ′ then Q′ exists such that Q

[y/x]
=⇒ Q′RP ′.

(iii) If P
α[x]−→ P ′ then Q′′ exists such that Q =⇒α[x]−→ Q′′ and for every y some

Q′ exists such that Q′′[y/x] =⇒ Q′RP ′[y/x].

(iv) If P
α(x)−→ P ′ then Q′′ exists such that Q =⇒α(x)−→ Q′′ and for every y some

Q′ exists such that Q′′[y/x] =⇒ Q′RP ′[y/x].
The late open bisimilarity ≈l

o is the largest late open bisimulation.

It is clear that ≈l
o⊆≈e

o. The following example shows that inclusion is strict:
a[x].[x=y]τ.P+a[x].[x6=y]τ.P ≈e

o a[x].[x=y]τ.P+a[x].[x6=y]τ.P+a[x].P but not
a[x].[x=y]τ.P+a[x].[x6=y]τ.P ≈l

o a[x].[x=y]τ.P+a[x].[x6=y]τ.P+a[x].P .
The lesson we have learned is that we should always check if an observational

equivalence is closed under parallel composition. The next lemma makes sure
that this is indeed true for the two open bisimilarities.



Lemma 4. Both ≈e
o and ≈l

o are closed under localization and composition.

Both open bisimilarities are also closed under the prefix and match combi-
nators. But neither is closed under the summation operator or the mismatch
operator. For instance [x6=y]P ≈e

o [x6=y]τ.P does not hold in general. To obtain
the largest congruence contained in early (late) open bisimilarity we follow the
standard approach: We say that two processes P and Q are early open congru-
ent, notation P 'e

o Q, if P ≈e
o Q and for each substitution σ a tau action of Pσ

must be matched up by a non-empty sequence of tau actions from Qσ and vice
versa. Clearly 'e

o is a congruence. Similarly we can define 'l
o.

4 Axiomatic System

In [2] completeness theorems are proved for L-bisimilarities on χ-processes with-
out mismatch operator. The proofs of these completeness results use essentially
the inductive definitions of L-bisimilarities. In the presence of the mismatch op-
erator, the method used in [2] should be modified. The modification is done by
incorporating ideas from [6]. In this section, we give the complete axiomatic sys-
tems for early and late open congruences using the modified approach. First we
need to define two induced prefix operators, tau and update prefixes, as follows:

[y|x].P def= (a)(a[y]|a[x].P )

τ.P
def= (b)[b|b].P

where a, b are fresh. The following are some further auxiliary definitions.

Definition 5. Let V be a finite set of names. We say that ψ is complete on V
if n(ψ) ⊆ V and for each pair x, y of names in V it holds that either ψ ⇒ x=y
or ψ ⇒ x 6= y.

Suppose ψ is complete on V and n(φ) ⊆ V . Then it should be clear that either
ψφ⇔ ψ or ψφ⇔ ⊥. In sequel this fact will be used implicitly.

Lemma 6. If φ and ψ are complete on V and both agree with σ then φ⇔ ψ.

Definition 7. A substitution σ is induced by ψ if it agrees with ψ and σσ = σ.

Let AS denote the system consisting of the rules and laws in Appendix A
plus the following expansion law:

P |Q =
∑

i

φi(x̃)πi.(Pi|Q) +
πi=ai[xi]∑
γj=bj [yj ]

φiψj(x̃)(ỹ)[ai=bj ][xi|yj ].(Pi|Qj) +

∑
j

ψj(ỹ)γj .(P |Qj) +
πi=ai[xi]∑
γj=bj [yj ]

φiψj(x̃)(ỹ)[ai=bj ][xi|yj ].(Pi|Qj)



where P is
∑

i φi(x̃)πi.Pi and Q is
∑

j ψj(ỹ)γj .Qj , πi and γj range over {α[x] |
α ∈ N ∪N , x ∈ N}. In the expansion law, the summand

πi=ai[xi]∑
γj=bj [yj ]

φiψj(x̃)(ỹ)[ai=bj ][xi|yj ].(Pi|Qj)

contains φiψj(x̃)(ỹ)[ai=bj ][xi|yj ].(Pi|Qj) as a summand whenever πi = ai[xi]
and γj = bj [yj ].

We write AS ` P = Q to indicate that the equality P = Q can be inferred
from AS. Some important derived laws of AS are given in Appendix A.

Using axioms in AS, a process can be converted to a process that contains
no occurrence of the composition operator, the latter process is of special form
as defined below.

Definition 8. A process P is in normal form on V ⊇ fn(P ) if P is of the form∑
i∈I1

φiαi[xi].Pi +
∑

i∈I2
φi(x)αi[x].Pi +

∑
i∈I3

φi[zi|yi].Pi such that x does not
appear in P , φi is complete on V for each i ∈ I1 ∪ I2 ∪ I3, Pi is in normal form
on V for i ∈ I1 ∪ I3 and is in normal form on V ∪ {x} for i ∈ I2. Here I1, I2
and I3 are pairwise disjoint finite indexing sets.

Notice that if P is in normal form and σ is a substitution then Pσ is in normal
form.

The depth of a process measures the maximal length of nested prefixes in the
process. The structural definition goes as follows: (i) d(0) = 0; (ii) d(α[x].P ) =
1+d(P ); (iii) d(P |Q) = d(P )+d(Q); (iv) d((x)P ) = d(P ); (v) d([x=y]P ) = d(P );
(vi) d(P+Q) = max{d(P ), d(Q)}.

Lemma 9. For a process P and a finite set V of names such that fn(P ) ⊆ V
there is a normal form Q on V such that d(Q) ≤ d(P ) and AS ` Q = P .

It can be shown that AS is complete for the strong open bisimilarity on χ6=-
processes. This fact will not be proved here. Our attention will be confined to
the completeness of the two weak open congruences. The tau laws used in this
paper are given in Figure 1. Some derived tau laws are listed in Figure 2. In
what follows, we will write ASl

o for AS ∪ {T1, T2, T3a, T3b, T3d, T4} and ASe
o

for AS ∪ {T1, T2, T3a, T3c, T3d, T4}.
The next lemma discusses some relationship among the tau laws.

Lemma 10. (i) ASe
o ` TD5. (ii) ASl

o ` TD6. (iii) AS ∪ {T3c} ` T3b.

Proof. (i) By T3c and C2, we get:

ASe
o ` Σ(a(x), P,Q, δ) = (x)(Σ(a[x], P,Q, δ)+[x6∈n(δ)]δa[x].Q)

= Σ(a(x), P,Q, δ)+(x)[x6∈n(δ)]δa[x].Q
LD3= Σ(a(x), P,Q, δ)+(x)δa[x].Q
LD2= Σ(a(x), P,Q, δ)+δ(x)a[x].Q

The proofs of (ii) and (iii) are omitted. ut



T1 α[x].τ.P = α[x].P
T2 P+τ.P = τ.P
T3a α[x].(P+τ.Q) = α[x].(P+τ.Q)+α[x].Q
T3b α[x].(P+δτ.Q) = α[x].(P+δτ.Q)+[x6∈n(δ)]δα[x].Q x 6∈ n(δ)
T3c Σ(α[x], P,Q, δ) = Σ(α[x], P,Q, δ)+[x6∈n(δ)]δα[x].Q x 6∈ n(δ)
T3d [y|x].(P+δτ.Q) = [y|x].(P+δτ.Q)+ψδ[y|x].Q
T4 τ.P = τ.(P+ψτ.P )

In T3d, if δ ⇒ [u 6=v] then either ψ ⇒ [x=u][y 6=v] or ψ ⇒ [x=v][y 6=u]
or ψ ⇒ [y=u][x6=v] or ψ ⇒ [y=v][x6=u] or ψ ⇒ [x6=u][x6=v][y 6=u][y 6=v].
In T3c, Σ(α[x], P,Q, δ) is

∑
y∈Y

α[x].(Py+δ[x=y]τ.Q)+α[x].(P+δ[x6∈Y ]τ.Q).

Fig. 1. The Tau Laws

TD1 [x|y].τ.P = [x|y].P
TD2 τ.τ.P = τ.P
TD3 [x|y].(P+τ.Q) = [x|y].(P+τ.Q)+[x|y].Q
TD4 τ.(P+τ.Q) = τ.(P+τ.Q)+τ.Q
TD5 (x)α[x].(P+δτ.Q) = (x)α[x].(P+δτ.Q)+δ(x)α[x].Q x 6∈ n(δ)
TD6 Σ(α(x), P,Q, δ) = Σ(α(x), P,Q, δ)+δ(x)α[x].Q x 6∈ n(δ)

In TD6, Σ(α(x), P,Q, δ) is
∑

y∈Y
(x)α[x].(Py+δ[x=y]τ.Q)+(x)α[x].(P+δ[x6∈Y ]τ.Q).

Fig. 2. The Derived Tau Laws

To establish the completeness theorem, some properties of AS and the open
bisimilarities must be established first. The next three lemmas describe these
properties.

Lemma 11. Suppose Q is in normal form on V , φ is complete on V , and σ is
a substitution induced by φ. Then the following properties hold:
(i) If Qσ τ=⇒ Q′ then AS ∪ {T1, T2, T3a} ` Q = Q+φτ.Q′.

(ii) If Qσ =⇒α[x]−→ Q′ then AS ∪ {T1, T2, T3a} ` Q = Q+φα[x].Q′.

(iii) If Qσ =⇒α(x)−→ Q′ then AS ∪ {T1, T2, T3a} ` Q = Q+φ(x)α[x].Q′.

(iv) If Qσ
[y/x]
=⇒ Q′ then AS ∪ {T1, T2, T3a, T3d} ` Q = Q+φ[y|x].Q′.

Proof. (iv) If Qσ
[y/x]−→ Q′ then AS ∪ {T1, T2, T3a, T3d} ` Q = Q+φ[y|x].Q′.

Suppose for example Qσ τ=⇒ Q1σ
[y/x]−→ Q2

τ=⇒ Q′. It is easy to see that Q2 ≡
Q′

2σ[y/x]. Let ψ be a complete condition on fn(Q′
2) that induces σ[y/x]. Suppose

ψ ⇔ µδ. Clearly µσ[y/x] is true. Therefore

AS ∪ {T1, T2, T3a, T3d} ` Q = Q+φ[y|x].Q2

= Q+φ[y|x].Q′
2σ[y/x]

= Q+φ[y|x].Q′
2

= Q+φ[y|x].(Q′
2+ψτ.Q

′)



= Q+φ[y|x].(Q′
2+µδτ.Q

′)
= Q+φ[y|x].(Q′

2+δτ.Q
′)

= Q+φ([y|x].(Q′
2+δτ.Q

′)+θδτ.Q′)
= Q+φθδ[y|x].Q′

in which θ is defined as in T3d. First of all it is easy to see that φ ⇒ δ for φ is
complete on V . So φδ ⇔ φ. Second we need to explain how to construct θ. It
should be constructed in such a way that φθ ⇔ φ. Suppose δ ⇒ [u 6=v]. There
are five possibilities:

– φ⇒ x=u. Then we let θ contain [x=u][y 6=v]. If φ⇒ y=v then σ is induced by
[x=u][y=v]. It follows that σ[y/x] is induced by [u=v], which is impossible.
Hence φ⇒ y 6=v.

– φ⇒ y=u or φ⇒ x=v or φ⇒ y=v. These cases are similar to previous case.
– φ⇒ [x6=u][x6=v][y 6=u][y 6=v]. Simply let θ contain [x6=u][x6=v][y 6=u][y 6=v].

It is clear from the construction that φ⇒ θ. Therefore AS∪{T1, T2, T3a, T3d} `
Q = Q+φθδ[y|x].Q′ = Q+φ[y|x].Q′. ut

Lemma 12. Suppose Q is a normal form on some V = {y1, . . . , yk} ⊇ fn(Q),
ψ is complete on V , and σ is a substitution induced by ψ. If

Qσ=⇒ α(x)−→ Q′
1σ, Q

′
1σ[y1/x] =⇒ Q1,

Qσ=⇒ α(x)−→ Q′
2σ, Q

′
2σ[y2/x] =⇒ Q2,

...
Qσ=⇒ α(x)−→ Q′

kσ, Q
′
kσ[yk/x] =⇒ Qk,

Qσ =⇒α(x)−→ Q′
k+1σ =⇒ Qk+1

then the following properties hold:

1. AS ∪ {T1, T2, T3a} ` Q = Q + ψ
∑k

j=1(x)α[x].(τ.Q′
j + ψ[x=yj ]τ.Qj) +

ψ(x)α[x].(τ.Q′
k+1 + ψ[x6∈V ]τ.Qk+1)).

2. If Q′
1 ≡ Q′, . . . , Q′

k+1 ≡ Q′, then Q+ψ(x)α[x].(τ.Q′ +ψ
∑k

j=1[x=yj ]τ.Qj +
φ[x6∈V ]τ.Qk+1) is provably equal to Q in AS ∪ {T1, T2, T3a}.

The proof of the above lemma is similar to that of Lemma 11.

Lemma 13. In χ6=-calculus the following properties hold:
(i) If P ≈e

o Q then ASe
o ` τ.P = τ.Q.

(ii) If P ≈l
o Q then ASl

o ` τ.P = τ.Q.

Proof. By Lemma 9 we may assume that P and Q are in normal form on V =
fn(P |Q) = {y1, y2, . . . , yk}. Let P be∑

i∈I1

φiαi[xi].Pi+
∑
i∈I2

φi(x)αi[x].Pi+
∑
i∈I3

φi[zi|yi].Pi



and Q be ∑
j∈J1

ψjαj [xj ].Qj+
∑
j∈J2

ψj(x)αj [x].Qj+
∑
j∈J3

ψj [zj |yj ].Qj

We prove this lemma by induction on the depth of P |Q.
(i) Suppose φiπi.Pi is a summand of P and σ is induced by φi. There are

several cases:

– πiσ is an update action [y|x]. It follows from P ≈e
o Q that Qσ

[y/x]
=⇒ Q′ ≈e

o

Pi[y/x]σ. By induction we have ASe
o ` Q′ = Piσ[y/x]. By (iv) of Lemma 11

ASe
o ` Q = Q+φi[y|x].Q′

= Q+φi[y|x].Pi[y/x]σ
= Q+φi[y|x].Piσ

= Q+φiπiσ.Piσ

= Q+φiπi.Pi

– πiσ is a restricted action α(x). Since P ≈e
o Q one has the following cases:

• For each l ∈ {1, . . . , k}, Q′
il

and Qil
exist such that Qσ=⇒ α(x)−→ Q′

il
σ and

Q′
il
σ[yl/x] =⇒ Qil

≈e
o Piσ[yl/x].

• Q′
ik+1

and Qik+1 exist such that Qσ=⇒ α(x)−→ Q′
ik+1

σ =⇒ Qik+1 ≈e
o Piσ.

By Lemma 12

ASe
o ` Q = Q+

k∑
l=1

φi(x)a[x].(τ.Q′
il
+φi[x=yl]τ.Qil

)

+φi(x)a[x].(τ.Q′
ik+1

+φi[x6∈V ]τ.Qik+1)

= Q+
k∑

l=1

φi(x)a[x].(τ.Q′
il
+φi[x=yl]τ.Piσ[yl/x])

+φi(x)a[x].(τ.Q′
ik+1

+φi[x6∈V ]τ.Piσ)
= Q+φ(x)a[x].Pi

= Q+φiπi.Pi

– πiσ is a free action α[x]. Using the fact P ≈e
o Q one has the following cases:

• For each l ∈ {1, . . . , k}, Q′
il

and Qil
exist such that Qσ=⇒ α[x]−→ Q′

il
σ and

Q′
il
σ[yl/x] =⇒ Qil

≈e
o Piσ[yl/x].

• Q′
ik+1

and Qik+1 exist such that Qσ=⇒ α[x]−→ Q′
ik+1

σ =⇒ Qik+1 ≈e
o Piσ.

Since φi is complete on V , it groups the elements of V into several disjoint
classes. Assume that these classes are [x], [a1], . . . , [ar]. Let φ=

i be the se-
quence of match operators induced by the equivalence classes [a1], . . . , [ar].
Let φ=x

i be the sequence of match operators induced by the equivalence
class [x]. Let φ6=i be the sequence of mismatch combinators constructed as



follows: For 1 ≤ p, q ≤ r and a ∈ [ap], b ∈ [aq], a6=b is in φ6=i . And let
φ6=x

i be the sequence of mismatch combinators constructed as follows: For
a ∈ [a1] ∪ . . . ∪ [ar], a6=x is in φ6=x

i . It is clear that φi ⇔ φ=
i φ

=x
i φ6=i φ

6=x
i . Now

V can be divided into two subsets: V =x def= {y | y ∈ V, φi ⇒ y=x}; and
V 6=x def= {y | y ∈ V, φi ⇒ y 6=x} = [a1] ∪ . . . ∪ [ar]. Clearly φ6=x

i ⇔ [x6∈V 6=x].
• If yl ∈ V 6=x then we define φ6=x

i\[yl]
as follows: For a ∈ ([a1] ∪ . . . ∪ [ar]) \

[yl], a6=x is in φ6=x
i\[yl]

. It is easy to see that φ6=x
i\[yl]

⇔ [x6∈(V 6=x \ [yl])].

Now φ=
i φ

=x
i φ6=i φ

6=x
i\[yl]

[x=yl] is complete on V and induces σ[yl/x]. By
Lemma 11

Q = Q+ φiα[x].Q′
il

= Q+ φiα[x].τ.Q′
il

= Q+ φiα[x].(τ.Q′
il

+ φ=
i φ

=x
i φ6=i φ

6=x
i\[yl]

[x=yl]τ.Qil
)

= Q+ φiα[x].(τ.Q′
il

+ φ6=i φ
6=x
i\[yl]

[x=yl]τ.Qil
)

= Q+ φiα[x].(τ.Q′
il

+ φ6=i [x6∈(V 6=x \ [yl])][x=yl]τ.Qil
)

= Q+ φiα[x].(τ.Q′
il

+ φ6=i [yl 6∈(V 6=x \ [yl])][x=yl]τ.Qil
)

= Q+ φiα[x].(τ.Q′
il

+ φ6=i [x=yl]τ.Qil
)

• It is clear that φ=
i φ

=x
i φ6=i φ

6=x
i is complete on V and induces σ. One has

by Lemma 11 that

Q = Q+ φiα[x].Q′
ik

= Q+ φiα[x].τ.Q′
ik

= Q+ φiα[x].(τ.Q′
ik

+ φ=
i φ

=x
i φ6=i φ

6=x
i τ.Qik+1)

= Q+ φiα[x].(τ.Q′
ik

+ φ6=i φ
6=x
i τ.Qik+1)

= Q+ φiα[x].(τ.Q′
ik

+ φ6=i [x6∈V 6=x]τ.Qik+1)

Now

ASe
o ` Q = Q+

∑
yl∈V 6=x

φiα[x].(τ.Q′
il
+φ6=i [x=yl]τ.Qil

)

+φiα[x].(τ.Q′
ik+1

+φ6=i [x6∈V 6=x]τ.Qik+1)

= Q+
∑

yl∈V 6=x

φiα[x].(τ.Q′
il
+φ6=i [x=yl]τ.Piσ[yl/x])

+φiα[x].(τ.Q′
ik+1

+φ6=i [x6∈V 6=x]τ.Piσ)

= Q+φi[x6∈n(φ6=i )]α[x].Pi

= Q+φiα[x].Pi

– πiσ is a tau action. If the tau action is matched by Qσ τ=⇒ Q′ then it is easy
to prove that ASe

o ` Q = Q+φiπi.Pi. If the tau action is matched vacuously
then ASe

o ` Q+φiπi.Pi = Q+φiτ.Q.



In summary, we have ASe
o ` P+Q = Q+Σi∈I′φiτ.Q for some I ′ ⊆ I. So by T4

we get ASe
o ` τ.(P + Q) = τ.(Q + Σi∈I′φiτ.Q) = τ.Q. Symmetrically, we can

prove ASe
o ` τ.(P+Q) = τ.P . Hence ASe

o ` τ.P = τ.Q.
(ii) The proof is similar to that for ≈e

o. We consider only one case:

– πiσ is a restricted action α(x). It follows from P ≈l
o Q that some Q′ exists

such that the following holds:
• For each l ∈ {1, . . . , k}, Q′, Qil

exists such that Qσ=⇒ α(x)−→ Q′σ and
Q′σ[yl/x] =⇒ Qil

≈l
o Piσ[yl/x].

• Qik+1 exists such that Qσ=⇒ α(x)−→ Q′σ =⇒ Qik+1 ≈l
o Piσ.

By (ii) of Lemma 12 we get

ASl
o ` Q = Q+φi(x)α[x].(τ.Q′+φi

k∑
l=1

[x=yl]τ.Qil
+φi[x6∈V ]τ.Qik+1)

= Q+φi(x)α[x].(τ.Q′+φi

k∑
l=1

[x=yl]τ.Piσ[yl/x]+φi[x6∈V ]τ.Piσ)

= Q+φi(x)α[x].(τ.Q′+φiτ.Pi)
= Q+φi(x)α[x].Pi

Then by a similar argument as in (i), we get ASl
o ` τ.P = τ.Q. ut

Theorem 14. In χ6=-calculus the following completeness results hold:
(i) If P 'e

o Q then ASe
o ` P = Q.

(ii) If P 'l
o Q then ASl

o ` P = Q.

Proof. By Lemma 11 and Lemma 13, one can prove the theorem in very much
the same way as the proof of Lemma 13 is done. ut

5 Historical Remark

The first author of this paper has been working on χ-calculus for some years. His
attention had always been on the version of χ without mismatch combinator.
By the end of 1999 he started looking at testing congruence on χ-processes.
In order to axiomatize the testing congruence he was forced to introduce the
mismatch operator. This led him to deal with open congruences on χ6=-processes,
which made him aware of the fact that the open semantics for the π-calculus
with the mismatch combinator has not been investigated before. So he, together
with the second author, began to work on the problem for the π-calculus with
the mismatch combinator. Their investigation showed that the simple-minded
definition of open bisimilarity is not closed under parallel composition. It is then
a small step to realize the problem of the weak hyperequivalence.

It has come a long way to settle down on the axiom T4. The first solution,
proposed by the first author in an early version of [4], is the following rule:

P+Σi∈Iψiτ.P = Q+Σj∈Jψjτ.Q
τ.P = τ.Q



The premises of the rule is an equational formalization of P ≈ Q. In the final
version of [4] he observed that the rule is equivalent to the following law:

τ.P = τ.(P+Σi∈Iψiτ.P )

Later on he realized that the above equality can be simplified to T4.
In [8] two tau laws are proposed for fusion calculus. Using the notations of [8]

they can be written as follows:

α.(P + M̃1.Q) = α.(P + M̃1.Q) + M̃α.Q (1)
ι.(P+M̃ρ.Q) = ι.(P+M̃ρ.Q)+M̃ι ∧ ρ.Q if ∀x, y.(M̃⇒x6=y)⇒¬(xιy) (2)

where α is a communication action, ι and ρ are fusion actions, and M̃ is a
sequence of match/mismatch operators. Neither (1) nor (2) is valid. The coun-
terexample to (1) is given in the introduction. The problem with (2) is that it is
not closed under substitution. The following is an instance of (2) since the side
condition is satisfied:

{x=y}.(P+[u 6=v]1.Q) = {x=y}.(P+[u 6=v]1.Q)+[u 6=v]{x=y}.Q

But if we substitute u for x and v for y we get

{x=y}.(P+[x6=y]1.Q) = {x=y}.(P+[x6=y]1.Q)+[x6=y]{x=y}.Q

This equality should not hold. Our T3b is the correction of (1) while our T3d is
a special case of the correct version of (2). In order for (2) to be valid, the side
condition has to be internalized as it were.
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A Axiomatic System for the Strong Open Congruence

E1 P = P
E2 P = Q if Q = P
E3 P = R if P = Q and Q = R
C1 α[x].P = α[x].Q if P = Q
C2 (x)P = (x)Q if P = Q
C3a [x=y]P = [x=y]Q if P = Q
C3b [x6=y]P = [x6=y]Q if P = Q
C4 P+R = Q+R if P = Q
C5 P0|P1 = Q0|Q1 if P0 = Q0 and P1 = Q1

L1 (x)0 = 0
L2 (x)α[y].P = 0 x ∈ {α, α}
L3 (x)α[y].P = α[y].(x)P x 6∈ {y, α, α}
L4 (x)(y)P = (y)(x)P
L5 (x)[y=z]P = [y=z](x)P x 6∈ {y, z}
L6 (x)[x=y]P = 0 x6=y
L7 (x)(P+Q) = (x)P+(x)Q
L8 (x)[y|z].P = [y|z].(x)P x 6∈ {y, z}
L9 (x)[y|x].P = τ.P [y/x] y 6= x
L10 (x)[x|x].P = τ.(x)P
M1 φP = ψP if φ⇔ ψ
M2 [x=y]P = [x=y]P [y/x]
M3a [x=y](P+Q) = [x=y]P+[x=y]Q
M3b [x6=y](P+Q) = [x6=y]P+[x6=y]Q
M4 P = [x=y]P+[x6=y]P
M5 [x6=x]P = 0
S1 P+0 = P
S2 P+Q = Q+P
S3 P+(Q+R) = (P+Q)+R
S4 P+P = P
U1 [y|x].P = [x|y].P
U2 [y|x].P = [y|x].[x=y]P
U3 [x|x].P = τ.P
LD1 (x)[x|x].P = [y|y].(x)P by U3 and L8
LD2 (x)[y 6=z]P = [y 6=z](x)P by L5, L7 and M4
LD3 (x)[x6=y]P = (x)P by L6, L7 and M4
MD1 [x=y].0 = 0 by S1, S4 and M4
MD2 [x=x].P = P by M1
MD3 φP = φ(Pσ) where σ agrees with φ by M2
SD1 φP+P = P by S-rules and M4
UD1 [y|x].P = [y|x].P [y/x] by U2 and M2


