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Abstract

Sénizergues proved that language equivalence is decidable for disjoint ε-deterministic pushdown automata (PDA).
Stirling showed that strong bisimilarity is decidable for normed PDA. Sénizergues strengthened the result by demon-
strating the decidability of the strong bisimilarity of the deterministic epsilon-popping PDA. Recently Jančar provided
a different proof of the decidability of the strong bisimilarity of PDA in a more general setting. On the negative side
Srba pointed out that the weak bisimilarity is undecidable for normed PDA. Jančar and Srba demonstrated the unde-
cidability of the weak bisimilarity for disjoint ε-pushing PDA and disjoint ε-popping PDA. In this paper it is proved
that the branching bisimilarity of the normed ε-pushing PDA is decidable.
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1. Introduction

“Is it recursively unsolvable to determine if L1 = L2 for arbitrary deterministic languages L1 and L2”? The
question was raised in Ginsburg and Greibach’s 1966 paper [7] titled Deterministic Context Free Languages. The
equality referred to in the quotation is the language equivalence between context free grammars. It is well known that
the context free languages are precisely those accepted by pushdown automata (PDA) [9]. A PDA extends a finite
state automaton with a memory stack. It accepts an input string whenever the memory stack is empty. The operational
semantics of a PDA is defined by a finite set of rules of the following form

pX
a
−→ qα or pX

ε
−→ qα.

The transition rule pX
a
−→ qα reads “If the PDA is in state p with X being the top symbol of the stack, then it can

accept an input letter a, pop off X, place the string α of stack symbols onto the top of the stack, and turn into state
q”. The rule pX

ε
−→ qα describes a silent transition that has nothing to do with any input letter. It was proved

early on that language equivalence between pushdown automata is undecidable [9]. A natural question asks what
restrictions one may impose on the PDA’s so that language equivalence becomes decidable. Ginsburg and Greibach
studied deterministic context free languages. These are the languages accepted by deterministic pushdown automata
(DPDA) [7].

A DPDA enjoys disjointness and determinism properties. These conditions are defined as follows:

Disjointness. For all state p and all stack symbol X, if pX can accept a letter then it cannot perform a
silent transition, and conversely if pX can do a silent transition then it cannot accept any letter.

A-Determinism. If pX
a
−→ qα and pX

a
−→ q′α′ then q = q′ and α = α′.

ε-Determinism. If pX
ε
−→ qα and pX

ε
−→ q′α′ then q = q′ and α = α′.
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These are strong constraints from an algorithmic point of view. It turns out however that the language problem is still
difficult even for this simple class of PDA’s. One indication of the difficulty of the problem is that there is no size
bound for equivalent DPDA configurations. It is easy to design a DPDA such that two configurations pY and pXnY
accept the same language for all n.

It was Sénizergues who proved after 30 years that the problem is decidable [21, 23]. His original proof is very
long. Simplified proofs were discovered later by Sénizergues [24] himself and by Stirlng [31]. After the positive
answer of Sénizergues, one wonders if the strong constraints (disjointness+A-determinism+ε-determinism) can be
relaxed. The first such relaxation was given by Sénizergues himself [22, 25]. He showed that strong bisimilarity on
the collapsed graphs of the disjoint ε-deterministic pushdown automata is also decidable. In the collapsed graphs all
ε-transitions are absorbed. This result suggests that A-nondeterminism is harmless as far as decidability is concerned.
The silent transitions considered in [22, 25] are ε-popping. A silent transition pX

ε
−→ qα is ε-popping if α = ε. In

this paper we shall use a slightly more liberal definition of this terminology.

A PDA is ε-popping if |α| ≤ 1 whenever pX
ε
−→ qα.

A PDA is ε-pushing if |α| ≥ 1 whenever pX
ε
−→ qα.

A disjoint ε-deterministic PDA can be converted to an equivalent disjoint ε-popping PDA in the following manner.
Without loss of generality we may assume that the disjoint ε-deterministic PDA does not admit any infinite sequence
of silent transitions. Suppose pX

ε
−→ . . .

ε
−→ qα and qα cannot do any silent transition. If α = ε then we can redefine

the semantics of pX by pX
ε
−→ qε; otherwise we can remove pX in favour of qZ with Z being the first symbol of α.

So under the disjointness condition ε-popping condition is weaker than ε-determinism.
A paradigm shift from a language viewpoint to a process algebraic viewpoint helps see the issue in a more produc-

tive way. Groote and Hüttel [8, 11] pointed out that as far as BPA and BPP are concerned the bisimulation equivalence
à la Milner [19] and Park [20] is more tractable than the language equivalence. The best way to understand Senizer-
gues’ result proved in [22, 25] is to recast it in terms of bisimilarity. Disjointness and ε-determinism imply that all
silent transitions preserve equivalence. It follows that the branching bisimilarity [32] of the disjoint ε-deterministic
PDA’s coincides with the strong bisimilarity on the collapsed graphs of these PDA’s. So what Senizergues has proved
in [22, 25] is that the branching bisimilarity on the disjoint ε-deterministic PDA’s is decidable.

The process algebraic approach allows one to use the apparatus from the process theory to study the equivalence
checking problem for PDA. Stirling’s proof of the decidability of the strong bisimilarity for normed PDA (nPDA) [28,
29] exploits the tableau method [12, 10]. Later he extended the tableau approach to the study of the unnormed PDA
in an unpublished paper [30]. Stirling also provided a simplified account of Senizergues’ proof [22, 25] using the
process method [31]. The proofs in [22, 25, 31] are interesting in that they turn the language equivalence of disjoint
ε-deterministic PDA to bisimilarity of correlated models. Another advantage of bisimulation equivalence is that it
admits a nice game theoretical interpretation. This has been exploited in the proofs of negative results using the
technique of Defender’s Forcing [17]. Srba proved that weak bisimilarity on nPDA’s is undecidable [26]. Jančar and
Srba improved this result by showing that the weak bisimilarity on the disjoint nPDA’s with only ε-popping transitions,
respectively ε-pushing transitions, is already undecidable [17]. In fact they proved that the problems are Π0

1-complete.
Recently Yin, Fu, He, Huang and Tao have proved that the branching bisimilarity for all the models above either
the normed BPA or the normed BPP in the hierarchy of process rewriting system [18] are undecidable [35]. This
general result implies that the branching bisimilarity on nPDA is undecidable. Defender’s Forcing can be used to
study complexity bound. An example is Benedikt, Göller, Kiefer and Murawski’s proof that the strong bisimilarity
on PDA is non-elementary [2]. A summary of the (un)decidability results mentioned above is given in the following
table, where ∼ stands for the strong bisimilarity, ' the branching bisimilarity, and ≈ the weak bisimilarity.

PDA nPDA

∼
Decidable [22]

Non-Elementary [2]
Decidable [22]

Non-Elementary [2]
' Undecidable [35] Undecidable [35]

≈
Σ1

1-Complete [17]
Undecidable [26]

Σ1
1-Complete [17]

Undecidable [26]
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Recently Jančar has studied the strong bisimilarity problem of PDA and the DPDA problem in a more general frame-
work called first order grammar, and provided a defender-refuter game argument for the proof of the decidability
problems [13, 15, 16]. More recently Fu has taken a closer look at termination condition for equivalence checking
algorithm for the strong bisimilarity of PDA [5].

The decidability of the strong bisimilarity and the undecidability of the weak bisimilarity still leave a number of
questions unanswered. The motivation for this work is to establish a strictly stronger result that would subsume both
the decidability results in the language theme and the decidability results in the process algebraic line. This is desirable
since these two classes of results are incompatible, neither implies the other. The former rules out nondeterminism to
a great extent, whereas the latter does not deal with silent transitions. The contribution of this paper is two fold.

1. We prove that the branching bisimilarity on the normed ε-pushing PDA is decidable.
2. We propose a general approach that deals with silent transitions in equivalence checking algorithms, which

could have applications in other models of process rewriting system.

In a separate paper we give a proof of the decidability of the branching bisimilarity for the ε-popping PDA. Together
with the result of this paper it subsumes all previous decidability results about equivalence checking for PDA.

Section 2 fixes the syntax and the operational semantics of PDA. Section 3 reviews some properties of the branch-
ing bisimilarity. Section 4 discusses the finite branching property for the normed ε-pushing PDA. Section 5 introduces
bisimulation trees. Section 6 explains how to reduce the growth of a pair of processes with long common suffix to
the growth of a pair of processes with shorter common suffix. Section 7 presents a semi-decidable procedure for the
branching bisimilarity and derives the decidability. Section 8 concludes.

2. PDA

A pushdown automaton (PDA for short) P = (Q,V,L,R) consists of

• a finite state set Q = {p1, . . . , pq} ranged over by o, p, q, r, s, t,

• a finite symbol setV = {X1, . . . , Xn} ranged over by X,Y,Z,

• a finite letter set L = {a1, . . . , as} ranged over by a, b, c, d, and

• a finite set R of transition rules.

If we think of a PDA as a process we may interpret a letter in L as an action label. The set L∗ of words is ranged over
by u, v,w. Following the process algebraic convention a silent action will be denoted by τ. The set A = L ∪ {τ} of
actions is ranged over by `. The setA∗ of action sequence is ranged over by ˜̀. The setV∗ of finite strings of symbols
is ranged over by small Greek letters. The empty string is denoted by ε. We write αδ for the concatenation of α and δ.
Since concatenation is associative no parenthesis is necessary when we write αδγ. The length of α is denoted by |α|.

The syntax of a PDA process is pα, where p ∈ Q is a state and α ∈ V∗ is called a stack. The size of pα, denoted
by |pα|, is the same as |α|. We shall write A, B,C,D, L,M,N,O, P,Q for PDA processes. If P = pα then Pδ stands for
the PDA process pαδ. If δ = ε, then Pδ is nothing but P. The transition set R of a PDA contains rules of the form

pX
`
−→ qα. The semantics of the PDA processes is defined by the following rule.

pX
`
−→ qα ∈ R

pXσ
`
−→ qασ

(1)

We shall write
˜̀
−→ for

`1
−→ . . .

`k
−→ if ˜̀= `1 . . . `k, =⇒ for the reflexive and transitive closure of

τ
−→, and

τ
=⇒ for the

transitive closure of
τ
−→. If P

˜̀
−→ P′ for some ˜̀then P′ is a descendant of P and P is an ancestor of P′. By definition

P is a descendant of itself. A process P is normed, or P is an nPDA process, if P
˜̀
−→ pε for some ˜̀and some p. It

is unnormed otherwise. A PDA P = (Q,V,L,R) is normed, or P is an nPDA, if pX is normed for all p ∈ Q and all
X ∈ V. The notation (n)PDAε+ will refer to the variant of (n)PDA with ε-pushing transitions.

3



3. Branching Bisimilarity

The definition of branching bisimilarity is due to van Glabbeek and Weijland [33]. For PDA’s care should be given
to processes of the form pε in order to guarantee that the bisimilarity is a congruence relation [28].

Definition 1. A binary relation R on nPDAε+ processes is a branching simulation if the following statements are valid
whenever PRQ:

1. If P
a
−→ P′ then there are some Q′,Q′′ such that Q =⇒ Q′′

a
−→ Q′ and PRQ′′ and P′RQ′.

2. If P
τ
−→ P′ then either Q =⇒ Q′ and PRQ′ and P′RQ′ for some Q′ or Q =⇒ Q′′

τ
−→ Q′ and PRQ′′ and

P′RQ′ for some Q′,Q′′.
3. If P = pε then Q =⇒ pε.

The relation R is a branching bisimulation if both R and R−1 = {(Q, P) | (P,Q) ∈ R} are branching simulations. The
branching bisimilarity ' is the largest branching bisimulation.

The branching bisimulations are closed under set theoretical union. LetR1,R2 be branching bisimulations. It is proved
in [1] that the composition R1;R2, defined by {(O,Q) | ∃P.(O, P) ∈ R1 ∧ (P,Q) ∈ R2}, is a branching bisimulation.
Consequently ' is an equivalence. Moreover ' is also a congruence due to the third condition of Definition 1.

A technical lemma that plays an important role in the study of branching bisimilarity is the following Computation
Lemma [33, 4].

Lemma 2. If P0
τ
−→ . . .

τ
−→ Pk ' P0, then P0 ' . . . ' Pk.

A silent transition P
τ
−→ P′ is state-preserving, denoted by P

ε
−→ P′ or P→ P′, if P ' P′. It is a change-of-state,

notation P
ι
−→ P′, if P ; P′. This use of the notation ε is consistent with the usage in DPDA in which all ε-transitions

are state-preserving. We write (→∗)→+ for the (reflexive and) transitive closure of→. The notation P 9 stands for
the fact that P ; P′ for all P′ such that P

τ
−→ P′. Let  and its decorated versions range over L∪ {ι}. It is necessary to

introduce the notation

−→. The transition P


−→ P′ refers to either P

a
−→ P′ for some a ∈ L or P

ι
−→ P′. Lemma 2

implies that if P0

−→ P1 is bisimulated by Q0

τ
−→ Q1

τ
−→ . . .

τ
−→ Qk


−→ Qk+1, then Q0

ε
−→ Q1

ε
−→ . . .

ε
−→ Qk.

This observation considerably simplifies bisimulation argument. Notice also that Pα
ε
−→ P′α whenever P

ε
−→ P′.

Given a PDA process P, the norm of P, denoted by ‖P‖, is a function from [q] = {1, . . . , q} to N ∪ {⊥}, where N is
the set of natural numbers and ⊥ stands for undefinedness, such that for every h ∈ [q] either of the following holds:

• ‖P‖(h) = ⊥ if there is no ˜̀such that P
˜̀
−→ ph.

• ‖P‖(h) is the least number i such that P→∗
1
−→ . . .→∗

i
−→→∗ ph for some 1 . . . i.

It follows from the congruence property that ‖P‖(h) = ‖Q‖(h) whenever P ' Q. Let ker(P) = {h | ‖P‖(h) , ⊥}. The
strong norm of P, denoted by ‖P‖s, is defined as follows: For each h ∈ ker(P) the value ‖P‖s(h) is the least k such that

P
`1
−→ . . .

`k
−→ phε for some `1, . . . , `k; and ‖P‖s(h) = ⊥ for each h < ker(P). We shall use the following convention.

r = max
{
|η|

∣∣∣∣∣ pX
`
−→ qη ∈ R for some p, q ∈ Q, X ∈ V

}
,

m = max {max{‖pX‖s(h) | h ∈ ker(P)} | p ∈ Q, X ∈ V} + 1.

It follows from definition that ‖pX‖(i) < m for all p, X, all i ∈ ker(pX)‖. It is obvious how to compute r. The value
‖pX‖s(h) for h ∈ [q], and the value m as well, can be effectively calculated using a dynamic programming algorithm.

Following Stirling [29] we introduce two types of equationally defined stack symbols for PDA. A simple constant
U is defined by a family of process equalities

p1U = M1, p2U = M2, . . . , pqU = Mq. (2)

We think of the equalities in (2) as grammar equalities. In other words we regard piU and Mi as the same syntactical
object for every i ∈ [q]. We write U(i) for Mi, where i ∈ [q]. We shall write U and its decorated versions for simple
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constants. In the rest of the paper we take simple constants as first class citizens. Accordingly a (generalized) stack
should be understood as a finite string composed of stack symbols and/or constants. For example XUYU′ZV is a
stack. From now on we will use the small Greek letters for (generalized) stacks. When calculating the length of a
stack or the size of a process a simple constant counts as one symbol. Simple constants should not be nested, meaning
that in (2) the processes M1 through Mq may contain no simple constants.

A recursive constant V is defined by a family of process equalities

p1V = L1V, p2V = L2V, . . . , pqV = LqV. (3)

Again we see the equalities in (3) as grammar equalities. We write V(i) for Li, where i ∈ [q]. We say that V is
undefined at i ∈ [q], notation V(i)↑, if V(i) = piε. We will identify a stack say αVβ with αV . In other words we
ignore all symbols after a recursive constant since operationally they are irrelevant. We shall write V and its decorated
versions for recursive constants. In (3) the stacks in L1 through Lq may contain simple constants but not recursive
constants. For the sake of algorithmic study we impose the following condition: For each i ∈ [q] the process V(i) may
contain at most one occurrence of simple constant, and the occurrence must be in the last symbol of V(i); and if the
last symbol of a stack is a recursive constant, then only the second last symbol of the stack can be a simple constant.

In the presence of the grammar equalities defined in (2) and (3) the operational semantics of pU and pV is well
defined by the rules given in (1). The bisimulation semantics need be enriched. In Definition 1 the following clause
must be incorporated.

4) If P = piV and V(i)↑ then Q = piV .

The equivalence and congruence properties remain unaffected.

4. Finite Branching Property

We prove in this section that nPDAε+ enjoys the finite branching property. Before doing that we need be assured
that silent transition cycles of nPDAε+ processes do not raise any problem. There is in fact an effective procedure to
remove such a silent transition cycle. A clique S is a subset of {pX | p ∈ Q, and X ∈ V} such that for every two
distinct members pX, qY of S there is a silent transition sequence from pX to qY . It follows from Lemma 2 that the
members of a clique are branching bisimilar. We can remove a maximal clique S in two steps.

1. Remove all rules of the form pX
τ
−→ qY such that pX, qY ∈ S.

2. For each pX ∈ S introduce the rule pX
λ
−→ P whenever there is some qY ∈ S that is distinct from pX and the

rule qY
λ
−→ P has not been removed in the first step.

In the new nPDAε+ there is no circular silent transition sequence involving any member of S due to the maximality of
S. The legitimacy of transformation is guaranteed by Lemma 2. In this way we can remove all cycles by induction.
From now on we assume that such circularity does not occur in our nPDAε+. Consequently for an nPDAε+ with n
variables and q states the length of qX

τ
−→ q1X1

τ
−→ . . .

τ
−→ qkXk is strictly upper bounded by nq.

Lemma 3. If P contains no constants and Q ' P, then |Q| ≤ m|P|.

Proof. In nPDAε+ only external actions remove symbols from a stack. Silent actions never does that. �

Using the above corollary it is easy to establish the finite branching property for nPDAε+. There is however a
stronger result stating that a constant bound exists for the length of the state-preserving transitions in an nPDAε+.

Lemma 4. Suppose qXσ
ε
−→ q1γ1σ

ε
−→ . . .

ε
−→ qkγkσ for an nPDAε+ process qXσ. Then k < qnr(m+ 1)q.

Proof. Suppose qXσ
ε
−→ q1Z1δ1σ. Let q1Z1δ1σ →

∗
11
−→ . . . →∗

1j1
−→ r1εσ →

∗
1j1+1
−→ . . . →∗

1jk1
−→ ph1ε be a transition

sequence of minimal length that empties the stack, where k1 = min ‖q1Z1δ1σ‖. Clearly j1 ≤ rm. Suppose q1Z1δ1σ→
∗

q2Z2δ2δ1σ such that rm < |Z2δ2δ1| ≤ r(m + 1). Let q2Z2δ2δ1σ →
∗

21
−→ . . . →∗

2j2
−→ r2εσ →

∗
2j2+1
−→ . . . →∗

2jk2
−→ ph2ε be a
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transition sequence with a minimal k that empties the stack. One must have j2 > j1 according to the size bound on
Z2δ2δ1. By iterating the above argument one gets from

q1Z1δ1σ→
∗ q2Z2δ2δ1σ→

∗ . . .→∗ qi+1Zi+1δi+1δi . . . δ1σ→
∗ . . .→∗ qq+1Zq+1δq+1δq . . . δ1σ

with rm(m+ 1)i−1 < |Zi+1δi+1δi . . . δ1| ≤ r(m+ 1)i for all i ∈ [q], some states r1, . . . , rq+1, some numbers k1 < . . . < kq+1
and h1, . . . , hq+1. For each i ∈ [q + 1] there is some transition sequence

qiZiδi . . . δ1σ→
∗

i1
−→ . . .→∗

iji
−→→∗ riεσ→

∗
iji+1
−→ . . .→∗

ijki
−→→∗ phiε

where ki = min ‖qiZiδi . . . δ1σ‖. Since there are only q states, there must be some t1, t2 such that 0 < t1 < t2 ≤ q+1 and
rt1 = rt2 . It follows from the minimality that jkt1

− jt1 = jkt2
− jt2 . But jt2 > jt1 . Consequently jkt1

< jkt2
. This inequality

contradicts to the fact that qt1 Zt1δt1 . . . δ1σ ' qt2 Zt2δt2 . . . δ1σ. We conclude that if qXσ→∗ q′γσ then |γ| ≤ r(m + 1)q.
Since there is no ε-loop the bound k < qnr(m + 1)q follows. �

Using the finite branching property guaranteed by Lemma 4 it is standard to prove the following.

Proposition 5. The relation ; on nPDAε+ processes is semidecidable.

Proof. Let '0 be the total relation. The symmetric relation 'k+1 is defined as follows: P 'k+1 Q if the following
statements are valid:

1. If Q
a
−→ Q′ then P

τ
−→ . . .

τ
−→ P j

a
−→ P′ 'k Q′ for some P1, . . . , P j, P′ such that Pi 'k Q for all i ∈ [ j].

2. If Q
τ
−→ Q′ then either P 'k Q′ or some P1, . . . , P j, P′ exist such that P

τ
−→ . . .

τ
−→ P j

τ
−→ P′ 'k Q′ and

Pi 'k Q for all i ∈ [ j].
3. If P = pε then Q = pε.

The approximation '0 ⊇ '1 ⊇ '2 ⊇ . . . approaches to '. By standard argument using Lemma 4 one shows that⋂
i≥0 'i is '. So P ; Q can be checked by checking P ;i Q for i > 0. �

5. Bisimulation Tree

Intuitively a bisimulation tree for (P,Q) is a stratified presentation of a branching bisimulation for (P,Q) in which
one ignores all intermediate state-preserving silent transitions. This reminds one of the collapsed graphs due to
Sénizergues. To see how the collapse is done semantically, let us define the ε-tree of a process P, denoted by Tε(P), to
be the tree consisting of all state-preserving silent transition sequences starting from P. Recall that our nPDAε+ does
not admit silent loop action sequence and according to Lemma 4 there is a bound, computable from the definition
of nPDAε+, on the length of state-preserving silent transition sequences, hence the finiteness of the ε-trees. We say
that the τ-tree Tε(P) is trivial if it contains only one node; otherwise it is nontrivial. In a collapsed presentation of
a bisimulation for (P,Q) the root P is related to the root Q, and every leaf of Tε(P) is related to every leaf of Tε(Q).
The internal nodes of the two trees are not explicitly included in the collapsed presentation. These nodes and the
state-preserving silent transitions related to them are implicit. However in order to recover a branching bisimulation
from the collapsed presentation, every external action or change-of-state silent action of any internal node, say P′,
of Tε(P) must be matched by every leaf of Tε(Q). We remark that since a leaf of Tε(Q) cannot perform any state-
preserving silent transition the action of P′ must be bisimulated by a single step action of the leaf. We need to turn
the above semantic intuition into a definition in terms of the operational semantics. For that purpose we introduce a
weaker version of ε-tree. A finite set TP of prefix closed silent transition sequences from P is a quasi ε-tree of P if the
following is valid: If a silent transition P′

τ
−→ P′′ leaves TP, meaning that P′ is a node of TP and P′′ is not a node of

TP, then P′ ; P′′. A quasi ε-tree is nontrivial if it contains at least two nodes. The next lemma follows immediately
from Proposition 5.

Lemma 6. Given a finite set of silent transition sequences from P, it is semi-decidable to check if it is a quasi ε-tree.
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The root of B is (P,Q), and the following are valid for every node (M,N) of B.

1. (M,N) is a descendant of (P,Q), meaning that M is a descendant of P and N is a descendant of Q.
2. If M = N, the node (M,N) is an i-leaf. An i-leaf does not have any child.
3. If (M,N) coincides with the label of an ancestor, the node (M,N) is an r-leaf. An r-leaf does not have any child.
4. If (M,N) does not have any outgoing '-edge, the following are valid:

(a) M 9 and N 9.
(b) If M


−→ M′, then (M,N)


−→ (M′,N′) for some N′ such that N


−→ N′.

(c) If N

−→ N′, then (M,N)


−→ (M′,N′) for some M′ such that M


−→ M′.

5. If (M,N) has an outgoing '-edge, the following are valid:
(a) There are a quasi ε-tree TM of M and a quasi ε-tree TN of N such that at least one of TM and TN is

nontrivial. Moreover (M,N)
'
−→ (M′,N′) if and only if M′ is a leaf of TM and N′ is a leaf of TN .

(b) If (M,N)
'
−→ (M′,N′), M =⇒ L =⇒ M′ and N =⇒ O =⇒ N′, then the following are valid:

i. If L

−→ L′, then (M′,N′)


−→ (L′,N′′) for some N′′ such that N′


−→ N′′.

ii. If O

−→ O′, then (M′,N′)


−→ (M′′,O′) for some M′′ such that M′


−→ M′′.

Figure 1: Bisimulation Tree Property

A bisimulation tree B for (P,Q) is a finite branching rooted tree such that each node is labeled by a pair (M,N)
of nPDAε+ processes and a directed edge is labeled by an element of L ∪ {ι} ∪ {'}. For convenience we identify a
node with its label and refer to an edge labeled by say ' as a '-edge. Accordingly we write (M,N)

'
−→ (M′,N′) for

example for a '-edge from (M,N) to (M′,N′). We write B(P,Q) for a bisimulation tree for (P,Q). The definitional
property of B(P,Q) is stated in Fig. 1. Condition 4 and condition 5 in Fig. 1 remind one of the disjointness condition
of DPDA. If one swaps the processes of every label of a bisimulation tree B for (P,Q) one obtains a bisimulation tree
for (Q, P), denoted by B−1.

Let’s see an example of bisimulation tree.

Example 7. Suppose an nPDAε+ has the following semantic rules.

1. pX
τ
−→ pX2, pX

a
−→ pε; pY

τ
−→ rY, pY

a
−→ pε;

2. rY
τ
−→ sY, rY

a
−→ pX; sY

τ
−→ pY2, sY

a
−→ pY.

It is easy to verify that pXn ' pYn. A part of the infinite bisimulation tree for (pXn, pYn) is shown below.

ι

(pXn, pY n)

(pXn+1, rY n) (pXn−1, pY n−1)

(pXn+1, pY n+1)

(pXn, pY n) (pXn, pXY n−1)(pXn+2, rY n+1)

(pXn, rY n−1)(pXn−2, pY n−2)

(pXn, pY n)

'

'

ι

ι a a

a

a

(pXn+2, pY n+2)

' ...
...

...

The definition of bisimulation tree appears unusual at first sight since it refers to the relation ;. Our decidability
proof boils down to showing that ' is semi-decidable. This is done by a procedure that enumerates finite representa-
tions of all the bisimulation trees. The reference to ; poses no problem in view of Proposition 5.

Given a bisimulation tree B, define B as follows:

1. (M,N) ∈ B if (M,N) is a node in B.
2. (L,O) ∈ B if (M,N)

'
−→ (M′,N′) and M =⇒ L =⇒ M′ and N =⇒ O =⇒ N′.
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Let I be the identity relation.

Lemma 8. B ∪ I is a branching bisimulation.

It follows immediately from Lemma 8 and the definition of quasi ε-tree that (M,N)
'
−→ (M′,N′) implies both M ' M′

and N ' N′. In a bisimulation tree we have made it explicit if a silent transition is state-preserving or a change-of-
state internal action. A bisimulation tree makes a branching bisimulation look as much like a strong bisimulation as
possible. This property greatly simplifies the composition of two bisimulation trees.

We assign a level number to every node of a bisimulation tree. The level number of the root is 0. Suppose the level
number of (M,N) is k. Then the level number of (M′,N′) is k if (M,N)

'
−→ (M′,N′), it is k +1 if (M,N)


−→ (M′,N′).

We say that a bisimulation tree is generated or grown level by level if for each k ≥ 0 none of its nodes at the (k+1)-th
level is generated before all nodes at the k-th level have been generated. A k-bisimulation tree is obtained from a
bisimulation tree by cutting off all the nodes of height k + 1.

Suppose B(P,Q) is a bisimulation tree for (P,Q) and B(Q,O) is a bisimulation tree for (Q,O). We grow a tree
B(P,Q);B(Q,O) in the following manner:

• The root is (P,O).

• If (L,M)
'
−→ (L′,M′) is at level k in B(P,Q) and (M,N)

'
−→ (M′,N′) is at level k in B(Q,O), then (L,N)

'
−→

(L′,N′) is at level k in B(P,Q);B(Q,O).

• If (L,M)
'
−→ (L′,M) is at level k in B(P,Q) and (M,N) in B(Q,O) does not have any out-going '-edges, then

(L,N)
'
−→ (L′,N) is at level k in B(P,Q);B(Q,O).

• If (L,M) in B(P,Q) does not have any out-going '-edges and (M,N)
'
−→ (M,N′) is at level k in B(Q,O), then

(L,N)
'
−→ (L,N′) is at level k in B(P,Q);B(Q,O).

• If (L,M)

−→ (L′,M′) is from level k to level k + 1 in B(P,Q) and (M,N)


−→ (M′,N′) is from level k to level

k + 1 in B(Q,O), then (L,N)

−→ (L′,N′) is from level k to level k + 1 in B(P,Q);B(Q,O).

It is routine to prove the following lemma.

Lemma 9. B(P,Q);B(Q,O) is a bisimulation tree for (P,O).

6. Characteristic Tree

Suppose V is a recursive constant and piσ ' V(i)σ for all i ∈ [q]. A bisimulation tree for (Pσ,Qσ) over σ with
regards to V is grown in the following manner: (i) A node (Mσ,Nσ) with |M|, |N | > 0 is grown in the same way as it
is grown in a bisimulation tree for (Mσ,Nσ). (ii) A node (piσ,Nσ), respectively (Nσ, piσ) with |N| > 0 is renamed
to (V(i)σ,Nσ), respectively (Nσ,V(i)σ), and the latter is grown. In this case |V(i)| > 0 must be valid. (iii) A node
(piσ, p jσ) is renamed to (V(i)σ,V( j)σ) and either |V(i)| > 0 < |V( j)| or V(i) = pkε = V( j) for some k ∈ [q]. The role
of V is to decompose the growth of a bisimulation tree to the growth of smaller trees as it were.

Now suppose Pσ ' Qσ such that |P| > 0 and |Q| > 0 and V0 is a recursive constant such that piσ ' V0(i)σ for all
i ∈ [q]. We hope to extend V0 to a recursive constant V such that piσ ' V(i)σ for all i ∈ [q] and that one can grow
a bisimulation tree for (Pσ,Qσ) over σ with regards to V . A characteristic tree for (Pσ,Qσ) over σ extending V0 is
grown like a bisimulation tree for (Pσ,Qσ). The major difference is that the suffix σ should remain intact throughout
the construction of the tree. A transition Oσ

a
−→ O′′ for example is admitted in the buildup of the bisimulation tree

only if |O| > 0, in which case O′′ must be of the form O′σ. In the following construction we maintain three parameters
modified dynamically. The first is a set G = {Gi}i∈[q] of processes such that

p1σ ' G1σ, p2σ ' G2σ, . . . , pqσ ' Gqσ. (4)
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Initially Gi = V0(i) for all i ∈ [q]. The second is an equivalence relation E on [q]. We write i ∈ E if 〈i, i〉 ∈ E. Initially
E is the reflexive and transitive closure of {〈i, j〉 | V0(i) = j ∧ i ∈ [q]}. We will write 〈i〉 for the equivalence class of i.
The third is a recursive constant V defined by the grammar equalities

p1V = G1V, p2V = G2V, . . . , pqV = GqV. (5)

We will update G and E dynamically while we grow the tree level by level. The definition of V is updated accordingly.
Since all silent transitions are ε-pushing, the following construction never gets stuck along '-edges/ι-edges. The
growth of a node labeled (Mσ,Nσ) such that |M| > 0 and |N | > 0 is the same as in the growth of a bisimulation tree
for (Mσ,Nσ). The growth of a node labeled by (piσ,Nσ), for N , piε, is defined as follows.

1. i < E. Relabel the node by (Giσ,Nσ).
2. i ∈ E, and |N | > 0 respectively N = p jε for some j < E. Update G by letting Gh = N, respectively Gh = G j, for

every h in the equivalence class of i. Remove the equivalence class of i from E. Relabel the node by (Nσ,Nσ),
respectively (G jσ,G jσ).

3. i ∈ E and N = p jε for some j ∈ E. Update E by joining the equivalence class of i with that of j, relabel the
node by (pmin{i, j}σ, pmin{i, j}σ).

The growth of a node labeled (Nσ, piσ) is symmetric. Each time G or E has been modified, we check if the semantic
equivalence PV ' QV holds. If PV ; QV then there must be a least i such that the construction of the bisimulation
tree for (PV,QV) gets stuck at the i-th level. When this happens further update of G and/or E can be carried out.
After some levels both G and E must stabilize and PV ' QV must hold. We complete the definition of V by letting
V(i) = pmin〈i〉 for every i ∈ E. We call V the recursive constant generated by the characteristic tree extending V0. The
recursive constant V extends V0, notation V0 4 V , in the sense that |V0(i)| > 0 implies V(i) = V0(i) for all i ∈ [q]. If V0
is defined by V0(i) = piε for all i ∈ [q], we call V the recursive constant generated by the characteristic tree.

For normed PDA it should not be surprising that the recursive constant V is normed in the sense that for every
state p there is a finite sequence of actions of pV that terminates on some qV such that V(q)↑.

Lemma 10. For every pi there is some ˜̀such that piV
˜̀
−→ phV for some phV such that V(h)↑.

Proof. Suppose the statement of the lemma were false for some pi. Then V(pi) = Li for some Li such that |Li| > 0.

Now p jV is defined whenever piV
˜̀1
−→ p jV . That is V(p j) = L j for some L j such that |L j| > 0. It follows that

piσ ' Liσ
˜̀1
−→ p jσ ' L jσ. Similarly pkV is defined whenever p jV

˜̀2
−→ pkV . So V(pk) = Lk for some Lk such that

|Lk | > 0. By definition p jσ ' L jσ
˜̀2
−→ pkσ ' Lkσ. It should now be clear by the definition of bisimulation that piσ

cannot do any finite sequence of actions to reach any phε, contradicting to the fact that piσ is normed. �

The correlation between (4) and (5) has important consequence.

Lemma 11. Suppose the recursive constant V is defined by {piV = LiV}i∈[q] and piσ ' Liσ for all i ∈ [q]. If |P| > 0
and |Q| > 0 then PV ' QV implies Pσ ' Qσ.

Proof. Let R be the relation {(Pσ,Qσ) | PV ' QV ∧ |P| > 0 ∧ |Q| > 0} ∪ '. We prove that (';R;')∪ ' is a branch-
ing bisimulation. Suppose M ' PσRQσ ' N and M

a
−→ M′. Then Pσ

ε
−→ P1σ

ε
−→ . . .

ε
−→ Piσ

a
−→

P′σ bisimulates M
a
−→ M′ for some P1, . . . , Pi, P′. By the ε-pushing property |P1| > 0, . . . , |Pi| > 0. Thus

PV
τ
−→ P1V

τ
−→ . . .

τ
−→ PiV

a
−→ P′V . Since PV ' QV this action sequence must be bisimulated by some

QV
τ
−→ Q1V

τ
−→ . . .

τ
−→ Q jV

a
−→ Q′V for some Q1, . . . ,Q j,Q′. Also Qσ

τ
−→ Q1σ

τ
−→ . . .

τ
−→ Q jσ

a
−→ Q′σ must

be bisimulated by N
τ
−→ N1

τ
−→ . . .

τ
−→ Nk

a
−→ N′ for some N1, . . . ,Nk,N′. It is easy to see that (M,Ng) ∈ ';R;'

for all g ∈ [k]. To finish the proof we carry out a case analysis.

• |P′| > 0 and |Q′| > 0. Clearly (M′,N′) ∈ ';R;'.

• P′ = phε. If phV = LhV such that |Lh| > 0 then LhV ' phV ' Q′V . Thus M′ ' phσ ' LhσRQ′σ ' N′. If
V(h) = piε such that V(i)↑, then by the definition of bisimulation Q′ = ph′ε for some h′ such that V(h′) = piε.
Then M′ ' phσ ' piσR piσ ' ph′σ ' N′.
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The third case is symmetric to the second one. �

For fixed P,Q there could be an infinite number of σ such that Pσ ' Qσ. Each of these σ generates a recursive
constant. As the next lemma shows the number of the recursive constants generated this way only depends on P,Q.

Lemma 12. For fixed P,Q the recursive constants generated by characteristic trees for (Pσ,Qσ) over any σ such
that Pσ ' Qσ are finite in number.

Proof. The initial V , defined by V(i) = piε for all i ∈ [q], does not depend on any suffix σ. Suppose at a particular
stage there is a minimal i such that the construction of the bisimulation tree for (PV,QV) gets stuck at level i. Due to
Lemma 4 there are only finitely many ways to update V and the maximal number of ways to do that is dependent of
P and Q and is independent of any suffix σ. Since P,Q are fixed, we are done by induction. �

In the rest of the paper we shall be only concerned with recursive constants generated by the characteristic trees
for (Pσ,Qσ) satisfying |P| ≤ m + 1 and |Q| ≤ m + 1. It follows from the above lemma that there is a constant h0
such that every recursive constant is generated by an h0-characteristic tree. An h0-characteristic tree is obtained from
a characteristic tree by cutting off all nodes of height k + 1.

Let Bσ(P,Q) be a characteristic tree for (Pσ,Qσ) over σ that generates V . Let Bσ(P,Q){V/σ} denote the tree
obtained by substituting V for σ in the labels of Bσ(P,Q). The following is a useful consequence of Lemma 11.

Corollary 13. Bσ(P,Q){V/σ} is a bisimulation tree for (PV,QV).

Proof. Lemma 11 says that P′σ
ι
−→ P′′σ implies P′V

ι
−→ P′′V . So the definition of Bσ(P,Q) and the equalities

in (5) guarantee that the relation Bσ(P,Q){V/σ} meets the properties stated in Fig. 1. �

Conversely let B(PV,QV) be a bisimulation tree for (PV,QV). Let B(PV,QV){σ/V} be obtained from B(PV,QV) by
substituting σ for V .

Lemma 14. Suppose that V is the recursive constant generated by a characteristic tree for (Pσ,Qσ) over σ. Then
B(PV,QV){σ/V} is a characteristic tree for (Pσ,Qσ) over σ.

Proof. If (MV,NV) is a node in B(PV,QV) then (Mσ,Nσ) is a node in B(PV,QV){σ/V}; otherwise V could be
further updated. It remains to show that MV

ι
−→ M′V implies Mσ

ι
−→ M′σ. But if Mσ → M′σ, then M′σ ' Nσ.

On the other hand M′V ; MV ' NV by Lemma 8. That would mean that V could be further updated. This is again a
contradiction. We conclude from definition that B(PV,QV){σ/V} is a characteristic tree for (Pσ,Qσ) over σ. �

The significance of Lemma 14 is that algorithmically it reduces the construction of a characteristic tree for (Pσ,Qσ)
over σ to the construction of a bisimulation tree for (PV,QV). The latter is a simpler task in view of Lemma 12.

7. A Tree Generation Algorithm

A bisimulation tree is in general infinite. For an infinite bisimulation tree we look for a finite tree from which
the infinite tree can be recovered. The literature suggests two crucial ideas to help obtain a finite representation of
bisimulation trees. The first is to control the size of the prefixes M,N in a node of the form (Mσ,Nσ). This might
increase the size of the common suffix. The second is to replace a long common suffix by a shorter one. The latter has
been described in Section 6. We now explain the former technique.

A pair (P,Q) is constrained if either |P| < m + 1 or |Q| < m + 1; it is unconstrained otherwise. Suppose A ' B
and (A, B) is unconstrained. The pair (A, B) can be presented as (pXασ,Mσ′σ) such that |pXασ| > m + 1, |M| = m,
|σ′σ| > 1 and that M does not contain any constant. For any i ∈ ker(pX) suppose that pXασ→∗

1
−→ . . .→∗

k
−→ piασ

where k = ‖pX‖(i) < m. By Lemma 4 the length of a simulating sequence Mσ′σ →∗
1
−→ . . . →∗

k
−→ Miσ

′σ is
bounded by qnr(m + 1)qm + m < qnr(m + 1)(q+1) and the suffix σ′σ is kept intact throughout the simulation. It then
follows easily that 0 < |Mi| < qnr

2(m + 1)(q+1). Let the simple constant U be defined by

piU =

{
Mi, if i ∈ ker(pX),
piε, if i < ker(pX). (6)
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By the definition and the assumption one has that

pXUσ′σ ' pXασ ' Mσ′σ. (7)

The introduction of the simple constant allows one to extend the common suffix σ of the bisimilar pair (pXασ,Mσ′σ)
to the common suffixσ′σ of the bisimilar pair (pXUσ′σ,Mσ′σ). This is the only use of simple constants in this paper.
We therefore impose the following constraint on all simple constants: For M1, . . . ,Mq in (2) the inequality

|Mi| < qnr
2(m + 1)(q+1) (8)

holds for every i ∈ [q]. Hence the following.

Lemma 15. The number of the simple constants is bounded by q · nqnr
2(m+1)(q+1)

.

We are in a position to strengthen Lemma 3.

Lemma 16. If Q ' P then |Q| is bounded by a function computable from |P| and h0.

Proof. It follows from Lemma 10 that for every i ∈ [q] there is a minimal length transition sequence piV
˜̀1
−→ p jV

˜̀2
−→

. . .
˜̀q
−→ phV for some undefined phV . By the minimality no pkV appears twice in the sequence. Thus |˜̀1 ˜̀2 . . . ˜̀q| is

bounded by a computable function of h0 because V(q) is bounded by a computable function of h0 for every q ∈ [q]. If
the last symbol of P is a recursive constant use the above observation. If P does not contain any recursive constant it

is easy to bound ‖P‖(i) using (8). In any case there is a sequence P
˜̀
−→ rε for some ˜̀and state r such that |̃`| can be

bounded by a function of h0. A computable bound on |Q| is then easy to derive from the equality Q ' P. �

We now make use of the two ideas to give a finite presentation of a bisimulation tree. A nondeterministic algorithm
works as follows: Suppose (A, B) is an input pair. If either A or B is constrained, then the other has a computable
size bound by Lemma 16. In this case we simply grow the pair (A, B) for one step. If (A, B) is unconstrained, say
(A, B) = (pXασ,Mσ′σ) with |M| = m, we grow an (m−1)-bisimulation tree for (A, B), called a U-tree for (A, B). In
the U-tree we suspend the growth of all nodes of the form (piασ,Miσ

′σ). We call (piασ,Miσ
′σ) a sink node and a

node (Lασ,Nσ′σ) at level m − 1 a nonsink node if |L| > 0. It is worth remarking that the left hand side of a sink node
(piασ,Miσ

′σ) is strictly smaller in size than the left hand side of the root (A, B) of the U-tree. This suggests that we
should grow all the sink nodes inductively. For each i ∈ ker(pX) we fix a sink node (piασ,Miσ

′σ). A simple constant
U is then defined like in (6). We say that U is generated by the U-tree. By definition growing the nonsink node
(Lασ,Nσ′σ) is equivalent to growing the pair (LUσ′σ,Nσ′σ). We call (LUσ′σ,Nσ′σ) the u-alias of (Lασ,Nσ′σ).
By (8) the prefix pair (LU,N) is computationally bounded. For each u-alias we apply the construction defined in
Section 6. That is we construct an h0-characteristic tree for (LUσ′σ,Nσ′σ) over σ′σ, generating a recursive constant
V . We will call it a V-tree. In the V-tree a node of the form (pσ′σ,Gσ′σ) or of the form (Gσ′σ, pσ′σ) with |G| > 0 is
called a recursive node. We grow all the recursive nodes recursively. At the h0-th level of the V-tree there are possibly
nodes of the form (Cσ′σ,Dσ′σ) where |C| > 0 and |D| > 0. We call such a node a balance node. We call (CV,DV)
the v-alias of (Cσ′σ,Dσ′σ). Since C,D are bounded in size by a computable function of h0, there are only a finite
number of v-alias. So we grow the v-aliases inductively. This algorithm is nondeterministic because in the buildup of
the U-trees and the V-trees it has to make many choices.

In the algorithm outlined above, we can control the size of the nodes in such a way that almost every path termi-
nates in either an i-leaf or an r-leaf. The only place a path may not terminate appears in the following scenario: A
nonsink node (L0α0σ

′
0,N0σ

′′
0σ
′
0) is generated in a U-tree, and a V-tree for the u-alias (L0U0σ0,N0σ0) is produced,

where σ0 = σ′′0σ
′
0. Then a U-tree for a recursive node (pσ0,Gσ0) or (Gσ0, pσ0) in the V-tree is grown, giving rise to

a new nonsink node (L1α1σ
′
1,N1σ

′′
1σ
′
1) whose u-alias is (L1U1σ1,N1σ1), where σ1 = σ′′1σ

′
1. It is important to notice

the fact that either σ0 is a suffix of σ1 or σ1 is a suffix of σ0. It is possible that the alternating production of U-trees
and V-trees is repeated infinitely often, leading to an infinite sequence

(L0U0σ0,N0σ0), (L1U1σ1,N1σ1), . . . , (LiUiσi,Niσi), . . . . (9)
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If for every i there is some j > i such that |σ j| ≤ |σi| then a repeat must occur in (9). Otherwise there must exist
some i0 such that for every j > i0 the common suffix σi0 is a proper suffix of σ j. In other words there is a consecutive
subsequence of (9) that is of the following form

(Li0 Ui0σi0 ,Ni0σi0 ), (Li0+1Ui0+1δi0+1σi0 ,Ni0+1δi0+1σi0 ), . . . , (Li0+kUi0+kδi0+kσi0 ,Ni0+kδi0+kσi0 ), . . . . (10)

We call (10) a positive u-alias sequence. We can construct a characteristic tree for (Li0+kUi0+kδi0+kσi0 ,Ni0+kδi0+kσi0 )
overσi0 for all k ≥ 0. Let Vi0 be the recursive constant generated by an h0-characteristic tree for (Li0 Ui0σi0 ,Ni0σi0 ) over
σi0 . If Li0+h0 Ui0+h0δi0+h0 Vi0 ' Ni0+h0δi0+h0 Vi0 , then a characteristic tree for (Li0+h0 Ui0+h0δi0+h0σi0 ,Ni0+h0δi0+h0σi0 ) over σi0
can be obtained from a bisimulation tree for (Li0+h0 Ui0+h0δi0+h0 Vi0 ,Ni0+h0δi0+h0 Vi0 ). We call the latter the d-alias of the
former. If Li0+h0 Ui0+h0δi0+h0 Vi0 ; Ni0+h0δi0+h0 Vi0 , then we grow a characteristic tree over σi0 extending Vi0 for the node
(Li0+h0 Ui0+h0δi0+h0σi0 ,Ni0+h0δi0+h0σi0 ) to generate a recursive constant V1. Now |δi0+h0 | is bounded by a computable
function of h0. Thus there is a constant h1 such that an h1-characteristic tree for (Li0+h0 Ui0+h0δi0+h0σi0 ,Ni0+h0δi0+h0σi0 )
over σi0 generates V1. If Li0+h0+h1 Ui0+h0+h1δi0+h0+h1 V1 ' Ni0+h0+h1δi0+h0+h1 V1, then

(Li0+h0+h1 Ui0+h0+h1δi0+h0+h1 V1,Ni0+h0+h1δi0+h0+h1 V1) (11)

is deemed the d-alias of (Li0+h0+h1 Ui0+h0+h1δi0+h0+h1σi0 ,Ni0+h0+h1δi0+h0+h1σi0 ). Otherwise we continue in the same way.
By induction |δi0+h0+h1+...+hi | is bounded by a computable function of h0, h1, . . . , hi. There must be a recursive constant
hi+1 such that an hi+1-characteristic tree for (Li0+h0+h1+...+hi Ui0+h0+h1+...+hiδi0+h0+h1+...+hiσi0 ,Ni0+h0+h1+...+hiδi0+h0+h1+...+hiσi0 )
over σi0 extending Vi generates a recursive constant Vi+1. Since there are q entries in a recursive constant, we will get
some d-alias in no more than q rounds. The size of any d-alias is bounded by a function of h0, . . . , hq. The reason that
we pin down in the sequence (10) the nonsink nodes with indexes i0 + h0, i0 + h0 + h1, . . . , i0 + h0 + h1 + . . .+ hq rather
than the nonsink nodes with indexes i0 + 1, i0 + 2, . . . , i0 + q is that the d-alias (Li0+2Ui0+2δi0+2Vi0+1,Ni0+2δi0+2Vi0+1)
for instance may stay well above the leaves of the characteristic tree for (Li0+1Ui0+1δi0+1σi0 ,Ni0+1δi0+1σi0 ) over σi0
generating Vi0+1, rendering an inductive argument not very smooth. The node (11) is by definition definitely below
the leaves of the h1-characteristic tree for (Li0+h0 Ui0+h0δi0+h0σi0 ,Ni0+h0δi0+h0σi0 ) over σi0 .

We are now ready to spell out the details of a nondeterministic algorithm GTε that upon receiving a pair of input
(A, B) produces a finite representation of a bisimulation tree for (A, B) in a successful run if A ' B. If A ; B no
execution is successful. The definition of GTε is given in Fig. 2. It is a recursive algorithm. The following lemma is
about the existence of a terminating execution of the algorithm when the input processes are bisimilar.

Lemma 17. If A ' B, there are h0, h1, . . . , hq satisfying h0 < h1 < . . . < hq such that GTε(A, B, h0, h1, . . . , hq) termi-
nates successfully in at least one execution path.

Proof. We need to argue that with h0, h1, . . . , hq properly chosen in a successful run the tree recursively generated by
the algorithm is always finite. A path cannot contain an infinite number of v-aliases because v-aliases are bounded in
size. A path cannot contain an infinite number of u-aliases because that would induce an infinite sequence of d-aliases,
contradicting to the fact that the d-aliases are finite in number. There cannot be an infinite consecutive sequence of
sink nodes because the left hand side of a sink node in a U-tree is strictly smaller in size than the left hand size of the
root of the U-tree. So if a path is long enough it must contain many constrained nodes. It follows from Lemma 16 that
such a path must terminate in an r-leaf. �

Theorem 18. The branching bisimilarity of the ε-pushing PDA is decidable.

Proof. We only have to prove that ' is semi-decidable. Given an input pair (A, B), guess constants h0, h1, . . . , hq such
that h0 < h1 < . . . < hq, and apply GTε to (A, B, h0, h1, . . . , hq). If the algorithm successfully outputs a finite tree,
a bisimulation tree for (A, B) can be generated. The idea is to grow the finite tree, the output of the algorithm, to a
full-fledged bisimulation tree for the input pair. This is done in a co-inductive manner. We will describe a procedure
that grows a bisimulation tree level by level. The growth of a node may well depend on part of the tree grown at
earlier stages. The i-leaves and the r-leaves are easy. The way to grow a constrained node has been explained in the
algorithm. The key is to grow the nodes that have aliases. The growth of the aliases are done independently in parallel.
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Input: A pair (A, B) of processes, and numbers h0, h1, . . . , hq such that h0 < h1 < . . . < hq.

Algorithm GTε :

1. If (A, B) is an i-node or an r-node, stop.
2. If |A| ≤ m + 1 or |B| ≤ m + 1, guess a quasi ε-tree TA of A and a quasi ε-tree TB of B, whose height is bounded

by qnr(m+ 1)q. Check if TA and TB are legal. [Notice that nontermination is introduced here.] If both are legal, do
the following.

(a) For every leaf M of TA and every leaf N of TB guess a finite set of transitions
{
(M,N)

bi
−→ (Mi,Ni)

}
i∈I

, and

verify that the set of edges
{
M

bi
−→ Mi,N

bi
−→ Ni

}
i∈I

form a 1-bisimulation tree for (M,N). If it does form

a 1-bisimulation tree, apply GTε to every (Mi,Ni); abort if otherwise. [In all recursive invocations of GTε the
parameters h0, h1, . . . , hq remain the same.]

(b) For every leaf M of TA and every node N of TB that is not a leaf guess a finite set of transitions{
(M,N)

bi
−→ (Mi,Ni)

}
i∈I

, and check that for every transition N
b
−→ N′ there is a transition M

b
−→ M′ such

that (M,N)
b
−→ (M′,N′) ∈

{
(M,N)

bi
−→ (Mi,Ni)

}
i∈I

. If the check passes, apply GTε to every (Mi,Ni);

otherwise abort.
(c) For every node M of TA that is not a leaf and every leaf N of TB carry out the symmetric construction.

3. If |A| > m+ 1 and |B| > m+ 1, we write A = pXα and B = Mσ with |M| = m. Guess a U-tree for (pXα,Mσ) so
that a normed constant U is defined. Verify that the internal nodes of the guessed U-tree satisfy the branching
bisimulation property. If the verification is unsuccessful, abort; otherwise do the following.

(a) Apply GTε to every sink node.
(b) For the u-alias (LUσ,Nσ) of every nonsink node of the U-tree, abort if there is a positive u-alias sequence

longer than h0+h1+. . .+hq+1 that ends in (LUσ,Nσ); otherwise nondeterministically do (3(b)i) or (3(b)ii).
i. Guess an h0-characteristic tree for (LUσ,Nσ). If any of the internal nodes of the guessed tree fails

the branching bisimulation property, abort; otherwise do the following.
A. Apply GTε to every recursive node.
B. Apply GTε to the v-alias of every balance node.

ii. If there is a positive u-alias sequence of length h0 +h1 + . . .+hh +1 ending in (LUσ,Nσ), where h < q,
we write (Li0+h0+h1+...+hh Ui0+h0+h1+...+hhδi0+h0+h1+...+hhσi0 ,Mi0+h0+h1+...+hhδi0+h0+h1+...+hhσi0 ) for (LUσ,Nσ).
Guess recursive constants V1, . . . ,Vh such that V1 4 . . . 4 Vh and the inequality |V j(i)| < h j is
valid for all j ≤ h and all i ∈ [q]. Check that for every j < h there is an h j-bisimulation tree
for (Li0+h0+h1+...+h j Ui0+h0+h1+...+h jδi0+h0+h1+...+h jσi0 ,Mi0+h0+h1+...+h jδi0+h0+h1+...+h jσi0 ) over σi0 extending V j

and generating V j+1; and also check that there is an hh+1-bisimulation tree over σi0 with regards to Vh

for (Li0+h0+h1+...+hh+1 Ui0+h0+h1+...+hh+1δi0+h0+h1+...+hh+1σi0 ,Mi0+h0+h1+...+hh+1δi0+h0+h1+...+hh+1σi0 ). [It is explained
after the proof of Theorem 18 on page 14 how the checks are done.] If all the checks are successful, apply
GTε to (Li0+h0+h1+...+hh+1 Ui0+h0+h1+...+hh+1δi0+h0+h1+...+hh+1 Vh,Mi0+h0+h1+...+hh+1δi0+h0+h1+...+hh+1 Vh); otherwise
the algorithm aborts. [Without loss of generality we have assumed that ∀i ∈ [q].|V j(i)| < h j.]

Figure 2: Nondeterministic Algorithm GTε .

• For a nonsink node (Lα,Nσ), we first grow the u-alias (LUσ,Nσ). We then grow (Lα,Nσ) by copying the
growth of (LUσ,Nσ) until a path reaches to a node of the form (piα,N′) for some i. We then start to compose
the bisimulation tree for the sink node (piα,Miσ) with the bisimulation tree for (Miσ,N′) level by level.

• For every u-alias (LUσ,Nσ) the algorithm has produced an h0-characteristic tree for it over σ, generating a
recursive constant V . A balance node (Cσ,Dσ) in the characteristic tree is grown as follows: Grow the v-alias
(CV,DV) of the balance node. Then grow a characteristic tree for (Cσ,Dσ) over σ by duplicating the bisimu-
lation tree for (CV,DV). Finally a bisimulation tree for (Cσ,Dσ) is grown by composing the characteristic tree
for (Cσ,Dσ) with the bisimulation trees for the recursive nodes of the form (piσ,Giσ) or (Giσ, piσ). This kind
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of composition may need be carried out infinitely often. Notice that the recursive nodes (piσ,Giσ) or (Giσ, piσ)
appear at levels higher up in the bisimulation tree that is being constructed.

• Let (Li0+h0+h1+...+hh+1 Ui0+h0+h1+...+hh+1δi0+h0+h1+...+hh+1 Vh,Mi0+h0+h1+...+hh+1δi0+h0+h1+...+hh+1 Vh) be the d-alias of

(Li0+h0+h1+...+hh+1 Ui0+h0+h1+...+hh+1δi0+h0+h1+...+hh+1σi0 ,Mi0+h0+h1+...+hh+1δi0+h0+h1+...+hh+1σi0 ). (12)

Grow a bisimulation tree for the d-alias, from which we get a characteristic tree for (12) overσi0 . We then grow a
bisimulation tree for (12) by composing the characteristic tree with the bisimulation trees for the recursive nodes
of the form (piσi0 ,Vh(i)σi0 ) or (Vh(i)σi0 , piσi0 ) that appear higher up in the bisimulation tree being constructed.

The existence of a bisimulation tree for (A, B) is now evident. We are done by applying Lemma 8. �

Now that we know how to construct level by level a bisimulation tree for a node in the output tree of a successful
run of the algorithm GTε , we are in a position to explain the remark made in (3(b)ii) of the algorithm GTε . The
crucial thing that need be checked is that for all j ≤ h and all k ∈ [q] such that |V j(k)| > 0 a bisimulation tree
for (p jσi0 ,V j(k)σi0 ) can be grown. For the base case the algorithm has produced an h0-characteristic tree over σi0
for (Li0 Ui0σi0 ,Mi0σi0 ) generating Vi0 . By the construction we know that for every k such that |Vi0 (k)| > 0 the pair
(p jσi0 ,V j(k)σi0 ) or the pair (V j(k)σi0 , p jσi0 ) is a recursive node. By the construction defined in the above proof we
know how to grow the node into a bisimulation tree level by level. Now consider (Li0+h0 Ui0+h0δi0+h0σi0 ,Mi0+h0δi0+h0σi0 )
in the tree constructed by the algorithm. We can grow a bisimulation tree B for (Li0+h0 Ui0+h0δi0+h0σi0 ,Mi0+h0δi0+h0σi0 )
level by level. We now use B to grow an h1-characteristic tree C for (Li0+h0 Ui0+h0δi0+h0σi0 ,Mi0+h0δi0+h0σi0 ) over σi0
extending Vi0 . This is done using the construction defined in the second paragraph of Section 6. There is however a
fundamental difference. The construction defined in Section 6 are semantical. Every pair of processes appearing as
a node in a bisimulation tree are in fact bisimilar. There is a bisimulation tree for the node. Here the bisimilarity of
the two processes appearing in a node is what we are trying to establish. We must use a proof theoretical version of
the semantical construction. For proof theoretical construction we can only rely on the fact that we are building up
a bisimulation tree for the node level by level by composing and duplicating the bisimulation trees which we have
started building up at earlier stages. Suppose Vh0 is the current recursive constant generated at some point during
the growth of C. Suppose (piσi0 ,Niσi0 ), where |Ni| > 0, is a node to be grown. If |Vh0 (i)| = 0 the construction is
the same as what has been described in Section 6. But if |Vh0 (i)| > 0, then we compose the bisimulation tree for
(Vh0 (i)σi0 , piσi0 ) with the bisimulation tree for (piσi0 ,Niσi0 ) to obtain a bisimulation tree B′ for (Vh0 (i)σi0 ,Niσi0 ).
We then use B′ to construct the rest of the characteristic tree rooted at (Vh0 (i)σi0 ,Niσi0 ). Similarly for a node of
the form (piσi0 , p jσi0 ), where |Vh0 (i)| > 0 and |Vh0 ( j)| > 0, we compose the bisimulation tree for (piσi0 , p jσi0 ) with
the bisimulation tree for (Vh0 (i)σi0 , piσi0 ) on the left and the bisimulation tree for (p jσi0 ,Vh0 ( j)σi0 ) on the right to
obtain a bisimulation tree B′′ for (Vh0 (i)σi0 ,Vh0 ( j)σi0 ). We then use B′′ to grow the rest of the characteristic tree
for (Vh0 (i)σi0 ,Vh0 ( j)σi0 ). If eventually the recursive constant Vh0 generated by the h0-characteristic tree C is the same
as the recursive constant V1 guessed by the algorithm, the check is successful. The other checks can be carried out
by induction. Finally we also need to check if an hh+1-bisimulation tree over σi0 with regards to Vh can be grown
for (Li0+h0+h1+...+hh Ui0+h0+h1+...+hhδi0+h0+h1+...+hhσi0 ,Mi0+h0+h1+...+hhδi0+h0+h1+...+hhσi0 ). This can be done by using a proof
theoretical version of the construction defined in the beginning of Section 6. Since all the involved trees have height
bound, the nondeterminism introduces only a finite number of possibilities.

8. Conclusion

The result of the paper and the results of Jančar and Srba [17] are summarized in the following table. The new re-
sult is significant in the light that the corresponding problem for the ε-pushing PDA remains in analytic hierarchy [34].

ε-Pushing nPDA ε-Pushing PDA
' Decidable Σ1

1-Complete
≈ Π0

1-Complete Σ1
1-Complete
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Stirling’s proof of the decidability of the strong bisimilarity of nPDA has strong influence on present work. We have
attempted to prove the present result by using tableau system as is done in Stirling’s work. It turned out however that
due to the presence of silent transitions, proof based on a tableau system is not easy to handle. The difficulty is two
fold. Firstly in the presence of silent transitions the k-bisimilarity, as introduced in the proof of Proposition 5, is very
subtle. It is a powerful tool to establish negative results. It is a little tricky to use it to construct bisimulations. The
reason is that transitivity can easily fail if one is not careful about the definition of 'k. If transitivity fails, the proof
of the backward soundness of tableau rules suffers. Without backward soundness, Stirling’s proof is not repeatable.
Secondly an alternative would be to construct branching bisimulations from a tableau, bypassing the k-bisimilarity.
This cannot be done by generalizing the similar idea for the strong bisimilarity in a simple minded way. Every goal
appearing in a tableau is the root of a branching bisimulation. Branching bisimulation of a goal in the conclusion of a
tableau rule and that of a goal in the premises have different structure. That makes composition of these bisimulations
difficult to define. All these problems can be avoided by introducing negative information in terms of ;. This crucial
observation has led us to the definition of bisimulation tree for branching bisimilairty.

The bisimulation decomposition approach can be applied to study the branching bisimilarity of the ε-popping
PDA. The finite branching property is obviously valid for this model. The definition of the bisimulation and that
of recursive constant have to be modified in the ε-popping setting. We hope to come back to the issue in another
occasion [6]. The result of [6] and the result of this paper together accomplish the goal set up in the beginning of the
paper.

In addition to the relationship to the tableau approach, the technique used in this paper can also be seen as a
generalization of the bisimulation base method [3]. In Caucal’s approach every process has a prime decomposition
such that two processes are equivalent if their prime decompositions are equivalent according to a set of axioms. For
PDA processes rewriting of processes is insufficient. We have to take into account of the tree structures induced by
states. The tree structure carries additional proof information that can be verified on-the-fly. So instead of rewriting
processes, one rewrites trees.

Jančar has studied first order grammar [13] and provided a quite different proof for the decidability of the strong
bisimilarity of nPDA [15]. In the full paper he also outlined an idea of how to extend his proof to take care of silent
transitions. It is fair to say that the first order grammar offers a generalization of PDA that appears just right.

Stirling proved that the language equivalence of DPDA is primitive recursive [27]. Benedikt, Goller, Kiefer and
Murawski showed that the strong bisimilarity on nPDA is non-elementary [2]. More recently Jančar observed that
the strong bisimilarity of first-order grammar is Ackermann-hard [14], a consequence of which is that the strong
bisimilarity proved decidable by Sénizergues in [22] is Ackermann-hard. It would be interesting to look for tighter
upper and lower bounds on the complexity of the branching bisimilarity of nPDAε+.

Acknowledgment

We thank the members of BASICS for their interest. We are grateful to Prof. Jančar for his insightful discussion.
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[13] P. Jančar. Decidability of DPDA Language Equivalence via First-Order Grammars. In LICS’12, 415–424. IEEE Computer Society, 2012.
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