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Abstract. The definition of open bisimilarity on the χ-processes does
not give rise to a sensible relation on the χ-processes with the mismatch
operator. The paper proposes ground open congruence as a principal
open congruence on the χ-processes with the mismatch operator. The
algebraic properties of the ground congruence is studied. The paper also
takes a close look at barbed congruence. This relation is similar to the
ground congruence. The precise relationship between the two is worked
out. It is pointed out that the sound and complete system for the ground
congruence can be obtained by removing one tau law from the complete
system for the barbed congruence.

1 Introduction and χ-Calculus with Mismatch

The π-calculus ([6]) is a powerful process calculus. The expressiveness is partly
supported by input processes of the form a(x).P and output processes of the
form ax.P . The former may receive a name at channel name a before evolving
as P with x replaced by the received name. The latter can emit x at a and then
continues as P . The expressiveness is also supported by processes of the form
(x)P . The localization operator (x) encapsulates the name x in P . In χ-calculus
([1–4]) the input and output processes are unified as α[x].P , in which α stands
for either a name or a coname.

Formally χ-processes are defined by the following abstract syntax:

P := 0 | α[x].P | P |P | (x)P | [x=y]P | P+P

where α ∈ N ∪N . Here N is the set of names ranged over by small case letters.
The set {x | x ∈ N} of conames is denoted by N . The name x in (x)P is
local. A name is global in P if it is not local in P . The global names, the local
names and the names of a syntactical object, as well as the notations gn( ), ln( )
and n( ), are defined with their standard meanings. We adopt the α-convention
widely used in the literature on process algebra. We do not consider replication
or recursion operator since it does not affect the results of this paper.
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The following labeled transition system defines the operational semantics of
χ-calculus, in which symmetric rules are systematically omitted. In the following
rules the letter γ ranges over the set {α(x), α[x] | α ∈ N ∪ N , x ∈ N} ∪ {τ}
and the letter λ over the set {α(x), α[x], [y/x] | α ∈ N ∪ N , x, y ∈ N} ∪ {τ}.
The symbols α(x), α[x], [y/x] represent restricted action, free action and update
action respectively. The x in the label α(x) is local.

Sequentialization

α[x].P
α[x]−→ P

Sqn

Composition

P
γ−→ P ′ ln(γ) ∩ gn(Q)=∅

P |Q γ−→ P ′|Q Cmp0

P
[y/x]−→ P ′

P |Q [y/x]−→ P ′|Q[y/x]
Cmp1

Communication

P
α(x)−→ P ′ Q

α[y]−→ Q′

P |Q τ−→ P ′[y/x]|Q′ Cmm0

P
α(x)−→ P ′ Q

α(x)−→ Q′

P |Q τ−→ (x)(P ′|Q′) Cmm1

P
α[x]−→ P ′ Q

α[y]−→ Q′ x 6= y

P |Q [y/x]−→ P ′[y/x]|Q′[y/x] Cmm2

P
α[x]−→ P ′ Q

α[x]−→ Q′

P |Q τ−→ P ′|Q′ Cmm3

Localization

P
λ−→ P ′ x 6∈ n(λ)

(x)P λ−→ (x)P ′ Loc0
P

α[x]−→ P ′ x 6∈ {α, α}
(x)P

α(x)−→ P ′ Loc1
P

[y/x]−→ P ′

(x)P τ−→ P ′Loc2

Condition
P

λ−→ P ′

[x=x]P λ−→ P ′Mtch

Summation
P

λ−→ P ′

P+Q λ−→ P ′ Sum

A substitution is a function from N to N that is identical on all but a finite
number of names. Substitutions are usually denoted by σ, σ′, . . .. The notations

=⇒ and λ̂=⇒ are used in their standard meanings.
We will use two induced prefix operators, tau and update prefixes, defined

as follows: [y|x].P def= (a)(a[y]|a[x].P ) and τ.P def= (b)[b|b].P where a, b are fresh.
The subject language of this paper is χ6=-calculus, the χ-calculus with the

mismatch operator. The operational semantics of the mismatch combinator is
defined as follows:

P
λ−→ P ′ x 6= y

[x6=y]P λ−→ P ′ Mismtch



The set of χ6=-processes is denoted by C. Suppose Y is a finite set {y1, . . . , yn} of
names. The notation [y 6∈Y ]P will stand for [y 6=y1] . . . [y 6=yn]P , where the order
of mismatch operators is immaterial. We will write φ and ψ, called conditions, to
stand for sequences of match and mismatch combinators concatenated one after
another, µ for a sequence of match operators, and δ for a sequence of mismatch
operators. Consequently we write ψP , µP and δP . When the length of ψ (µ, δ)
is zero, ψP (µP , δP ) is just P . The notation φ⇒ ψ says that φ logically implies
ψ and φ⇔ ψ that φ and ψ are logically equivalent. A substitution σ agrees with
ψ, and ψ agrees with σ, when ψ ⇒ x=y if and only if σ(x)=σ(y).

Bisimulation equivalence relations on mobile processes are a lot more complex
than those on CCS processes. The complication is mainly due to the dynamic
aspect of mobile processes. The names in a process are subject to updates during
the evolution of the process. These updates could be caused either by actions
in which the process participates or by changes incurred by environments. A
sensible observational equivalence for mobile processes must take that into ac-
count. To illustrate what kind of relations one would obtain if s/he ignored the
mobility, we introduce the following definition for χ-calculus:

Definition 1. Let R be a symmetric binary relation on the set of χ-processes.
It is called a naked bisimulation if whenever PRQ and P λ−→ P ′ then some Q′

exists such that Q λ̂=⇒ Q′RP ′. The naked bisimilarity ≈ is the largest naked
bisimulation.

It is obvious that the definition of ≈ is simply a reiteration of the weak bisim-
ilarity of CCS in terms of the operational semantic of χ-calculus. However the
naked bisimilarity is not a good equivalence relation since it is not closed under
the parallel composition. For instance one has a[x]|b[y] ≈ a[x].b[y]+b[y].a[x] but
not (a[x]|b[y])|(c[a]|c[b]) ≈ (a[x].b[y]+b[y].a[x])|(c[a]|c[b]). Process equivalence is
observational equivalence. One of the defining properties for an observational
equivalence is that the equivalence should be closed under parallel composition.
In [1–4], it has been argued that bisimulation equivalences for χ-calculus are
closed under substitution. This suggests to introduce the following definition:

Let R be a symmetric binary relation on the set of χ-processes that is
closed under substitution. It is called an open bisimulation if whenever

PRQ and P
λ−→ P ′ then some Q′ exists such that Q λ̂=⇒ Q′RP ′. The

open bisimilarity ≈o is the largest open bisimulation.

The open bisimilarity ≈o has been studied in [1–4] in both the symmetric and
the asymmetric frameworks. It must be pointed out that the investigations
carried out in [1–4] are for the χ-calculus without the mismatch combinator.
For the χ-calculus with the mismatch operator, one should ask the question
whether the open bisimilarity ≈o is a sensible equivalence. In [5] the present
authors have given a negative answer to the question. As it turned out the
open bisimilarity defined above is not closed under parallel composition in χ6=-
calculus! One has [x6=y]a[x].P + a[x].[x6=y]τ.P ≈o a[x].[x6=y]τ.P but it is clear



that a[y]|([x6=y]a[x].P +a[x].[x6=y]τ.P ) 6≈o a[y]|(a[x].[x6=y]τ.P ). This is a serious
problem because closure under parallel composition is an intrinsic property of
observational equivalence. In [5] we have studied the problem and introduced two
modified open congruences. These are early open congruence and late open con-
gruence. Their relationship strongly recalls that between the weak early equiv-
alence and the weak late equivalence ([6]). It should be said however that both
the early open congruence and the late open congruence are the obvious mod-
ifications with motivation from π-calculus. They are not the open congruence
for the χ-calculus with the mismatch operator. What is then the principal open
congruence for χ-calculus with the mismatch combinator? We will give our an-
swer to the question in this paper. The way to arrive to the definition of the
open congruence is via a particular naked bisimulation. In order to define this
relation we need the notion of contexts defined as follows: (i) [] is a context; (ii)
If C[] is a context then α[x].C[], C[]|P , P |C[], (x)C[] and [x=y]C[] are contexts.

Definition 2. The ground bisimilarity ≈g is the largest naked bisimulation that
is closed under context.

In the above definition the requirement of closure under the prefix operator is
reasonable since it is equivalent to that of closure under substitution. We will
give an equivalent characterization of ≈g in the style of open semantics, which
we argue is the principal open bisimilarity.

As it turns out the equivalence ≈g is very similar to the barbed bisimilarity
of the χ-calculus with the mismatch operator. The difference is very subtle. The
barbed bisimilarity also has an equivalent open characterization. The similarity
and the difference between the ground bisimilarity and the barbed bisimilarity
are revealed through their open characterizations.

This paper continues the work of [5] by studying the ground congruence and
the barbed congruence for the χ6=-calculus. The main contributions of this paper
are as follows:

– We give an alternative characterization of the weak barbed bisimilarity. This
characterization points out the complex nature of the weak barbed bisimi-
larity. Many unknown equalities are discovered. A complete system for the
weak barbed congruence is provided. The new tau laws used to establish the
completeness result are surprisingly complex.

– We study what we call ground open bisimilarity. A complete system for the
ground open congruence is given. The relationship between the ground open
congruence and the weak barbed congruence is revealed.

Due to space limitation, all proofs have been omitted.

2 Barbed Congruence

The barbed equivalence is often quoted as a universal equivalence relation for
process algebras. For a specific process calculus barbed equivalence immediately



gives rise to an observational equivalence. For two process calculi barbed equiv-
alence can be used to compare the semantics of the two models. Despite the
universal nature, barbed equivalence can have quite different displays in differ-
ent process calculi. The barbed equivalence for the χ-calculus has brought some
new insight into the calculi of mobile processes. In this section we demonstrate
that the barbed equivalence for the χ6=-calculus is even more different. A char-
acterization theorem for the barbed bisimilarity on χ6=-calculus is given. Some
illustrating pairs of barbed equivalent processes are given. First we introduce
the notion of barbedness.

Definition 3. A process P is strongly barbed at a, notation P↓a, if P
α(x)−→ P ′

or P
α[x]−→ P ′ for some P’ such that a ∈ {α, α}. P is barbed at a, written P⇓a,

if some P ′ exists such that P =⇒ P ′↓a. A binary relation R is barbed if ∀a ∈
N .P⇓a⇔ Q⇓a whenever PRQ.

From the point of view of barbed equivalence an observer can not see the content
of a communication. What an observer can detect is the ability of a process to
communicate at particular channels. Two processes are identified if they can
simulate each other in terms of this ability.

Definition 4. Let R be a barbed symmetric relation on C closed under context.
The relation R is a barbed bisimulation if whenever PRQ and P

τ−→ P ′ then
Q =⇒ Q′RP ′ for some Q′. The barbed bisimilarity ≈b is the largest barbed
bisimulation.

The trade-off of the simplicity of the above definition is that it provides
little intuition about equivalent processes. We know that it is weaker than most
bisimulation equivalences. But we want to know how much weaker it is. We first
give some examples of barbed equivalent processes. To make the examples more
readable, we will write A def= PR(A+Q) for PR(P+Q), where R is a binary
relation on processes. The first example of an equivalent pair is this:

A1
def= α[x].(P1+[x=y1]τ.Q)+α[x].(P2+[x6=y1]τ.Q) ≈b A1 + α[x].Q

If α[x].Q on the right hand side is involved in a communication in which x is
replaced by y1 then α[x].(P1+[x=y1]τ.Q) can simulate the action. Otherwise
α[x].(P2+[x6=y1]τ.Q) would do the job. The second example is more interesting:

A2
def= (z)α[z].(P1+[z=y2][z|x].Q)+α[x].(P2+[x6=y2]τ.Q[x/z])
≈b A2 + α[x].Q[x/z]

The communication α[y2]|(x)(A2+α[x].Q[x/z]) τ−→ 0|Q[x/z][y2/x] for instance
can be matched up by α[y2]|(x)A2

τ−→0|(x)(P1[y2/z]+[y2=y2][y2|x].Q[y2/z])
τ−→

0|Q[y2/z][y2/x]. The third example is unusual:

A3
def= α[y3].(P1+[y3|x].Q)+α[x].(P2+[x6=y3]τ.Q) ≈b A3 + α[x].Q



If α[x].Q participates in a communication in which x exchanges for y3 then its
role can be simulated by α[y3].(P1+[y3|x].Q). The fourth is similar:

A4
def= [y4|x].(P1+α[y4].Q)+α[x].(P2+[x6=y4]τ.Q) ≈b A4 + α[x].Q

If (y4)((A4+α[x].Q)|α[y4].O) τ−→ Q[x/y4]|O[x/y4] then the simulation is:

(y4)(A4|α[y4].O) τ−→(P1[x/y4]+α[x].Q[x/y4])|α[x].O[x/y4]
τ−→Q[x/y4]|O[x/y4]

The fifth example is the combination of the fourth and the second:

A5
def= [y5|x].(P1+(z)α[z].(P ′

1+[z=y5]τ.Q))+α[x].(P2+[x6=y5]τ.Q[x/z])
≈b A5 + α[x].Q[x/z]

Notice that the component [y5|x].(P1+(z)α[z].(P ′
1+[z=y5]τ.Q)) is operationally

the same as the process [y5|x].(P1+(z)α[z].(P ′
1+[z=y5][z|x].Q)).

In the above examples, all the explicit mismatch operators contain the name
x. In general there could be other conditions. The treatment of match operator
is easy. The mismatch operator is however nontrivial. Suppose δ is a sequence
of mismacth operators such that all names in δ are different from both x and z.
An example more gerneral than A1 is this:

A′
1

def= α[x].(P1+δ[x=y1]τ.Q)+α[x].(P2+δ[x6=y1]τ.Q) ≈b A
′
1 + [x6∈n(δ)]δα[x].Q

We need to explain the mismatch sequence in [x6∈n(δ)]δα[x].Q. The δ before
α[x].Q is necessary for otherwise an action of ([x6∈n(δ)]α[x].Q)σ may not be
simulated by any action from A′

1σ when σ invalidates δ. The [x6∈n(δ)] is nec-
essary because otherwise it would not be closed under substitution. A counter
example is the pair α[x].[y 6=z][x=y1]τ.Q+α[x].[y 6=z][x6=y1]τ.Q+[y 6=z]α[x].Q and
α[x].[y 6=z][x=y1]τ.Q+α[x].[y 6=z][x6=y1]τ.Q. If we substitute x for z in the two
processes we get two processes that are not barbed bisimilar. Similarly the ex-
ample A2 can be generalized to the following:

A′
2

def= (z)α[z].(P1+[x6∈n(δ)]δ[z=y2][z|x].Q)+α[x].(P2+δ[x6=y2]τ.Q[x/z])
≈b A

′
2 + [x6∈n(δ)]δα[x].Q[x/z]

The general form of A3 is more delicate:

A′
3

def= [x6=y3]α[y3].(P1+[x6∈n(δ)]δ[y3|x].Q)+α[x].(P2+δ[x6=y3]τ.Q)
≈b A

′
3 + [x6=y3][x6∈n(δ)]δα[x].Q

In both [x6=y3]α[y3].(P1+[x6∈n(δ)]δ[y3|x].Q) and [x6=y3][x6∈n(δ)]δα[x].Q there is
the mismatch [x6=y3]. If this operator is removed from A′

3 one has

B′
3

def= α[y3].(P1+[x6∈n(δ)]δ[y3|x].Q)+α[x].(P2+δ[x6=y3]τ.Q)
6≈b B

′
3 + [x6∈n(δ)]δα[x].Q



The inequality is clearer if one substitutes x for y3 in the above:

C ′
3

def= α[x].(P1+[x6∈n(δ)]δ[x|x].Q)+α[x].(P2+δ[x6=x]τ.Q)
6≈b C

′
3 + [x6∈n(δ)]δα[x].Q

The component [x6∈n(δ)]δα[x].Q may be involved in a communication in which x
is replaced by a name in δ. This action can not be simulated by C ′

3. The general
forms of A4 and A5 are as follows:

A′
4

def= [y4|x].(P1+δα[y4].Q)+α[x].(P2+δ[x6=y4]τ.Q) ≈b A
′
4 + [x6∈n(δ)]δα[x].Q

A′
5

def= [y5|x].(P1+(z)α[z].(P ′
1+δ[z=y5]τ.Q))+α[x].(P2+δ[x6=y5]τ.Q[x/z])

≈b A
′
5 + [x6∈n(δ)]δα[x].Q[x/z]

If we replace the second summand α[x].(P2+δ[x6=y1]τ.Q) of A′
1 by (z)α[z].(P2 +

[x6∈n(δ)]δ[z 6=y1][z|x].Q) and Q by Q[x/z], we get an interesting variant of A′
1 as

follows:

A′′
1

def= α[x].(P1+δ[x=y1]τ.Q[x/z])+(z)α[z].(P2+[x6∈n(δ)]δ[z 6=y1][z|x].Q)
≈b A

′′
1 + [x6∈n(δ)]δα[x].Q[x/z]

The bisimilar pairs A′
2 through A′

5 have similar variants:

A′′
2

def= (z)α[z].(P1+[x6∈n(δ)]δ[z=y2][z|x].Q)+O2

≈b A
′′
2 + [x6∈n(δ)]δα[x].Q[x/z]

A′′
3

def= [x6=y3]α[y3].(P1+[x6∈n(δ)]δ[y3|x].Q[x/z])+O3

≈b A
′′
3 + [x6=y3][x6∈n(δ)]δα[x].Q[x/z]

A′′
4

def= [y4|x].(P1+δα[y4].Q[x/z])+O4

≈b A
′′
4 + [x6∈n(δ)]δα[x].Q[x/z]

A′′
5

def= [y5|x].(P1+(z)α[z].(P ′
1+δ[z=y5]τ.Q[z/x]))+O5

≈b A
′′
5 + [x6∈n(δ)]δα[x].Q[x/z]

where Oi is (z)α[z].(P2+[x6∈n(δ)]δ[z 6=yi][z|x].Q) for i ∈ {2, 3, 4, 5}. The most
complicated situation arises when all the five possibilities as described by A′′

1

through A′′
5 happen at one go:

A
def= (z)α[z].(P2+[x6∈n(δ)]δ[z 6∈{y1, y2, y3, y4, y5}][z|x].Q)

+α[x].(P1+δ[x=y1]τ.Q[x/z])
+(z)α[z].(P1+[x6∈n(δ)]δ[z=y2][z|x].Q)
+[x6=y3]α[y3].(P1+[x6∈n(δ)]δ[y3|x].Q[x/z])
+[y4|x].(P1+δα[y4].Q[x/z])
+[y5|x].(P1+(z)α[z].(P ′

1+δ[z=y5]τ.Q[z/x]))
≈b A+ [x6=y3][x6∈n(δ)]δα[x].Q[x/z]



Similarly the examples A′
1 through A′

5 can be combined into one as follows:

A′ def= α[x].(P2+δ[x6∈{y1, y2, y3, y4, y5}]τ.Q[x/z])
+α[x].(P1+δ[x=y1]τ.Q[x/z])
+(z)α[z].(P1+[x6∈n(δ)]δ[z=y2][z|x].Q)
+[x6=y3]α[y3].(P1+[x6∈n(δ)]δ[y3|x].Q[x/z])
+[y4|x].(P1+δα[y4].Q[x/z])
+[y5|x].(P1+(z)α[z].(P ′

1+δ[z=y5]τ.Q[z/x]))
≈b A

′ + [x6=y3][x6∈n(δ)]δα[x].Q[x/z]

Having seen so many bisimilar pairs of processes, the reader might wonder how
we have discovered them. As a matter of fact these examples are all motivated by
an alternative characterization of the barbed bisimilarity. This characterization
is given by an open bisimilarity as defined below.

Definition 5. Let R be a binary symmetric relation on C closed under substi-
tution. The relation R is a barbed open bisimulation if the following properties
hold for P and Q whenever PRQ:

(i) If λ is an update or a tau and P λ−→ P ′ then Q′ exists such that Q λ̂=⇒ Q′RP ′.

(ii) If P
α[x]−→ P ′ then one of the following properties holds:

– Q′ exists such that Q
α[x]
=⇒ Q′RP ′;

– Q′ and Q′′ exist such that Q =⇒α(z)−→ Q′′ and Q′′[x/z] =⇒ Q′RP ′;

and, for each y different from x, one of the following properties holds:

– Q′ and Q′′ exist such that Q =⇒α[x]−→ Q′′ and Q′′[y/x] =⇒ Q′RP ′[y/x];

– Q′ and Q′′ exist such that Q =⇒α(z)−→ Q′′ and Q′′[y/z]
[y/x]
=⇒ Q′RP ′[y/x];

– Q′ exists such that Q
α[y]
=⇒[y/x]

=⇒ Q′RP ′[y/x];

– Q′ exists such that Q
[y/x]
=⇒ α[y]

=⇒ Q′RP ′[y/x];

– Q′ and Q′′ exist such that Q
[y/x]
=⇒α(z)−→ Q′′ and Q′′[y/z]=⇒Q′RP ′[y/x].

(iii) If P
α(x)−→ P ′ then, for each y, one of the following properties holds:

– Q′ and Q′′ exist such that Q =⇒α(x)−→ Q′′ and Q′′[y/x]=⇒Q′RP ′[y/x];

– Q′ exists such that Q
α[y]
=⇒ Q′RP ′[y/x].

The barbed open bisimilarity ≈b
open is the largest barbed open bisimulation.

With a definition as complex as Definition 5, it is not very clear if the relation
it introduces is well behaved. The next lemma gives one some confidence on the
barbed open bisimilarity.

Lemma 6. ≈b
open is closed under localization and composition.



Since ≈b
open is closed under substitution, it must also be closed under prefix

operation. It is also clear that ≈b
open is closed under match operation. However

the relation is closed neither under the mismatch operation nor under the sum-
mation operation. For instance [x6=y]P ≈b

open [x6=y]τ.P does not hold. To obtain
the largest congruence contained in ≈b

open we use the standard approach.

Definition 7. Two processes P and Q are barbed congruent, notation P 'b Q,
if P ≈b

open Q and for each substitution σ whenever Pσ τ−→ P ′ then Q′ exists
such that Qσ τ=⇒ Q′ ≈b

open P
′ and vice versa.

The notation 'b is not confusing because it is also the largest congruence con-
tained in ≈b. This is guaranteed by the next theorem.

Theorem 8. ≈b
open and ≈b coincide.

3 Axiomatic System

In this section we give a complete system for the barbed congruence on the
finite χ6=-processes. In order to prove the completeness theorem, we need some
auxiliary definitions.

Definition 9. Let V be a finite set of names. We say that ψ is complete on V
if n(ψ) ⊆ V and for each pair x, y of names in V it holds that either ψ ⇒ x=y
or ψ ⇒ x6=y. A substitution σ is induced by ψ, and ψ induces σ, if σ agrees with
ψ and σσ = σ.

We now begin to describe a system complete for the barbed congruence.
Let AS denote the system consisting of the rules and laws in Figure 2 plus the
following expansion law:

P |Q =
∑

i

φi(x̃)πi.(Pi|Q) +
πi=ai[xi]∑
γj=bj [yj ]

φiψj(x̃)(ỹ)[ai=bj ][xi|yj ].(Pi|Qj) +

∑
j

ψj(ỹ)γj .(P |Qj) +
πi=ai[xi]∑
γj=bj [yj ]

φiψj(x̃)(ỹ)[ai=bj ][xi|yj ].(Pi|Qj)

where P is
∑

i φi(x̃)πi.Pi and Q is
∑

j ψj(ỹ)γj .Qj , πi and γj range over {α[x] |
α ∈ N ∪N , x ∈ N}.

Using axioms in AS, a process can be converted to a process that contains
no occurrence of composition operator, the latter process is of special form as
defined below.

Definition 10. A process P is in normal form on V ⊇ fn(P ) if P is of the
form

∑
i∈I1

φiαi[xi].Pi+
∑

i∈I2
φi(x)αi[x].Pi+

∑
i∈I3

φi[zi|yi].Pi such that x does
not appear in P , φi is complete on V for each i ∈ I1 ∪ I2 ∪ I3, Pi is in normal
form on V for i ∈ I1 ∪ I3 and is in normal form on V ∪ {x} for i ∈ I2. Here I1,
I2 and I3 are pairwise disjoint finite indexing sets.



T1 λ.τ.P = λ.P
T2 P+τ.P = τ.P
T3 λ.(P+τ.Q) = λ.(P+τ.Q)+λ.Q
T4 τ.P = τ.(P+ψτ.P )
T5 [y|x].(P+δτ.Q) = [y|x].(P+δτ.Q)+ψδ[y|x].Q C(ψ, δ)
T6 FF = FF+[x6∈Y3][x6∈n(δ)]δα[x].Q[x/z] z 6∈n(δ)
T7 FR = FR+[x6∈Y3][x6∈n(δ)]δα[x].Q[x/z] z 6∈n(δ)

TD1 RO = RO+δ(x)α[x].Q x6∈n(δ)

Fig. 1. Tau Laws

The depth of a process measures the maximal length of nested prefixes in the
process. The structural definition goes as follows: (i) d(0) = 0; (ii) d(α[x].P ) =
1+d(P ); (iii) d(P |Q) = d(P )+d(Q); (iv) d((x)P ) = d(P ); (v) d([x=y]P ) = d(P ),
d([x6=y]P ) = d(P ); (vi) d(P+Q) = max{d(P ), d(Q)}.

Lemma 11. For a process P and a finite set V of names such that fn(P ) ⊆ V
there is a normal form Q on V such that d(Q) ≤ d(P ) and AS ` Q = P .

In order to obtain a complete system for the barbed congruence, we need some
tau laws, some of which are new and complex. Figure 1 contains seven tau laws
used in this paper. T4, introduced by the first author in previous publication, is
a necessary law for open congruences. T5 holds under the condition C(ψ, δ):

If δ ⇒ [u 6=v] then either ψ ⇒ [x=u][y 6=v] or ψ ⇒ [x=v][y 6=u] or ψ ⇒
[y=u][x6=v] or ψ ⇒ [y=v][x6=u] or ψ ⇒ [x6=u][x6=v][y 6=u][y 6=v].

This law was used for the first time in [5]. The laws T6 and T7 are equational
formalization of the examples given in Section 2 in a more general form. In these
axioms, FF (respectively FR) stands for

α[x].(P+δ[x6∈Y1 ∪ . . . ∪ Y5]τ.Q[x/z])
(respectively (z)α[z].(P+[x6∈n(δ)]δ[z 6∈Y1 ∪ . . . ∪ Y5][z|x].Q))
+Σy∈Y1α[x].(Py+δ[x=y]τ.Q[x/z])+Σy∈Y2(z)α[z].(Py+[x6∈n(δ)]δ[z=y][z|x].Q)
+Σy∈Y3 [x6=y]α[y].(Py+[x6∈n(δ)]δ[y|x].Q[x/z])
+Σy∈Y4 [y|x].(Py+δα[y].(P ′

y+δτ.Q[x/z]))
+Σy∈Y5 [y|x].(Py+δ(z)α[z].(P ′

y+δ[z=y]τ.Q))

These two laws are new. In TD1, which is derivable from T6, RO is

Σy∈Y1α[y].(Py+δτ.Q[y/x]) + Σy∈Y2(x)α[x].(Py+δ[x=y]τ.Q)
+ (x)α[x].(P+δ[x6∈Y1 ∪ Y2]τ.Q)

Let AS ∪ {T1, T2, T3, T4, T5, T6, T7} denote ASb
o. Without further ado, we

state the main result of this section.

Theorem 12. ASb
o is sound and complete for 'b.



4 Ground Congruence

In this section we sketch some main properties about ≈g. First of all the ground
bisimilarity can be characterized by an open bisimilarity called ground open
bisimilarity, notation ≈g

open. The definition of the ground open bisimilarity is
obtained from Defintion 5 by replacing clause (ii) by

(ii’) If P
α[x]−→ P ′ then Q′ exists such that Q

α[x]
=⇒ Q′RP ′.

It is easy to prove that ≈g
open is closed under localization and composition and

that ≈g
open coincides with ≈g. By definition the ground open bisimilarity is con-

tained in the barbed one. The inclusion is strict because T7 is not valid for
≈g

open.
Let 'g be the largest congruence contained in ≈g

open. Its formal definition is
completely similar to that of'b. LetASg

o stand forAS∪{T1, T2, T3, T4, T5, T6}.
It can be similarly proved that ASg

o is sound and complete for 'g.

5 Remark

Parrow and Victor have studied fusion calculus ([7]). It is a polyadic version
of χ6=-calculus. The main observational equivalence they have studied is what
they call weak hyperequivalence. The weak hyperequivalence is essentially a
polyadic version of the open bisimilarity ≈o we have defined in the introduction.
Since χ6=-calculus is a monadic version of the fusion calculus and therefore is a
subcalculus of the latter, the counter example given in the introduction is valid
in fusion calculus as well. One of the motivations of the ground bisimilarity is
to rectify the weak hyperequivalence. Apart from its theoretical interest, the
barbed bisimilarity is introduced partly to study the ground bisimilarity.
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E1 P = P
E2 P = Q if Q = P
E3 P = R if P = Q and Q = R
C1 α[x].P = α[x].Q if P = Q
C2 (x)P = (x)Q if P = Q
C3a [x=y]P = [x=y]Q if P = Q
C3b [x6=y]P = [x6=y]Q if P = Q
C4 P+R = Q+R if P = Q
C5 P0|P1 = Q0|Q1 if P0 = Q0 and P1 = Q1

L1 (x)0 = 0
L2 (x)α[y].P = 0 x ∈ {α, α}
L3 (x)α[y].P = α[y].(x)P x 6∈ {y, α, α}
L4 (x)(y)P = (y)(x)P
L5 (x)[y=z]P = [y=z](x)P x 6∈ {y, z}
L6 (x)[x=y]P = 0 x6=y
L7 (x)(P+Q) = (x)P+(x)Q
L8 (x)[y|z].P = [y|z].(x)P x 6∈ {y, z}
L9 (x)[y|x].P = τ.P [y/x] y 6= x
L10 (x)[x|x].P = τ.(x)P
M1 φP = ψP if φ⇔ ψ
M2 [x=y]P = [x=y]P [y/x]
M3a [x=y](P+Q) = [x=y]P+[x=y]Q
M3b [x6=y](P+Q) = [x6=y]P+[x6=y]Q
M4 P = [x=y]P+[x6=y]P
M5 [x6=x]P = 0
S1 P+0 = P
S2 P+Q = Q+P
S3 P+(Q+R) = (P+Q)+R
S4 P+P = P
U1 [y|x].P = [x|y].P
U2 [y|x].P = [y|x].[x=y]P
U3 [x|x].P = τ.P

Fig. 2. Axiomatic System AS

LD1 (x)[x|x].P = [y|y].(x)P U3 and L8
LD2 (x)[y 6=z]P = [y 6=z](x)P L5, L7 and M4
LD3 (x)[x6=y]P = (x)P L6, L7 and M4
MD1 [x=y].0 = 0 S1, S4 and M4
MD2 [x=x].P = P M1
MD3 φP = φ(Pσ) where σ is induced by φ M2
SD1 φP+P = P S-rules and M4
UD1 [y|x].P = [y|x].P [y/x] U2 and M2

Fig. 3. Some Laws Derivable from AS


