
Theoretical Computer Science 869 (2021) 181–194
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Model independent approach to probabilistic models

Yuxi Fu

BASICS, Shanghai Jiao Tong University, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 March 2020
Received in revised form 30 March 2021
Accepted 1 April 2021
Available online 7 April 2021
Communicated by R. van Glabbeek

Keywords:
Probabilistic process
Bisimulation
Divergence

There is a lot of research on probabilistic transition systems. There are not many stud-
ies in probabilistic process models. The lack of investigation into the interactive aspect of
probabilistic processes is mainly due to the difficulty caused by the discrepancy between
probabilistic choices and nondeterministic actions. The paper proposes a uniform approach
to probabilistic process models and a bisimulation theory for probabilistic concurrency.

© 2021 Published by Elsevier B.V.

1. Introduction

Randomization plays an indispensable role in computer science. The celebrated result, the PCP Theorem [3], reveals the
power of

interaction + randomness + error

in problem solving. Given an NP complete problem, one may design an interactive proof system consisting of a verifier
and a prover [22,4]. Upon receiving a problem instance the verifier accepts or rejects the input with high confidence in
polynomial time by using logarithmic random bits and asking a constant number of questions to the prover. The scenario
can be generalized to a multi-prover situation with an increased power on the verifier side [10,5,17]. This fundamental
result is significant to modern computing systems, which are open, distributed, interactive, and have both nondeterministic
behaviors and randomized choices. To formalize models in which results like the PCP Theorem apply, one may introduce
randomization to interaction models (process models). There are two kinds of randomness in randomized process models.
A process may send a random value to another; and it may randomly choose whom it will send a value to. We call the
former content randomness and the latter channel randomness. Content randomness is basically a computational issue [42],
whereas channel randomness has to do with interaction.

What kind of channel randomness are there? In literature one finds basically two answers to the question [28,23,44,35,
19], the generative scenario and the reactive scenario. Generative models feature probabilistic choice for external actions. The
standard syntax for a probabilistic guarded choice term is of the form⊕

i∈I

pi�i .Ti, (1)

E-mail address: fu-yx@cs.sjtu.edu.cn.
https://doi.org/10.1016/j.tcs.2021.04.001
0304-3975/© 2021 Published by Elsevier B.V.

https://doi.org/10.1016/j.tcs.2021.04.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2021.04.001&domain=pdf
mailto:fu-yx@cs.sjtu.edu.cn
https://doi.org/10.1016/j.tcs.2021.04.001

Y. Fu Theoretical Computer Science 869 (2021) 181–194
where pi ∈ (0, 1) and �i∈I pi = 1. The infix notation p1�1.T1 ⊕ . . . ⊕ pk�k.Tk is frequently used. The semantics is defined
by

⊕
i∈I pi�.Ti

�i−→pi T i , meaning that
⊕

i∈I pi�.Ti may evolve into Ti with probability pi by performing the action �i . The
generative model is problematic in the presence of the interleaving composition operator “|” and the localization operator
“(a)”. Let A be 1

2 a ⊕ 1
2 b and C be 2

3 b ⊕ 1
3 c. What is then the behavior of A | C? And how about (b)(A | C), where the channel

b is local in the sense that A and C may interact through channel b but neither is allowed to interact with any other
process at b? What is the probability of A interacting with C at channel b in (a)(c)(A | C)? In (c)C interaction at channel
c is disabled. How does that reconcile with the prescription that C interacts at channel c with probability 1/3? It does not
sound right to say that (c)C performs the b action with probability one. A reasonable semantics is that (c)C may do the b
action with probability 2/3 and becomes dead with probability 1/3. If this is indeed the interpretation, C should really be
2
3 b ⊕ 1

3 τ .c. Symmetrically one may argue that 2
3 b ⊕ 1

3 τ .c should really be 2
3 τ .b ⊕ 1

3 τ .c. All problems with the probabilistic
choice (1) are gone if it is replaced by the random choice term

⊕
i∈I

piτ .Ti, (2)

where the size of the finite index set I is at least 2 and
∑

i∈I pi = 1. Thus 0 < pi < 1 for all i ∈ I . Early generative models
are fully probabilistic [8]. Nondeterminism was considered later [35].

In reactive models, introduced by Larsen and Skou [28] and popularized by the work of van Glabbeek, Smolka and
Steffen [19], nondeterministic choice and probabilistic choice come in alternation. Using a suggestive notation one may
write for example

a.

(
1

2
A1 � 1

2
A2

)
+ b.

(
1

3
B1 � 2

3
B2

)
. (3)

This is a process that may perform an a action and turns into A1 with probability 1/2 and A2 with probability 1/2. It
may also do an interaction at channel b and becomes B1 with probability 1/3 and B2 with probability 2/3. A systematic
exposure of the research progress on reactive models is given in Deng’s book [14]. In literature authors often think of
1
2 A1 � 1

2 A2 simply as a distribution over {A1, A2}. In this paper we take the view that the distribution can only be achieved
by carrying out a certain amount of computation, say invoking a random number generator. The details of the computation
can be abstracted away, but it should be formalized as an internal action. In our opinion the best way to understand the
process in (3) is to see it as a simplification of

a.

(
1

2
τ .A1 ⊕ 1

2
τ .A2

)
+ b.

(
1

3
τ .B1 ⊕ 2

3
τ .B2

)
. (4)

The process in (4) may do an external nondeterministic choice, and then an internal random choice. This is why reactive
models are also called (strict) alternating models. However once we have separated the two kinds of choice, there is no
point in insisting on the alternation. What it means is that we might as well give up on the generative probabilistic choice
and the reactive probabilistic choice altogether in favor of (2) plus nondeterministic choice.

The central issue in defining a probabilistic process model is the treatment of nondeterminism in the presence of prob-
abilistic choice. The philosophy we shall be following in this paper is that nondeterminism is an attribute of interaction
while randomness is a computational feature. Nondeterminism is a characteristic of system, which cannot be implemented.
Randomness is a process property, which can be implemented with a negligible error. We advocate in this paper a model
independent methodology that turns an interaction model into a randomized interaction model by adjoining (2). The se-
mantics of the random operator is defined by the following rule.

⊕
i∈I piτ .Ti

piτ−→ Ti

. (5)

We emphasize that the label piτ should be understood as the same thing as τ . The additional information attached by pi is
to help reason with the bisimulation semantics. Talking about bisimulation equivalence it is useful to think of the transitions
defined by (5) as a single silent transition. We introduce the collective silent transition

⊕
i∈I

piτ .Ti

∐
i∈I piτ−→

∐
i∈I

T i, (6)

where
∐

is an auxiliary notation introduced to indicate a collection of things. It ought to be clear that the collective silent
transitions are closed under composition, localization and recursion.

Strong bisimulation for probabilistic labeled transition system, pLTS for short, is well understood [28,23,35,19,14]. Weak
bisimulation has been studied for reactive models [37,14] and alternation models [33]. In the presence of probabilistic choice
a silent transition sequence appears as a tree of silent transitions. Schedulers, adversaries and strategies are introduced to
182

Y. Fu Theoretical Computer Science 869 (2021) 181–194
resolve the nondeterminism when constructing such a tree. Branching bisimulations have also been studied for reactive
models [37].

Our current understanding of weak/branching bisimulations for nondeterministic probabilistic process models is not very
satisfactory in several accounts. Here are a summary of the major points.

• In the presence of both nondeterminism and probabilistic choice, proving the transitivity of a proposed observational
equivalence has been a challenge. A proof of the transitivity of branching bisimilarity in such a model is not available for
some time until the publication of [13] in 2020. Even the proof of the transitivity in [13] is conditional, the transitivity
only holds for divergence-free processes.

• As far as we are aware of almost all the weak and branching bisimilarities studied in literature fail to be a full scale
congruence relation. They are not closed under the composition operator [33,2], or the localization operator, or the
recursion operator. In fact some of them are closed in none of the three operators. There are suggestions to look at
synchronous probabilistic process models [19,8]. A basic problem in the synchronous scenario is if internal actions are
synchronized. A yes answer seems to contradict to the very idea of the observational theory. But if the silent transitions
are not synchronized, the composition operator is unlikely to be associative. There has been research on branching
bisimilarity for nondeterministic probabilistic processes defined over a signature [29], focusing on rule formats that
guarantee congruence. The negative premises in rule formats impose strong restriction on the operational semantics. It
is not clear how the congruence result in [29] applies to process calculi whose composition, localization and recursion
operators are defined without any negative premises. A different approach to attack the issue of congruence is to
introduce weak equivalence up to a behavioral distance defined on a probabilistic metric [27]. The point is to measure
closeness rather than equality. Congruence is achieved by trading off precision. There has been research to strive for
a congruent branching bisimilarity by imposing additional conditions. In [1] the authors introduce a branching style
bisimilarity for alternation models. The equivalence is a congruence, but the additional requirement is so strong that
the equivalence fails to identify τ .

(1
2 a � 1

2 b
)

to 1
2 a � 1

2 b, using the reactive notation. In a recent paper [12], a branching
bisimulation congruence is defined for closed terms generated over a signature. The study is confined exclusively to
divergence-free closed terms. Thus the equivalence is not closed under recursion since it introduces divergence.

• A consequence of the failure to account for the composition and localization is that most results, even definitions, apply
to only finite state probabilistic processes [33,2,14]. The coincidence between the weak bisimilarity and the branching
bisimilarity for example is only proved for the finite state fully probabilistic processes [8]. In fact in literature proba-
bilistic processes are often defined as finite probabilistic labeled transition system [36], or finite labeled graphs [33],
or labeled concurrent Markov chains [43], or Probabilistic/Markov automata [40,41]. These restricted models preempt
any study on process operators. It is difficult to judge if an observational equivalence � defined for finite state proba-
bilistic processes is a good equivalence for a full scale process model, since both composition and recursion are ignored
when studying the finite state processes, and there are more than one way to extend or modify � to take care of the
composition and recursion operators. We will come back to this point in Section 6.

• The divergence issue has not been properly addressed. This is definitely an omission, especially so in the presence of
random silent actions. In the probabilistic process theory it is important that a process equality can make a distinction
between divergence with probability one and divergence with probability zero. The congruence relations studied in [12,
13] cannot make such a distinction because they are defined for non-divergent processes. In the classical process theory,
no process equivalence would rely on the absence of divergence.

In summary in the setting of nondeterministic probabilistic model, no observational divergence sensitive bisimulation rela-
tion has been shown to be both an equivalence and a congruence for a full-fledged process model. A full fledged process
model should contain at least the concurrent composition operator, the localization operator and some form of recursion
operator.

In both probabilistic programming and quantum computing, only internal probabilistic choice is available. The operator
defined in (5) does appear to be universal in computation models that admit randomness. The main task of the paper is
to justify this model independent methodology. We hope to convince the reader not only that randomization of process
calculi ought to be model independent, but also that the bisimulation theory of the randomized version of any process
model M can be derived from the bisimulation theory of M in a uniform manner. Section 2 defines a randomized process
model. For simplicity the model is taken to be a sub-model of Milner’s CCS. Section 3 introduces ε-tree and showcases
its role in transferring bisimulation theory of a model M to bisimulation theory of randomized M. Section 5 provides a
technical justification for two crucial definitions of the paper. Section 4 proves the congruence property of the bisimulation
equivalence. Section 6 makes some final comments.

2. Random process model

Let Chan be the set of channels, ranged over by lowercase letters. Let Chan = {a | a ∈ Chan}. The set Chan ∪ Chan will be
ranged over by small Greek letters. We let α = a if α = a. The set of actions is Act = Chan ∪ Chan ∪ {τ }. We write � and its
decorated versions for elements of Act . The grammar of CCS [30] is defined as follows:
183

Y. Fu Theoretical Computer Science 869 (2021) 181–194
S, T := X |
∑
i∈I

αi .Ti | S | T | (a)T | μX .T , (7)

where the indexing set I is finite. We write 0 for the nondeterministic term
∑

i∈∅ αi .Ti in which ∅ is the empty set. A trailing
0 is often omitted. We also use the infix notation of

∑
, writing for example α1.T1 + α2.T2 + α3.T3. A process variable X

that appears in
∑

i∈I αi .Ti is guarded. We shall assume that in the fixpoint term μX .T the bounded variable X is guarded
in T . A term is a process if it contains no free variables. We write A, B, C, D, E, F , G, H, P , Q for processes. Let TCCS be the
set of all CCS terms and PCCS be the set of all CCS processes. A finite state term/process is a term/process that contains
neither the composition operator nor the localization operator. We can define τ -prefix in the standard manner. For example
a.A + τ .B can be defined by (c)(c | (a.A + c.B)) for some fresh channel c. From now on we shall use this derived notation
without further comment. The transition semantics of CCS is generated by the following rules.

∑
i∈I αi .Ti

αi−→ Ti

S
α−→ S ′ T

α−→ T ′

S | T
τ−→ S ′ | T ′

T
�−→ T ′

S | T
�−→ S | T ′

S
�−→ S ′

S | T
�−→ S ′ | T

T
�−→ T ′

(a)T
�−→ (a)T ′

a /∈ �
T {μX .T /X} �−→ T ′

μX .T
�−→ T ′

In the rule defining the semantics for the localization operator, a /∈ � means that a does not appear in �.
For an equivalence E on PCCS we write A EB for (A, B) ∈ E . The advantage of the infix notation is that we may write for

example AEBEC for AEB ∧ BEC and A �−→ BEC for A �−→ B ∧ BEC . The notation PCCS/E stands for the set of equivalence
classes defined by E . The equivalence class containing A is denoted by [A]E , or [A] when the equivalence is clear from
context. We write A τ−→E A′ if A τ−→ A′E A, and =⇒E for the reflexive and transitive closure of τ−→E . For C ∈ PCCS/E we
write A �−→ C for the fact that A �−→ A′ ∈ C for some A′ . A process A is E-divergent if there is an infinite silent sequence
A τ−→E A1

τ−→E . . .
τ−→E Ak

τ−→E
The Randomized CCS, RCCS for short, is defined on top of CCS. The RCCS terms are obtained by extending the definition

in (7) with the randomized choice term defined in (2). A variable that appears in
⊕

i∈I piτ .Ti is also guarded. The transition
semantics of RCCS is defined by the above rules of CCS plus the rule defined in (5). The label � that appears in these rules
ranges over Act ∪ {pτ | 0 < p < 1}. The set of RCCS terms is denoted by TRCCS and that of RCCS processes by PRCCS or
simply P .

We shall find it convenient to interpret T
1τ−→ T ′ as T

τ−→ T ′ . So
pτ−→ is a random silent transition if 0 < p < 1 and an

interaction if p = 1. The (reflexive and) transitive closure of τ−→ is denoted by τ=⇒ (=⇒). We shall say that the product
p1 . . . pk is the probability of the silent transition sequence T

p1τ−→ . . .
pkτ−→ T ′ .

3. Epsilon tree

Weak bisimulation equivalence [30,32] has been a dominant observational equivalence in process theory. A refinement of
the equivalence is the branching bisimulation equivalence introduced by van Glabbeek and Weijland [20,21]. The advantage
of branching bisimulation over weak bisimulation has been demonstrated in a number of scenarios. Branching bisimulation
admits more stable logical characterization [31] and more efficient equivalence checking algorithm [11]. From the point
of programming verification there are good reasons to use branching bisimulation rather than weak bisimulation. Suppose
Spec is a specification and Impl claims to be an implementation of Spec. The correctness of Impl with regard to Spec can be
defined as Impl ≈ Spec, where ≈ is the weak bisimilarity. Now Spec specifies only what to do, not how to do. It is reasonable
to assume that Spec contains neither the composition operator “|” nor the τ prefixing operator because the former is an
implementation operator whereas the latter is an indication of computation which a specification should not be bothered
with. If Impl

τ=⇒ Impl′ , then it must be simulated by Spec vacuously, meaning that Impl′ ≈ Spec. What this equivalence says
is that Impl
 Spec, where
 is the branching bisimilarity. We conclude that as far as the correctness of an implementa-
tion is concerned, the right equality is a branching bisimulation. How about program equivalence? Suppose Pr and Pr′ are
equivalent programs in the sense that Pr ≈ Pr′ . In practice this means that both Pr and Pr′ are implementations of some
specification Sp, in other words Pr ≈ Sp ≈ Pr′ . It follows from the above argument that Pr
 Sp
 Pr′ . Hence Pr
 Pr′ . So pro-
gram equivalence is also a branching bisimulation. From another perspective a well known fact is that the weak bisimilarity
coincides with the branching bisimilarity on the finite-state fully probabilistic processes [8]. It makes sense to look at the
branching bisimulation when the model is extended to infinite state probabilistic processes with nondeterministic choice.

There are also arguments for branching bisimulations at a definitional level. For any process equality � on PCCS one
thinks of a silent transition A τ−→� A′ as state-preserving, and a silent transition A τ−→ A′ such that A′ �� A as state-
changing. The basic idea of van Glabbeek and Weijland is that a state-changing silent action must be explicitly bisimulated
whereas state-preserving silent actions are ignorable. If B � A τ−→� A′ then B does not have to do anything because B � A′ .
If B � A τ−→ A′ �� A then A τ−→ A′ must be simulated by some B τ=⇒ B ′ . If � is a weak bisimulation then before reaching
184

Y. Fu Theoretical Computer Science 869 (2021) 181–194
to B ′ the process B may pass some processes/states that are equivalent neither to B nor to B ′ . In other words B τ=⇒ B ′
is not simulated by A τ−→ A′ in general. Branching bisimulation requires additionally that B τ=⇒ B ′ must be simulated by
A τ−→ A′ . It is in this sense that A τ−→ A′ is bisimulated by B τ=⇒ B ′ in the branching bisimulation case. A minute’s thought
would make us believe that B τ=⇒ B ′ must be of the form B =⇒�

τ−→ B ′ � A′ . With these remarks in mind let us state the
notion of branching bisimulation [20,6].

Definition 1. An equivalence E on PCCS is a branching bisimulation if for all A, B ∈ PCCS, and for all � and all C ∈ PCCS/E
such that

(
� ∈ Chan ∪ Chan

)
∨ (� = τ ∧ C �= [A]E), the following is valid.

• If B E A =⇒E
�−→ C , then B =⇒E

�−→ C .

Clearly B E A τ−→E A′ implies B E A′ , meaning that A τ−→E A′ is bisimulated by B vacuously. That explains the condition (
� ∈ Chan ∪ Chan

)
∨ (� = τ ∧ C �= [A]E).

The well-known extensional equality for computation is defined as follows: f = g if and only if for every input x, if one
of f (x), g(x) is defined then both of f (x), g(x) are defined and f (x) = g(x). This equality never identifies a nonterminating
computation to a terminating computation. The best way to formalize this requirement in bisimulation semantics is intro-
duced in [34]. It is the key condition that turns a bisimulation equality for interaction to an equality for both interaction
and computation.

Definition 2. An equivalence E on PCCS is divergence-sensitive if, for every C ∈ PCCS/E , either all members of C are E-
divergent, or no member of C is E-divergent.

It is not difficult to prove that the equivalence closure of the union of all divergence-sensitive branching bisimulation on
PCCS is a divergence-sensitive branching bisimulation. Let =CCS denote this equivalence. Another way to look at =CCS is that
it is the largest codivergent branching bisimulation [18].

Having motivated the bisimulation equality for CCS, we are in a position to randomize it as it were to a bisimulation
equality for RCCS. One finds in literature that bisimulation equivalences have been defined with the help of schedulers, ad-
versaries, or strategies to resolve nondeterministic choice. These are generalizations of environments in the non-probabilistic
setting. Just as in the classical process theory where one always looks for characterizations of process equivalences without
referring to any environments [30], one seeks definition of bisimulation equivalence for random processes without using
schedulers and the like. Such a definition would make equivalence reasoning much more manageable. In RCCS a silent tran-
sition is generally a distribution over a finite set of silent transitions. A finite sequence of silent transitions in CCS then turns
into a silent transition tree in RCCS. To describe that, we introduce an auxiliary definition.

Definition 3. Suppose E is an equivalence on PRCCS and A ∈ PRCCS. A silent tree t of A is a labeled tree rendering true the
following statements.

• Every node of t is labeled by an element of PRCCS. The root of t is labeled by A.
• The edges are labeled by elements of (0, 1]. If an edge from a node labeled A′ to a node labeled A′′ is labeled p, then

A′ pτ−→ A′′ .

An E-tree t A of A is a silent tree of A such that all the labels of the nodes of t A are in [A]E .

If we confuse a node with its label, we may say for example that A′ q−→ A′′ is an edge in t A . The following definition
formalizes state-preserving silent transition sequence in the probabilistic setting, wherein the notation [k] stands for the set
{1, . . . , k}.

Definition 4. An ε-tree t A
E of A with regard to E is an E-tree of A rendering true the following.

1. If B
q−→ B ′ is in the tree, there must be some collective silent transition B

∐
i∈[k] piτ−→ ∐

i∈[k] Bi such that B
pi−→ Bi is in

the tree for every i ∈ [k] and B1, . . . , Bk are the only children of B .

2. If B 1−→ B ′ is in the tree, then B τ−→ B ′ and B ′ is the only child of B .

Intuitively an ε-tree of A with regard to E is meant to be a random version of =⇒E . All nodes of an ε-tree with
regard to E are equivalent from the viewpoint of E . Condition 1 requires that if one of B1, . . . , Bk is in the ε-tree then
all of B1, . . . , Bk are in the ε-tree, and B

q−→ B ′ is B
pi−→ Bi for some i ∈ I . This is nothing more than the intuition that
185

Y. Fu Theoretical Computer Science 869 (2021) 181–194
B
∐

i∈[k] piτ−→ ∐
i∈[k] Bi is conceptually a single silent transition. The number of ε-trees of A with regard to an equivalence class

are in general infinite. Let’s see some examples.

Example 1. Let �a = μX .(τ .a + τ .X). Let E1 be any equivalence that distinguishes a divergent process from a non-divergent
one. A finite ε-tree of �a with regard to E1 corresponds to a finite transition sequence of the form �a

τ−→ �a
τ−→ . . .

τ−→
�a . In the non-random case an ε-tree with regard to E1 is just an instance of =⇒E1 . There is an infinite ε-tree of �a ,
corresponding to the divergent sequence �a

τ−→ �a
τ−→

Example 2. Let � 1
2

= μX .(1
2 τ .X ⊕ 1

2 τ .X). There are infinitely many ε-trees of a | � 1
2

with regard to any equivalence. An
ε-tree may be a single node tree (the left diagram below), or a three node tree (the middle diagram below), or an infinite
tree (the right diagram below). Unlike Example 1 the divergence in this case is immune from any intervention.

Example 3. Let � 1
2 a = μX .(1

2 τ .a ⊕ 1
2 τ .X). Let E2 be an equivalence such that [� 1

2 a]E2 = [a]E2 . A finite ε-tree of � 1
2 a with

regard to E2 is described by the left diagram below, one of its leaves cannot do an immediate a action. The right diagram
describes an infinite ε-tree of � 1

2 a with regard to E2, all of its leaves can do an immediate a action.

The process � 1
3 a = μX .(1

3 τ .a ⊕ 2
3 τ .X) has similar ε-trees.

Example 4. Let G = μX .(1
3 τ .(a + τ .X) ⊕ 2

3 τ .X). Let E3 be any equivalence such that [G]E3 = [a + τ .G]E3 . Two ε-trees of G
with regard to E3 are described by the following infinite diagrams. Every leaf of the left diagram can do an immediate a
action, whereas none of the leaves of the right diagram can do an immediate a action.

Example 5. Let H = μX .(1
2 τ .(a + τ .X) ⊕ 1

2 τ .(b + τ .X)). An ε-tree of H with regard to an equivalence E4 rendering true
[H]E4 = [a + τ .H]E4 = [b + τ .H]E4 is described by the left diagram below. Every leaf of the ε-tree can do an immediate
b action. Another ε-tree of H with regard to E4 is described by the right diagram below, in which every leaf can do an
immediate a action.
186

Y. Fu Theoretical Computer Science 869 (2021) 181–194
These examples bring out a few observations. Firstly ε-trees are generalizations of =⇒E . This is clear from Example 1.
However ε-trees are a little too general. Two ε-trees of a process may differ in that every leaf of one ε-tree may do an
immediate a action whereas in the other this is not true.

To isolate the ε-trees that truly correspond to =⇒E , we introduce some auxiliary definitions. A path in a silent tree t
is either a finite path going from the root to a node or an infinite path starting from the root. A branch of t is either a
path ending in a leaf or an infinite path. The length |π | of a path π is the number of edges in π if π is finite; it is ω
otherwise. For i ≤ |π | let π(i) be the label of the i-th edge. The probability P(π) of a finite path π is

∏{π(i) | i ∈ [|π |]}. A
path of length zero is a single node, and its probability is 1. The probability of an infinite path A

p1τ−→ p2τ−→ . . .
pkτ−→ . . . is the

limit of p1, p1 p2, . . . ,
∏

i≤k pi, . . ., whose existence is guaranteed because the decreasing sequence is bounded by 0 from
below. If t is finite, define P(t) = ∑{P(π) | π is a branch of t}. If t is infinite, we need to define the probability in terms of
approximation. Let t�k be the subtree of t defined by the nodes of height no more than k. Inductively

• t�0 is the one node tree defined by the root of t; and
• t�k+1 is defined by the nodes of t�k and all the children of these nodes.

It should be clear that P(t�k+1) ≤ P(t�k). The probability P(t) of the tree t is defined by the limit limk→∞ P(t�k).

Lemma 3.1. P(t) = 1 for every ε-tree t.

Proof. Now P(t�0) = 1 by definition. If P(t�k) = 1, then P(t�k+1) = 1 by Definition 4. Thus P(t) = limk→∞ P(t�k) = 1. �
The probability of the finite branches of t is defined by P f (t) = limk→∞ Pk(t), where

Pk(t) =
∑

{P(π) | π is a finite branch in t such that |π | ≤ k} . (8)

We are now in a position to generalize a branching bisimulation for CCS processes to a branching bisimulation for RCCS
processes. First of all we generalize state-preserving silent transition sequences of finite length. Intuitively such a finite
sequence turns into an ε-tree that probabilistically contains no infinite branches.

Definition 5. An ε-tree t A
E is regular if P f (t A

E) = 1.

In the same line of thinking an ε-tree is divergent if it does not have any finite branches.

Definition 6. An ε-tree t A
E is divergent if P f (t A

E) = 0.

Notice that an ε-tree t A
E refers to an equivalence E . Definition 6 is consistent with the E-divergence introduced in

Section 2. The next definition is the probabilistic counterpart of Definition 2.

Definition 7. An equivalence E on PRCCS is divergence-sensitive if the following is valid for every C ∈P/E .

• Either all members of C have divergent ε-trees with regard to E , or no member of C has any divergent ε-tree with
regard to E .

To discuss the branching bisimulation for random processes, we need to talk about a transition from a process A to an
equivalence class B ∈ P/E . This makes sense because the processes in B are supposed to be all equivalent. We would like
to formalize the idea that after a finite number of state-preserving silent transitions an �-action is performed and the end
processes are in B. Suppose

(
� ∈ Chan ∪ Chan

)
∨ (� = τ ∧B �= [A]E). An �-transition from A to B with regard to E consists of
187

Y. Fu Theoretical Computer Science 869 (2021) 181–194
a regular ε-tree t A
E of A with regard to E and a transition L �−→ L′ ∈ B for every leaf L of t A

E . We will write A �E
�−→ B if

there is an �-transition from A to B with regard to E . By definition A �E
�−→ B whenever A �−→ B ∈ B.

Let’s see some examples. For the process � 1
2 a in Example 3 one has � 1

2 a �E2

a−→ 0, where the regular ε-tree is described

by the right diagram in Example 3. For the process G in Example 4 one has G �E3

a−→ 0, where the regular ε-tree is
described by the left diagram in Example 4. For the process H in Example 5, H �E4

a−→ 0 via the regular ε-tree described

by the right diagram, and H �E4

b−→ 0 via the regular ε-tree described by the left diagram.
Now consider the situation where A evolves into processes in B ∈ (P/E)\{[A]E } with probability greater than 0. Suppose

L is a leaf of t A
E and L

∐
i∈[k] piτ−→ ∐

i∈[k] Li such that Li ∈ B for some i ∈ [k]. Define

P

(
L

∐
i∈[k] piτ−→ B

)
=

∑
i∈[k]

{
pi | L

piτ−→ Li ∈ B
}

.

Define the normalized probability

PE

(
L

∐
i∈[k] piτ−→ B

)
= P

(
L

∐
i∈[k] piτ−→ B

)/(
1 − P

(
L

∐
i∈[k] piτ−→ [A]E

))
.

Intuitively the normalized probability is the probability that L may leave the class [A]E silently for elements of B. If one
leaf of the regular t A

E can do a silent transition that leaves t A
E with a non-zero probability, we require that every leaf of t A

E is
capable of doing a silent transition that leaves t A

E with that probability. This probabilistic bisimulation property is observed
in [8] in the simpler setting of the finite state fully probabilistic processes. In our general setting a process may do several
random silent transitions caused by different random operators. Suppose B �= [A]E . A q-silent transition from A to B with
regard to E consists of a regular ε-tree t A

E of A with regard to E and, for every leaf L of t A
E , a collective silent transition

L
∐

i∈[k] piτ−→ ∐
i∈[k] Li such that

PE

(
L

∐
i∈[k] piτ−→ B

)
= q.

We will write A �E
q−→ B if there is a q-silent transition from A to B with regard to E .

Definition 8. An equivalence E on PRCCS is a branching bisimulation if the following statements are valid.

1. If B E A �E
�−→ C ∈P/E and

(
� ∈ Chan ∪ Chan

)
∨ (� = τ ∧ C �= [A]E), then B �E

�−→ C .

2. If B E A �E
q−→ C ∈P/E such that C �= [A]E , then B �E

q−→ C .

We say that B �E
�−→ C bisimulates A �E

�−→ C in statement 1, and that B �E
q−→ C bisimulates A �E

q−→ C in
statement 2.

Let’s take a look at an example that explains the subtlety of Definition 8. Define Pr = rτ .a ⊕ (1 − r)τ .μX .(a +τ .X), where
0 < r < 1. Firstly notice that a and μX .(a +τ .X) cannot be in any divergence-sensitive branching bisimulation because the
latter is divergent whereas the former is not. It follows that Pr and a cannot be in any divergence-sensitive branching
bisimulation because Pr has the potential to diverge. It also follows that Pr and μX .(a +τ .X) cannot be in any divergence-

sensitive branching bisimulation because Pr
1−r−→ μX .(a +τ .X) cannot be bisimulated by μX .(a + τ .X). We conclude that

the only ε-tree of Pr is the trivial tree with one node. Therefore Pr �E
r−→ a is the same as Pr

r−→ a and Pr �E
1 − r−→

μX .(a +τ .X) is the same as Pr
1 − r−→ μX .(a +τ .X). It follows from the second clause of Definition 8 that Pr and Pr′ cannot

be in any divergence-sensitive branching bisimulation whenever r �= r′ .
Consider μX . (a1 + τ .(a2 + τ .(. . . (ak + τ .X) . . .))). The behavior of the process can be pictured as a ring (the left diagram

below), in which all nodes are equal [21]. Consider a probabilistic version of this process

μX .

(
1

2
τ .a1 ⊕ 1

2
τ .(

1

2
τ .a2 ⊕ 1

2
τ .(. . . (

1

2
τ .ak ⊕ 1

2
τ .X) . . .))

)
.

Its behavior is described by the right diagram below. No two nodes in the right ring can be in any branching bisimulation.
For example the top middle node in the ring can reach to the process a1 with probability 1/2, or more precisely “the
top middle node �E

1/2−→ a1” for some equivalence E , whereas it is impossible that “a bottom node �E
1/2−→ a1” for any

equivalence E .
188

Y. Fu Theoretical Computer Science 869 (2021) 181–194
The process �a of Example 1 and the process � 1
2 a of Example 3 cannot be in any divergence-sensitive branching bisimula-

tion because the former is divergent whereas the latter is not.

For a relation R on PRCCS, let R∗ be the equivalence closure of the relation R. Clearly both
{
(� 1

2 a,a)
}∗

and
{
(� 1

3 a,a)
}∗

are divergence-sensitive bisimulation, where � 1
2 a and � 1

3 a are defined in Example 3. And {(G, Ga)}∗ is a divergence-sensitive

branching bisimulation, where G is defined in Example 4 and Ga
def= a +τ .G . Also {(H, Ha), (H, Hb), (H, E)}∗ is a divergence-

sensitive branching bisimulation, where H is defined in Example 5, Ha
def= a + τ .H , Hb

def= b + τ .H and E
def= μX .(a +b + τ .X).

4. Equality for random process

The following lemma follows immediately from definition.

Lemma 4.1. If Ei is a divergence-sensitive equivalence for all i ∈ I , then so is
(⋃

i∈I Ei
)∗

.

The proof of the next fact is slightly complicated but standard.

Proposition 4.2. If {Ei}i∈I is a set of branching bisimulation, so is
(⋃

i∈I Ei
)∗

.

Proof. Let E = (⋃
i∈I Ei

)∗ . We only have to prove that for each i ∈ I the following is valid whenever AEi B .

1. If A �E
�−→ C ∈P/E and

(
� ∈ Chan ∪ Chan

)
∨ (� = τ ∧ C �= [A]E), then B �E

�−→ C .

2. If A �E
q−→ C ∈P/E for some C �= [A]E , then B �E

q−→ C .

We emphasize that the pair (A, B) is in Ei , while the above bisimulation property is stated with regards to E . We prove
statement 1. The proof of statement 2 is similar. Let � be such that

(
� ∈ Chan ∪ Chan

)
∨ (� = τ ∧ C �= [A]E). Consider an

�-transition A �E
�−→ C . It consists of a regular ε-tree t A of A with regard to E and, for every leaf L of t A , a transition

L �−→ L′ ∈ C . We construct by induction on the structure of t A an �-transition B �E
�−→ C . The basic idea is to construct an

ε-tree with regards to E for every edge of t A such that the ε-tree bisimulates the edge. By sticking these ε-trees together
we get an ε-tree tB of B with regard to E . We can make sure that tB is regular, which will become clear by the construction.
Formally the bisimulation B �E

�−→ C can be derived by induction.

• Suppose the root of t A has only one child A′ . By definition A τ−→ A′ . If A′ ∈ [A]Ei , we construct tB by structural induc-

tion on the ε-tree of A′ . If A′ /∈ [A]Ei then A τ−→ A′ is bisimulated by some τ -transition B �Ei

τ−→ [A′]Ei consisting of
a regular ε-tree t′

B of B with regard to Ei and, for every leaf B ′′ of t′
B , a transition B ′′ τ−→ B ′Ei A′ for some B ′ . Notice

that B ′′Ei BEi AE A′Ei B ′ . Thus B ′′EB ′EB . We then continue to construct an ε-tree for B ′ by induction on the structure of
the regular ε-tree of A′ .

• Suppose the root of t A has h children A1, . . . , Ah with the corresponding edges labeled by p1, . . . , ph respectively. By
the definition of ε-tree,

A

∐
j∈[h] p jτ−→

∐
j∈[h]

A j .

There are two cases. In the first case A jEi A for all j ∈ [k]. We construct t′
B by structural induction on the regular ε-

tree of say A1. In the second case suppose without loss of generality that A1 /∈ [A]Ei . Let q = PEi

(
A

∐
i∈[h] piτ−→ [A1]Ei

)
.

Then B �Ei

q−→ [A1]Ei by definition. The q-silent transition consists of a regular ε-tree t′
B of B with regard to Ei and,

for each leaf B ′′ of t′
B , a collective silent transition B ′′

∐
i′∈[h′] pi′ τ−→ ∐

i′∈[h′] Bi′ such that PEi

(
B ′′

∐
i′∈[h′] piτ−→ [A1]Ei

)
= q. For
189

Y. Fu Theoretical Computer Science 869 (2021) 181–194
Fig. 1. Stepwise bisimulation.

every process Bi′ the q-silent transition B �Ei

q−→ [A1]Ei reaches, we continue to construct an ε-tree of Bi′ by structural
induction on the regular ε-tree of A1. Now B ′′Ei BEi AE A1Ei Bi′ . So BEB ′′EBi′ .

• Suppose the root of t A does the transition A �−→ L′ . Then B �Ei

�−→ [L′]Ei by definition. Therefore B �E
�−→ [L′]E

witnessed by some regular ε-tree of B with regards to E .

In Fig. 1 the left is a diagram for A �E
�−→ C , while the right is a diagram for the stepwise bisimulation B �E

�−→ C . The
above itemized cases are described by the upper, middle, and bottom parts of the diagrams respectively. We still need to
verify the regularity property. Given ε ∈ (0, 1), there is a number Kε such that 1 − PKε (t A) < ε/2. Now every edge in t A�Kε

is bisimulated either vacuously or by an ε-tree t . There is a number Nε such that for every such ε-tree t it holds that
1 − PNε (t) < ε

2Kε
. It is not difficult to see that 1 − PKε Nε (tB) < ε/2 + ε/2 = ε. Therefore tB is regular. So A �E

�−→ C is

bisimulated by B �E
�−→ C . By transitivity we conclude that E is a branching bisimulation. �

Proposition 4.2 is reassuring. We may now define the equality on RCCS processes, denoted by =RCCS, as the largest
divergence-sensitive branching bisimulation on PRCCS. An obvious corollary of the above proposition is that =RCCS is an
equivalence. We will abbreviate =RCCS to
.

Theorem 4.3. The equality =RCCS is a congruence.

Proof. It is easy to see that
 is closed under both the nondeterministic choice operation and the random choice operation.
Now let R be the relation {(A | C, B | C) | A
 B ∧ C ∈P}. We prove that R◦ def= (R ∪
)∗ is a divergence-sensitive branching
bisimulation. Suppose (A | C) R (B | C) and A | C �R◦

�−→ C for some equivalence class C ∈P/R◦ such that(
� ∈ Chan ∪ Chan

)
∨ (� = τ ∧ C �= [A | C]R◦) .

Let t A | C denote the regular ε-tree of A | C in the �-transition. Using the technique explained in the proof of Proposition 4.2

it is routine to build up an �-transition B | C �R◦
�−→ C that bisimulates A | C �R◦

�−→ C . This is inductively described as
follows.

• Suppose an edge from A | C to A′ | C labeled 1 is caused by a transition A τ−→ A′
 A. In this case A′ | C R B | C . If it is

caused by A
∐

i∈I piτ−→ ∐
i∈I Ai such that Ai
 A for all i ∈ I , then A | C

∐
i∈I piτ−→ ∐

i∈I Ai | C and obviously Ai | C R B | C for
each i ∈ I . In neither case B | C has to bisimulate anything.

• Suppose an edge from A | C to A′ | C labeled 1 is caused by a transition A τ−→ A′ �= A such that A | C
 A′ | C . Then
B �

τ−→ [A′]
 . For every leaf B ′′ in the regular ε-tree of B , B ′′ τ−→ B ′ ∈ [A′]
 for some B ′ . It should be clear that
B ′′ | C R B | C R A | C
 A′ | C R B ′ | C . So B | C , B ′′ | C and B ′ | C are related by R◦ .

• Suppose an edge from A | C to A′ | C ′ labeled 1 is caused by A α−→ A′ and C α−→ C ′ such that A′ | C ′
 A | C . This case is
similar to the above case.

• Suppose A
∐

i∈[k] piτ−→ ∐
i∈[k] Ai and A1 �
 A �
 A2 �
 A1 and A1 | C
 A2 | C �
 A | C . Define

q
def= q1 + q2,
190

Y. Fu Theoretical Computer Science 869 (2021) 181–194
q1
def= P

(
A

∐
i∈[k] piτ−→ [A1]

)
,

q2
def= P

(
A

∐
i∈[k] piτ−→ [A2]

)
.

Then q = P

(

A | C

∐
i∈[k] piτ−→ [A1 | C]

)
. By assumption B �

q1−→ [A1]
 and B �

q2−→ [A2]
 . It follows that B | C�R

q−→
[A1 | C]R .

• Suppose A | C �−→ C . One can show that B | C �R◦
�−→ C by similar argument.

We conclude that R◦ is a branching bisimulation. The proof that R◦ is divergence-sensitive is simpler. Using almost the
same proof one can show that A
 B implies C | A
 C | B .

Next we argue that
 is closed under localization. Define

S def= {((a)A, (a)B) | A
 B}.
We show that S◦ def= (S ∪
)∗ is a divergence-sensitive bisimulation. Suppose (a)A S (a)B and that t(a)A is a regular ε-tree of
(a)A. This ε-tree is derived from a silent tree of A. In the silent tree of A an edge say A′ τ−→ A′′ may not be state-preserving,
even though (a)A′ τ−→ (a)A′′ is state-preserving. Suppose B ′
 A′ and A′ τ−→ A′′ is bisimulated by B ′ �

τ−→ [A′′]
 . It is
easily seen that (a)B ′ �S◦

τ−→ [(a)A′′]S◦ bisimulates (a)A′ τ−→ (a)A′′ . Arguing in this manner and using induction we show
that if � �= τ ∨C �= [(a)A]S◦ , then (a)A �S◦

�−→ C is bisimulated by some (a)B �S◦
�−→ C . The divergence-sensitive property

is easy.
Suppose Sn, Tn are RCCS terms that contain n free variables X1, . . . , Xn . Define Sn
 Tn if for all RCCS terms P1, . . . , Pn

one has that

Sn{P1/X1, . . . , Pn/Xn}
 Tn{P1/X1, . . . , Pn/Xn}.
According to this definition Sn
 Tn implies Sn{P1/X1}
 Tn{P1/X1}. Now suppose S, T contain a free variable X , and S
 T .
We would like to prove that μX .S
 μX .T . For clarity we shall abbreviate for example R{μX .S/X} to R[μX .S]. Fix S and
T . Without loss of generality we assume that S, T contain one and only one variable. Let T be

{(R[μX .S], R[μX .T]) | R contains one and only one variable} .

To prove that T is a subset of
, we need to make use of the following facts.

1. R[R0]
 R ′[R1] whenever R
 R ′ and R0
 R1.
2. If R, R ′ contain one variable X , then R
 R ′ if and only if R[a]
 R ′[a] for some fresh channel a that does not appear in

R | R ′ .

Fact 1 is proved similarly. Fact 2 is valid if we can prove that the following relation, denoted by R, is contained in
.

{
(R[P], R ′[P]) | X is free in R, R ′, R[a]
 R ′[a] for a fresh a, and P ∈ P

}
.

We show that R◦ def= (R ∪
)∗ is a divergence-sensitive branching bisimulation. Consider the typical situation (R[P], R ′[P]) ∈
R. Suppose s is a regular ε-tree for R[P] with regards to R◦ . Let s′ be obtained from s by replacing by a every occurrence
of P in the labels of s. Notice that a subtree of s whose root is labeled P becomes in s′ a leaf labeled a. Using the method
described in the above, we construct a silent tree t′ for R ′[a] with regards to (R ∪
)∗ that bisimulates the tree s′ . Now
obtain a silent tree t′′ for R ′[P] by substituting P for a in every leaf of t′. For each leaf in t′′ labeled P replicate the ε-tree
of the corresponding node labeled P in s. Let t denote the resulting silent tree. One can check that t is a regular ε-tree
for R ′[P] with regards to R◦ that bisimulates s. Using this observation one can prove that R◦ is a divergence-sensitive
branching bisimulation. A simple consequence of Fact 2 is that, for fresh a, b, R[a]
 R ′[a] if and only if R[b]
 R ′[b].

Finally let T ◦ def= (T ∪
)∗ . We argue that T ◦ is a divergence sensitive branching bisimulation. Suppose (R[μX .S],
R[μX .T]) ∈ T and s is a regular ε-tree of R[μX .S] with regards to T ◦ . Let a be a fresh channel. Let s′ be obtained
from s by replacing μX .S in the labels of s by a. An a-tree in s′ is a sub-ε-tree of s′ that satisfies the following: (i) The root
and all the leaves of the subtree are labeled by a; (ii) Apart from the root every internal node of the subtree is labeled by
a process other than a. See the left diagram in Fig. 2. Now construct a tree t′ whose root is labeled R[a] in the following
manner:

1. Copy the part of the tree s′ whose edges are transitions due to R .
191

Y. Fu Theoretical Computer Science 869 (2021) 181–194
Fig. 2. The left is s′ , the right is t′ .

2. Let tR be the tree constructed in the above step. For each leaf of tR labeled a, if the corresponding node in s′ , also
labeled a, is an internal node, replace in t′ the label a by T [a]. Then construct a regular ε-tree of T [a] with regards to

 that bisimulates the a-tree of the corresponding node in s′ , using the fact that S[a]
 T [a]. During this process for
each internal node labeled a in the constructed tree, repeat the construction just described. See the right diagram in
Fig. 2.

Define t to be the tree obtained from t′ by substituting μX .T for a. It follows from Fact 2 that t is an ε-tree of R[μX .T]
with regards to T ◦ and that t bisimulates s with regards to T ◦ . Using this fact it is not difficult to verify that T ◦ is a
divergence-sensitive branching bisimulation. �

Referring to Example 3 and Example 5 we see that � 1
2 a
 � 1

3 a and that μX .(1
2 τ .(a + τ .X) ⊕ 1

2 τ .(b + τ .X))
 μX .(a +
b + τ .X).

5. Bisimulation theory justified

Let’s address a question the reader might have already raised half way through reading the paper. Definition 5 and
Definition 6 deal with two extreme situations to which Definition 8 refers. Instead of referring to ε-trees with regards to
an equivalence, can Definition 8 be given in terms of E-trees? For an E-tree tE it is possible that 0 < P f (tE) = 1 − p < 1.
Let us call those trees p-divergent. Should p-divergence be bisimulated? We argue that the answer is negative. Here are the
arguments.

• Firstly consider an RCCS process D0 that contains no composition operators. Without loss of generality we may assume
that D0 is of the form μX .E and that E contains neither the localization operator nor the recursion operator. There is
a constant h defined by the syntax of E such that for every infinite silent transition sequence

D0
p1τ−→ D1

p2τ−→ D2
p3τ−→ . . .

piτ−→ Di
pi+1τ−→ . . .

and any i ≥ 0 some j ∈ {i + 1, . . . , j + h} exists such that D j
 D0. Assume that D0 does not have any divergent ε-tree
with regard to
. Let t D0 be the least
-tree of D0 that satisfies the followings.

– If a node D ′ in t D0 has one child D ′′ in t D0 , then D ′ τ−→ D ′′ .
– If a node D ′ in t D0 has k children D1, . . . , Dk in t D0 , then D ′

∐
i∈K piτ−→ ∐

i∈K D ′
i for some {D ′

i}i∈K such that
{D1, . . . , Dk} = ⋃

i∈K {D ′
i | D ′

i
 D ′}.

Since t D0 is not divergent, D0
τ−→
 D1

0
τ−→
 D2

0 . . .
τ−→
 D g

0
qτ−→D for some g < h, q ∈ (0, 1) and D �= [D0]
 . It is then

easy to see that P(t D0�h) ≤ 1 − q, and by induction P(t D0�ih) ≤ (1 − q)i . Let t D0
ω be the subtree of t D0 consisting of all

the infinite branches of t D0 . Clearly P(t D0
ω) ≤ limi→∞(1 − q)i = 0.

More generally one may prove that for RCCS processes without the composition operator, there is no such thing as a
p-divergent process for any p ∈ (0, 1). We remark that these processes are finite states. Suppose P0 is a finite state
process and that the processes it reaches are P1, . . . , Pm . By structural induction on the syntax of P0 one may derive
that there is a number h such that every transition sequence from any of P0, P1, . . . , Pm with length h must contain
two occurrences of some Pi . Let t be a full E-tree of P0, meaning that all process equivalent to P0 and reachable from
P0 are in t . It is easy to see that there is some q ∈ (0, 1) such that P(t�mh) ≤ 1 − q. Moreover this inequality is valid for
every subtree of t . We can then apply the above argument to derive a contradiction.

• Let M = μX .
(1

3 τ .X ⊕ 1
3 τ .a ⊕ 1

3 τ .b
)

and N = μX .
(

1
5 τ .X ⊕ 2

5 τ .a ⊕ 2
5 τ .b

)
. Now M
 N for the same reason the two pro-

cesses defined in Example 3 are equal. Both can do the a-action with probability 1/2 and the b-action with probability
192

Y. Fu Theoretical Computer Science 869 (2021) 181–194
Fig. 3. Two ε-trees for D .

1/2. Thus � 1
2
| M
 � 1

2
| N , where � 1

2
is defined in Example 2. There is a 1

3 -divergent ε-tree of � 1
2
| M induced by

the transition � 1
2
| M

1
3 τ−→ � 1

2
| M and the divergent ε-tree of � 1

2
. Similarly there is a 1

5 -divergent ε-tree of � 1
2
| N . The

1
3 -divergence cannot be bisimulated by � 1

2
| N , and the 1

5 -divergence cannot be bisimulated by � 1
2
| M . Strengthening

Definition 8 with the requirement that p-divergence should be bisimulated would give rise to a relation that is not a
congruence. We conclude that bisimulation of p-divergence is not desirable in the presence of the composition operator.

The dichotomy between the regular ε-trees and the divergent ε-trees now appears natural.

6. Comment

The regular ε-tree based bisimulation is conceptually simpler than the distribution based bisimulation. The requirements
imposed in Definition 8 are standard. The formulation in terms of ε-trees makes evident the relationship between Defini-
tion 8 and the corresponding non-probabilistic definition. The proofs of Proposition 4.2 and Theorem 4.3 draw a great deal
of resemblance to the similar proofs in the classical setting, and for that reason are easy to handle. To see the advantage of
our approach, let’s see one example from [13]. Suppose D denotes the process μX .

(
c +τ .

(1
2 τ .(a +τ .X) ⊕ 1

2 τ .(b +τ .X)
))

. It
reminds one of the process H defined in Example 5. According to the branching bisimilarity defined in [13], D is equivalent
to neither a +τ .D nor b +τ .D . This is counter intuitive. Like D , both a + τ .D and b +τ .D retain the capacity to do a-action
(b-action, c-action) with probability one. No observer can detect any qualitative and quantitative difference among the three
processes. By the branching bisimilarity of this paper, one easily sees that

D
 τ .

(
1

2
τ .(a +τ .D) ⊕ 1

2
τ .(b +τ .D)

)

 a +τ .D
 b +τ .D.

In Fig. 3 two regular ε-trees are given. By the left diagram D �

b−→ 0, and by the right diagram D �

a−→ 0. Consequently
D
 μX . (τ .X +a +b + c). The reason for the well behavior of our branching bisimilarity is that either all the silent transi-
tions in a collective silent transition, see (6), appear in an ε-tree or none appear in the ε-tree. It differs from the state-based
approach in which state-preserving silent transition sequences are considered. It also differs from the distribution-based ap-
proach in which the distribution of a composition process, no matter how it is defined, is different from the one defined by
collective silent transitions.

We have proposed a model independent approach, at both operational level and conceptual level, that turns a process
model M into a randomized extension of M. We have demonstrated how to build up the bisimulation semantics of the
randomized M on the bisimulation semantics of M. In our approach the bisimulation equality of the randomized M is a
conservative extension of that of M. This is because ε-trees of A with regard to an equivalence E are the same as A =⇒E
if A is a process in M. Therefore A =CCS B if and only if A =RCCS B for all A, B ∈PCCS.

The philosophy of the model independent method is that randomization is a computational property. An external action
cannot really be random because it depends on an open-ended environment. An external action may appear random as a
consequence of computational randomness. Random computation is the reason; random interaction is a consequence. There
is another model independent approach using coalgebra [38]. The algebraic approach has been applied to give unifying
semantics to probabilistic models in different application scenarios [25]. In comparison the method advocated in this paper
is more operational.
193

Y. Fu Theoretical Computer Science 869 (2021) 181–194
The model independent approach can be studied from the perspective of axiomatization [23,26,7,39,9,15], equivalence
checking [8,33], logical characterization [37], other equivalences say testing equivalence [16,24]. In the light of previous
works on these topics in the probabilistic setting, results along these lines of investigation could be expected.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgement

We thank NSFC (61772336, 62072299) for financial support and Yuxin Deng and the members of BASICS for discussions.
We also thank the two anonymous reviewers for insightful comments and suggestions for improvement.

References

[1] S. Andova, S. Georgievska, N. Trcka, Branching bisimulation congruence for probabilistic systems, Theor. Comput. Sci. 413 (2012).
[2] S. Andova, A. Willemse, Branching bisimulation for probabilistic systems: characteristics and decidability, Theor. Comput. Sci. 356 (2006) 325–355.
[3] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof verification and the hardness of approximation problems, in: FOCS’92, J. ACM (1998).
[4] L. Babai, Trading group theory for randomness, in: STOC’85, ACM, 1985.
[5] L. Babai, L. Fortnow, L. Lund, Nondeterministic exponential time has two prover interactive protocols, in: FOCS’90, Comput. Complex. (1991).
[6] T. Basten, Branching bisimilarity is an equivalence indeed, Inf. Process. Lett. 58 (1996) 141–147.
[7] J. Baeten, J. Bergstra, S. Smolka, Axiomatizing probabilistic processes: ACP with generative probabilities, Inf. Comput. 122 (1995) 234–255.
[8] C. Baier, H. Hermanns, Weak bisimulation for fully probabilistic processes, in: CAV’97, in: Lecture Notes in Computer Science, vol. 1254, Springer, 1997,

pp. 119–130.
[9] E. Bandini, R. Segala, Axiomatization for probabilistic bisimulation, in: ICALP’2001, in: Lecture Notes in Computer Science, vol. 2076, Springer, 2001,

pp. 370–381.
[10] M. Ben-Or, S. Goldwasser, J. Kilian, A. Wigderson, Multi-prover interactive proofs: how to remove intractability assumptions, in: STOC’88, ACM, 1988.
[11] O. Burkart, D. Caucal, F. Moller, B. Steffen, Verification on infinite structures, in: Handbook of Process Algebra, Elsevier Science, 2001.
[12] V. Castiglioni, S. Tini, Probabilistic divide and congruence: branching bisimilarity, Theor. Comput. Sci. 802 (2020).
[13] V. Castiglioni, S. Tini, Raiders of the lost equivalence: probabilistic branching bisimilarity, Inf. Process. Lett. 159–160 (2020).
[14] Y. Deng, Semantics of Probabilistic Processes: An Operational Approach, Springer-Verlag and Shanghai Jiao Tong University Press, 2015.
[15] Y. Deng, C. Palamidessi, Axiomatizations for probabilistic finite-state behaviors, Theor. Comput. Sci. 373 (1–2) (2007) 92–114.
[16] R. De Nicola, M. Hennessy, Testing equivalence for processes, Theor. Comput. Sci. 34 (1984) 83–133.
[17] L. Fortnow, J. Rompel, M. Sipser, On the power of multi-prover interactive protocols, Theor. Comput. Sci. 21 (1994) 545–557.
[18] Y. Fu, Theory of interaction, Theor. Comput. Sci. 611 (2016) 1–49.
[19] R. van Glabbeek, S. Smolka, B. Steffen, Reactive, generative, and stratified models of probabilistic processes, Inf. Comput. 3 (1995) 59–80.
[20] R. van Glabbeek, W. Weijland, Branching time and abstraction in bisimulation semantics, in: Information Processing’89, North-Holland, 1989,

pp. 613–618.
[21] R. van Glabbeek, W. Weijland, Branching time and abstraction in bisimulation semantics, J. ACM 3 (1996) 555–600.
[22] S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proofs, in: STOC’85, ACM, 1985.
[23] H. Hansson, B. Jonsson, A framework for reasoning about time and reliability, in: IEEE Symposium on Real-Time Systems, IEEE, 1989.
[24] M. Hennessy, An Algebraic Theory of Processes, MIT Press, Cambridge, MA, 1988.
[25] H. Hermanns, J. Krčál, J. Křetínský, Probabilistic bisimulation: naturally on distributions, in: CONCUR’14, in: Lecture Notes in Computer Science,

vol. 8704, Springer, 2014, pp. 249–265.
[26] C. Jou, S. Smolka, Equivalences and complete axiomatizations for probabilistic processes, in: CONCUR’90, in: Lecture Notes in Computer Science,

vol. 458, 1990, pp. 367–383.
[27] R. Lanotte, M. Merro, S. Tini, Compositional weak metrics for group key update, in: MFCS’17, 2017, 72.
[28] K. Larsen, A. Skou, Bisimulation through probabilistic testing, in: POPL’89, ACM, 1989, pp. 344–352.
[29] M. Lee, E. de Vink, Rooted branching bisimulation as a congruence for probabilistic transition systems, in: Proceedings Thirteenth Workshop on

Quantitative Aspects of Programming Languages and Systems, London, UK, vol. 344–352, 2015, pp. 79–94.
[30] R. Milner, Communication and Concurrency, Prentice Hall, 1989.
[31] R. De Nicola, F. Vaandrager, Three logics for branching bisimulation, J. ACM (1995) 458–487.
[32] D. Park, Concurrency and automata on infinite sequences, in: TCS’81, in: Lecture Notes in Computer Science, vol. 104, Springer, 1981, pp. 167–183.
[33] A. Philippou, I. Lee, O. Sokolsky, Weak bisimulation for probabilistic systems, in: CONCUR’00, in: Lecture Notes in Computer Science, vol. 1877, Springer,

2000, pp. 334–349.
[34] L. Priese, On the concept of simulation in asynchronous, concurrent systems, Prog. Cybern. Syst. Res. 7 (1978) 85–92.
[35] R. Segala, Modelling and Verification of Randomized Distributed Rela-Time Systems, PhD Thesis, MIT, Dept. of EECS, 1995.
[36] R. Segala, Probability and nondeterminism in operational models of concurrency, in: CONCUR’06, in: Lecture Notes in Computer Science, vol. 4137,

Springer, 2006, pp. 64–78.
[37] R. Segala, N. Lynch, Probabilistic simulations for probabilistic processes, in: CONCUR’94, in: Lecture Notes in Computer Science, vol. 836, Springer, 1994,

pp. 481–496.
[38] A. Sokolova, Probabilistic systems coalgebraically: a survey, Theor. Comput. Sci. 412 (2011) 5095–5110.
[39] E. Stark, S. Smolka, A complete axiom system for finite-state probabilistic processes, in: Language and Interaction: Essays in Honour of Robin Milner,

1999.
[40] A. Turrini, H. Hermannss, Polynomial time decision algorithms for probabilistic automata, Inf. Comput. 244 (2015).
[41] M. Timmer, J. Katoen, J. van de Pol, M. Stoelinga, Confluence reduction for Markov automata, Theor. Comput. Sci. 655 (2016).
[42] S. Vadhan, Pseudorandomness, Foundations and Trends in Theoretical Computer Science, vol. 7, Now Publishers Inc., 2012.
[43] M. Vardi, Automatic verification of probabilistic concurrent finite-state programs, in: FOCS’85, IEEE, 1985, pp. 327–338.
[44] Y. Wang, K. Larsen, Testing probabilistic and nondeterministic processes, in: Protocol Specification, Testing and Verification XII, 1992, pp. 47–61.
194

http://refhub.elsevier.com/S0304-3975(21)00199-7/bib62A9214101EDA162EF3F6A9D07C7C074s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib2780032063677D024BCE67F227F949F4s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib6A9D0B9F7D363C5BBAAA242AEDD9501As1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib77C375C5F7700D905E1E4510299BE9A7s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bibE6AB95B4690CA74C60ABDFA250AB536As1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib2322426D479C04A2786B861607A1E313s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bibC139A65283359B3A5C0CFA218EE118B8s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bibD354B66BE4F1C6C89D2EC82C5DE9CF38s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bibD354B66BE4F1C6C89D2EC82C5DE9CF38s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib6A7680F9322566AAE2A260E0E17D692Es1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib6A7680F9322566AAE2A260E0E17D692Es1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib15F000282E9CF691A7C9A4F525C754CAs1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bibB3926FB330D91A2A23E2838155A98F0Bs1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib7E758AB659BA7B359111DBFF606C5B72s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bibB61892CA88FDF2B58B524F58D944DC5Bs1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib2CA90F8E68ACFDE737082612C9080A2Es1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib35574F818AB1A5E308F35CAF06F93BB5s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib1C8C8568FAD1F1B9C4486772AC6C1997s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bibABE1E3515FED4A170F3AAA298DF2ECC5s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib225C0EF35BB0F5CA52E02677ADAF3517s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bibB7FA62E9FC0871981F5EACFBC8C045A8s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bibAA4940BC332005FF70D9EB724300E63Fs1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bibAA4940BC332005FF70D9EB724300E63Fs1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib366B958B41DE128C42AA8B552841B948s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib76545F4E917959CE9F38752856B52E31s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib49D468BC324D3634DA98B3601AE3EEA5s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib8B72F5781DF577C2C5AFAEEC21FE8679s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib4C04262D3C14B01841B1A158909C6E90s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib4C04262D3C14B01841B1A158909C6E90s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bibC523140EA7825A0ECE412999F5AFBFFDs1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bibC523140EA7825A0ECE412999F5AFBFFDs1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib49E9310FE3DF6CBE5F817433E8C0415Bs1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib7CA775CC719F55E04585A9DE96082235s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib5368112D1F10F547CA663E35579AAA62s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib5368112D1F10F547CA663E35579AAA62s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bibB1CC58A43DC3AD415B4B1EBC007D987Es1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bibD54E36CA8901975C3819D5C2EB7F6563s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib7F2622092DB592F55043ED48549A13E0s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib2924B9486D0A6EBCE7BAC0C3F03E35AFs1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib2924B9486D0A6EBCE7BAC0C3F03E35AFs1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib3CD9D5247F64095FE7CE0232C81B97F2s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib5ECE6A9532501F86272C6CAA4A861B22s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib5FD08D8F019ABAE216C6ABBA22028DE2s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib5FD08D8F019ABAE216C6ABBA22028DE2s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib6CF5F50E5015EB4595E367AAD5DC7DB2s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib6CF5F50E5015EB4595E367AAD5DC7DB2s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib176DFC7317A3B22A34318FC552F44807s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bibC1C0608292D1A5E15A651346C64480BEs1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bibC1C0608292D1A5E15A651346C64480BEs1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bibC4269F7BCBDB2ACBB8182D21F195C1CAs1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib84B3895B781A72BE09607220A9F01661s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bibA4200F66A952C7E693D7FDA81B92ADFBs1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bibE5D54CF63362FD341699873857DFC7D8s1
http://refhub.elsevier.com/S0304-3975(21)00199-7/bib1453C7580FA8758D9E168BC42E440E42s1

	Model independent approach to probabilistic models
	1 Introduction
	2 Random process model
	3 Epsilon tree
	4 Equality for random process
	5 Bisimulation theory justified
	6 Comment
	Declaration of competing interest
	Acknowledgement
	References

