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[Turing] has for the first time succeeded in giving an absolute definition of an
interesting epistemological notion, i.e., one not depending on the formalism chosen.

– Kurt Gödel

[Turing machines have] the advantage of making the identification with effectiveness in
the ordinary (not explicitly defined) sense evident immediately.

– Alonzo Church
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Turing Machine

傅育熙，上海交通大学，2023 年秋季学期 时间复杂性 3 / 81



k-Tape Turing Machine

A k-tape Turing Machine M has k-tapes.
▶ The first tape is the read-only input tape.
▶ The other k − 1 tapes are the read-write work tapes.

▶ the k-th tape is also used as the output tape.

0 1 0 1 1 1 1 0 1 0 · · ·

· · ·

· · ·

0 1 0 1 1 1 1 0 1 0q8
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k-Tape Turing Machine

A k-tape Turing Machine is described by a tuple (Γ,Q, δ).
1. A finite set Γ of symbol, called alphabet such that Γ ⊇ {0, 1,□,▷}.
2. A finite set Q of states such that Q ⊇ {qstart, qhalt}.
3. A transition function δ : Q × Γk → Q × Γk−1 × {L, S, R}k.

0 1 0 1 1 1 1 0 1 0 · · ·

· · ·

· · ·

0 1 0 1 1 1 1 0 1 0q8
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Configuration and Computation

A configuration of a running TM M consists of the following:
▶ the state;
▶ the contents of the work tapes;
▶ the head positions.

initial/start configuration, final configuration; 1-step computation

0 1 0 1 1 1 1 0 1 0 · · ·

· · ·

· · ·

0 1 0 1 1 1 1 0 1 0q8

傅育熙，上海交通大学，2023 年秋季学期 时间复杂性 6 / 81



Problems Solved by Turing Machines

A function f : {0, 1}∗ → {0, 1}∗ is a problem.
▶ M computes or solves f if M(x) = f(x) for every x ∈ {0, 1}∗.
▶ “M(x) = y” stands for “M halts with y written on its output tape if its input tape

is preloaded with x”.

A function d : {0, 1}∗ → {0, 1} is a decision problem.
▶ M decides d if M computes d.

A set L ⊆ {0, 1}∗ is a language.

▶ M accepts L if M decides the characteristic function L(x) =
{

1, if x ∈ L,
0, if x /∈ L.
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A 2-Tape Turing Machine for Palindrome Problem

A detailed transition function is defined in the book. The TM works in linear time.

0 1 0 1 1 1 1 0 1 · · ·
qt

0 1 0 1 1 1 1 0 1 0 · · ·

0

What if we are only allowed to use TMs with one read-write tape?
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Time Function

Suppose T : N → N and M computes the problem f.

We say that M computes f in T(n)-time if its computation on every input x requires at
most T(|x|) steps.
▶ |x| denotes the length of x.
▶ For example |21024 − 1| = 1024.

We shall assume that all time functions ≥ n.
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Design Turing Machines for the following functions:
1. s(x) = x + 1. [using a TM for s(x) we can implement counter.]

2. u(x) = 1x = 1 . . . 1︸ ︷︷ ︸
x

. [we often attach 1x to disallow a TM to run more than x steps.]

3. e(x) = 2x. [the machine simply outputs 10x.]

4. l(x) = log(x). [if x = 2k, the machine outputs |x| + 1; otherwise it outputs |x|.]
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Time Constructible Function

Suppose T : N → N and T(n) ≥ n.
1. T is time constructible if there is a Turing Machine that computes the function

1n 7→ ⌞T(n)⌟ in time O(T(n)).
2. T is fully time constructible if there is a Turing Machine that upon receiving 1n

stops in exactly T(n)-steps.

We shall only care about the time-constructible functions.
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Hard-Wiring a Clock to a Turing Machine

Let M = (Q0,Γ0,→0) be a k0-tape TM.
Let T = (Q1,Γ1,→1) be a k1-tape TM that runs in T(n)-steps.

We can use T as a timer to force M to terminate in no more than T(n)-steps.
▶ The integrated (k0+k1)-tape TM consists of two parallel machines. After

replicating the input, it operates as the TM specified by
▶ Q = Q0 × Q1 and (q, q1

halt) = qhalt for q ∈ Q0 and (q0
halt, q) = qhalt for q ∈ Q1;

▶ Γ = Γ0 × Γ1;
▶ → = →0 × →1.

T is said to be hard-wired to M.
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Complexity theory ought to be model independent.

Variants of Turing Machines are equivalent to the k-tape Turing Machines in the sense
that they can simulate each other with polynomial overhead.
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Oblivious Turing Machine

A TM is oblivious if the locations of its heads at the i-th step of the execution on input
x depend only on |x| and i.
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Church-Turing Thesis.
Every physically realizable computing device can be simulated by a Turing Machine.

Law of Nature vs Wisdom of Human.
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Universal Turing Machine

傅育熙，上海交通大学，2023 年秋季学期 时间复杂性 16 / 81



The confusion of software, hardware and datum lies at the heart of computation theory.
▶ Finite syntactic objects can be coded up by numbers. [(101)∗.]
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Turing Machine as String
1. A transition (p, a, b, c) → (q, d, e, R, S, L) can be coded up by say

001†1010†1100†0000††011†1111†0000†01†00†10.

2. A transition table can be coded up by a string of the form

‡_ ‡_ . . . _ ‡_ ‡. (1)

3. A binary representation of (1) is obtained by using the following mapping:

0 7→ 01,

1 7→ 10,

† 7→ 00,

‡ 7→ 11.
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Turing Machine as String

The encodings can be made to enjoy the following property:
1. Every TM is represented by infinitely many strings in {0, 1}∗.

▶ If σ encodes a machine, then 0iσ0j encodes the same machine.

2. Every string in {0, 1}∗ represents some TM.
▶ Let all illegal strings code up a specific TM.

▶ Let ⌞M⌟ be the binary representation of TM M.
▶ Let Mα be the TM represented by the binary string α.
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Effective Enumeration of Turing Machine

By fixing an effective bijection from {0, 1}∗ to N, the set of natural numbers, we obtain

M0,M1, . . . ,Mi, . . . .

The functions defined by these machines are normally denoted by

ϕ0, ϕ1, . . . , ϕi, . . . .
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Universal Turing Machine and Efficient Simulation

Theorem. There is a universal TM U that renders true the following statements.
1. U(x, α) ' Mα(x) for all x, α ∈ {0, 1}∗. [this is Turing’s universal machine]

2. If Mα(x) halts in T(|x|) steps, then U(x, α) halts in cT(|x|) log T(|x|) steps, where
c is a polynomial of α. [c is independent of |x|.]

▶ The version with O(T(n)) time amplification appeared in 1965.
▶ The present version was published in 1966.

1. J. Hartmanis and R. Stearns. On the Computational Complexity of Algorithms. Transactions of AMS, 117:285-306, 1965.
2. F. Hennie and R. Stearns. Two-Tape Simulation of Multitape Turing Machines. Journal of ACM, 13:533-546, 1966.
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Proof of Hennie and Stearns

A universal TM has a fixed number of work tapes. How does it deal with a source TM
with an unknown number of work tapes?

The solution is to use two work tapes:
▶ The main tape simulates all the work tapes of the source TM.
▶ The scratch tape is used to record current state, to indicate zone boundaries, and

to speed up shifting.
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Proof of Hennie and Stearns

From three bidirectional worktapes to one bidirectional worktape

0L0 R0L1 R1

t w o r k t a p e

t h i r d
d o r k t a p

w o r k t a p e
s e c o n

f i r s
w

L2 R2

Imagine that the head is fixed and the tapes are shifting in opposite directions.

One may perceive that a symbol stored in the main tape of U is a tuple, say (k, r, o).
▶ The symbols k, r, o are encoded by strings of U.
▶ The tuple (k, r, o) is also encoded by a string of U.
▶ U has to perform a sequence of computation steps to overwrite (k, r, o).

▶ the simulation overhead does not depend on |x|.
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Proof of Hennie and Stearns

0L0 R0L1 R1

t w o r k t a p e

t h i r d
d o r k t a p

w o r k t a p e
s e c o n

f i r s
w

L2 R2

The work tape of U is split into zones.

. . . | Llog(T) | . . . | L1 | L0 |_ |R0 |R1 | . . . |Rlog(T) | . . .

where Ri = [2i+1 − 1, 2i+2 − 2], Li = [−2i+2 + 2,−2i+1 + 1] and |Ri| = |Li| = 2 · 2i.

The universal TM makes use of a special symbol × for buffer cells.
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Proof of Hennie and Stearns

0L0 R0L1 R1

t w o r k t a p e

t h i r d
d o r k t a p

w o r k t a p e
s e c o n

f i r s
w

L2 R2

Constraint on the zones: For each i ∈ {0, . . . , log(T)},
▶ Li is full ⇔ Ri is empty.
▶ Li is half full ⇔ Ri is half full.
▶ Li is empty ⇔ Ri is full.

The location 0 always contains a non-× symbol.

U builds up the zones while the simulation proceeds. The extra overhead is O(T log(T)).
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Proof of Hennie and Stearns

Simulating head-moving-to-right by tape-going-to-left:

0L0 R0L1 R1

t w o r k t a p e

t h i r d
d o r k t a p

w o r k t a p e
s e c o n

f i r s
w

⇓

0L0 R0L1 R1

t w o r k t a p e

t h i r d
d o r k t a p

w o r k t a p e
s e c o n
f i r s

w

L2 R2

R2L2

The total cost of shifting = O(2i).
▶ We need the scratch tape to act as transit storage while the machine is doing shifting.
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Proof of Hennie and Stearns

After performing the shift with index i, it takes at least
▶ 2i − 1 right shifts before Li−1, . . . , L0 become empty; and
▶ 2i − 1 left shifts before Ri−1, . . . ,R0 become empty.

In other words, once a shift with index i is performed, the next 2i − 1 shifts of that
parallel tape only involves indexes less than i.

Consequently there are at most k T
2i shifts with index i.

♯(shift) = O

k
log(T)∑

i=1

T
2i 2

i

 = O (T log(T)) .
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Theorem. Suppose L is computed by an O(T(n)) time TM for time constructible T.
Then there is an oblivious TM that decides L in time O(T(n) log T(n)).

Modify the construction of U as follows:

1. Mark all the zones with × and □. [T(n) log T(n) is time constructible.]

2. Copy the input to the worktape so that it interleaves with ×.
3. Rearrange the contents of zones in an oblivious fashion.

The third task can be accomplished by maintaining a counter.
▶ Before each simulating step, increase the counter by one.
▶ If the i-th bit of the counter value has just turned from 0 to 1, the machine sweeps, for a

fixed number of time, the zones Li, . . . , L0,R0, . . . ,Ri to incur a rearrangement.
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Corollary (Hennie and Stearns, 1966). If f is computable in time T(n) by a TM using
k read-write tapes, then it is computable in time O(T(n) log T(n)) by a TM with two
read-write tapes.
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Universal Machine and Diagonalization

The existence of universal machines (of all kind) allows one to establish impossibility
results using diagonal simulation.
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Impossibility via Diagonalization

Using universal TM one can define UC as follows:

UC(α) =

{
0, if Mα(α) = 1,
1, otherwise.

Alternatively,

UC(α) =

{
0, if U(α, α) = 1,
1, otherwise.

Had some TM W computed UC, one would have that W(⌞W⌟) = 0 iff W(⌞W⌟) = 1.
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Impossibility via Reduction

The halting problem HALT is defined by

HALT(α, x) =

{
1, if Mα(x) terminates,
0, otherwise.

Theorem. HALT is not computable by any TM.
Proof.
If HALT were computable by some MH, then

MU(α) =

{
0, if MH(α, α) = 1 ∧Mα(α) = 1,
1, otherwise.

would compute UC.
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Speedup Theorem
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Given a problem, is there always a best algorithm that solves it?
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Blum’s Speedup Theorem answers the question in the negative in a most forceful
manner one can imagine.

1. Manuel Blum. A Machine-Independent Theory of the Complexity of Recursive Functions. Journal of ACM, 1967.
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Blum Complexity Measure

(ϕi,Φi) is a Blum complexity measure if the following hold:
1. Φi(x) is defined if and only if ϕi(x) is defined.
2. Φi(x) ≤ n is decidable.
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Blum Time Function

Given a TM M, the Blum time function timeM(x) is defined by

timeM(x) = µt.(M(x) terminates in t steps).

We write timei(x) for timeMi(x).

Fact. (ϕi, timei) is a Blum complexity measure.
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Main Lemma. Let r be a total computable function. There is a total computable
function f such that given any TM Mi for f we can construct effectively a TM Mj with
the following properties:
(I) ϕj is total and ϕj(x) = f(x) a.e. (almost everywhere).

(II) r(timej(x)) < timei(x) a.e..

▶ for every speedup function r, say r(z) = ez,
▶ there is a problem f
▶ such that for any algorithm I that computes f
▶ one can construct effectively an algorithm J that speeds up I by a ration of r and
▶ that solves f almost everywhere.

傅育熙，上海交通大学，2023 年秋季学期 时间复杂性 38 / 81



Proof of Main Lemma

By the S-m-n Theorem, there is a total primitive recursive function s such that

ϕs(e,u)(x) ' ϕ
(2)
e (u, x). (2)

According to the Recursion Theorem there exists some e such that

ϕ
(2)
e (u, x) ' g(e, u, x), (3)

where g(e, u, x) is obtained by the diagonalisation construction to be described next.

Intuitively j = s(e, i + 1).
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Proof of Main Lemma
Suppose some finite canceled sets Ce,u,0, . . . ,Ce,u,x−1 are defined.

If times(e,i+1)(x) is defined for all i ∈ {u, . . . , x − 1}, then let

Ce,u,x =
{

i | u ≤ i ≤ x − 1, timei(x) ≤ r(times(e,i+1)(x))
}
\
⋃
y<x

Ce,u,y;

otherwise Ce,u,x is undefined.
▶ Clearly Ce,u,x is computable, and if i ∈ Ce,u,x then ϕi(x) ↓.

Now g(e, u, x) is defined by diagonalization.

g(e, u, x) =

{
1 + max{ϕi(x) | i ∈ Ce,u,x}, if Ce,u,x is defined,
↑, otherwise.
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Proof of Main Lemma

Fact. g(e, u, x) is a total function.
Proof.
By induction suppose g(e, u, y) is defined for all y < x.
▶ If u ≥ x, then Ce,u,x = ∅ and consequently g(e, u, x) = 1.
▶ Suppose u < x and g(e, x, x), …, g(e, u + 1, x) are defined.

▶ ϕs(e,x)(x), …, ϕs(e,u+1)(x) are defined by (2) and (3).
▶ Hence times(e,x)(x), …, times(e,u+1)(x) are defined.
▶ It follows that Ce,u,x is defined.
▶ Consequently g(e, u, x) is also defined.

This completes the downward induction.

Corollary. For each u the function ϕs(e,u)(x) is total.
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Proof of Main Lemma

(I). Some v exists such that ϕ(2)
e (0, x) = ϕ

(2)
e (u, x) for all x > v.

Proof.
For each i < u if i appears in Ce,u,y, then it disappears from Ce,u,x for all x > y. Let

v = max{y | Ce,0,y contains an index i < u}.

It is easy to see that Ce,0,x = Ce,u,x for all x > v.

Now let
f(x) = ϕ

(2)
e (0, x).

It follows from (2) and (I) that ϕs(e,u)(x) = f(x) a.e..
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Proof of Main Lemma

(II). If ϕi(x) = ϕ
(2)
e (0, x) for all x, then r(times(e,i+1)(x)) < timei(x) a.e..

If not, i would have been canceled at some stage x, meaning that i ∈ Ce,0,x. By the
definition of g,

ϕi(x) 6= g(e, 0, x) = ϕ
(2)
e (0, x),

contradicting to the assumption.
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Blum’s Speedup Theorem. Let r be a total computable function. There is a total
computable function f such that given any TM Mi for f there is some TM Mj for f
such that r(timej(x)) < timei(x) almost everywhere.

W.l.o.g. assume that r is increasing.
By a slight modification of the proof of Main Lemma, we obtain a total computable
function f such that given any TM Mi for f there is a TM Mk satisfying the following:

1. ϕk(x) is total and ϕk(x) = f(x) a.e., and
2. r(timek(x) + x) < timei(x) a.e..

Some c exists such that ϕk(x) = f(x) whenever x > c. We get a TM Mj from Mk by
short-cutting computations at inputs ≤ c.
If x is large enough such that the cost of the short-cutting computations is less than x,
then Mj satisfies r(timej(x)) < timei(x) a.e..

傅育熙，上海交通大学，2023 年秋季学期 时间复杂性 44 / 81



A less dramatic version of Speedup Theorem, historically appeared earlier, is the
so-called Linear Speedup Theorem.
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Linear Speedup Theorem

Theorem (Hartmanis and Stearns, 1965). If L is decidable in T(n) time, then for any
ϵ > 0 the problem L is decidable in ϵT(n) + n + 2 time.

Suppose a TM M = (Q,Γ, δ) accepts L in time T(n).
Design M̃ such that a string of m symbols of M can be encoded by one symbol of M̃.
▶ M̃ converts the input in n + 2 steps.
▶ M̃ realigns the head in n/m steps.
▶ M̃ uses 5 steps to simulate m steps of M.

The overall time is ≤ n + 2 + n
m + 5

mT(n) ≤ n + 2 + 6
mT(n). So we let m = 6/ϵ.

If T(n) = ω(n), the expression ϵT(n) + n + 2 can be replaced by ϵT(n).
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Message from Blum’s Speedup Theorem:
▶ We cannot define time complexity for problems.
▶ We can of course define time complexity for solutions.

With this remark we proceed to investigate time complexity class.
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Time Complexity Class
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TIME(_)

Let T : N → N be a time function.
A decision problem L ⊆ {0, 1}∗ is in TIME(T(n)) if there exists a TM that accepts L
and runs in time cT(n) for some c > 0.
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Complexity Class

Intuitively a complexity class is a set of problems having solutions that enjoy certain
model independent properties.

In our sense TIME(n) is not a complexity class.
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The Most Important Complexity Class

Strong Church-Turing Thesis. All physically realizable computing devices can be
simulated by TM’s with polynomial overhead.

P =
⋃
c≥1

TIME(nc).

By Strong Church-Turing Thesis, P is model independent.
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Philosophical Questions about P

Identifying P to the class of feasible problems is a controversial issue.

1. Does P really characterize the class of feasible problems?
2. Is every problem in P provably in P?

We might never understand a problem whose intrinsic complexity 1024n/n1024.
We might understand a problem whose intrinsic complexity is 2n/n2.
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Complexity Class EXP

EXP =
⋃
c≥1

TIME(2nc
).
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Verification Problem
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For theoretical reasons we introduce a variant of Turing Machine that is not (believed
to be) physically realizable.
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Turing Machine with Nondeterministic Choice

A NDTM (Nondeterministic Turing Machine) has two transition functions δ0, δ1.

We say that N runs in T(n) time if for every input x ∈ {0, 1}∗, and every sequence of
nondeterministic choices, N reaches qhalt within T(|x|)-steps.
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The NDTM’s can be effectively enumerated in the same way DTM’s are enumerated.

N0,N1, . . . ,Ni, . . . .
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Language Accepted by NDTM

Suppose N is an NDTM and x is an input.

An NDTM N accepts x, notation N(x) = 1, if there is some sequence of choices that
makes N(x) reach qhalt and output 1. Otherwise N refuses x, notation N(x) = 0.

An NDTM N accepts L ⊆ {0, 1}∗ if x ∈ L ⇔ N(x) = 1.

Nondeterministic Turing machines do not have any computational strategy.
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The main reason for introducing NDTM is that many problems, such as Vertex Cover,
have simple solutions in terms of NDTM.

What nondeterminism provides is the power of guessing.
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NTIME(_)

Suppose T : N → N and L ⊆ {0, 1}∗.

L ∈ NTIME(T(n)) if L is accepted by an NDTM N run in cT(n) time for some c > 0.
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Complexity Class via NDTM

NP =
⋃
c≥1

NTIME(nc),

NEXP =
⋃
c≥1

NTIME(2nc
).
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P ⊆ NP ⊆ EXP ⊆ NEXP.
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How about a universal nondeterministic TM for the nondeterministic TMs?
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Snapshot

A snapshot of a k-tape TM M on some input x at step i is a tuple

〈q, a1, . . . , ak〉 ∈ Q × Γ× . . .× Γ︸ ︷︷ ︸
k

,

where a1, . . . , ak are the symbols in the cells the readers point to.

Unlike configurations the size of a snapshot depends only on M, not on any input.
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A ‘Universal’ Nondeterministic Turing Machine

A ‘universal’ NDTM V could be designed as follows:
1. It guesses a sequence of snapshots and a sequence of choices by running the input

machine on the input value without looking at the worktapes.
2. It then verifies for each worktape of the input machine if the snapshots are legal.

▶ To follow the content change of the tape being verified, V needs an additional tape.

▶ In the guessing phase, nothing stops V from guessing forever.
▶ The time to simulate an accepting run is linear in the run time.
▶ In application we often apply V to NDTMs with time constructible time functions.
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TIME vs. NTIME

There are almost no nontrivial results relating nondeterministic complexity class to
deterministic complexity class. The following is a rare example.

Theorem (Paul, Pippenger, Szemerédi and Trotter, 1983). TIME(n) ⊊ NTIME(n).

▶ This is a non-relativizing result.
▶ Neither TIME(n) nor NTIME(n) is a complexity class.
▶ The proof draws inspiration from Hopcroft, Paul and Valiant’s proof of

TIME(S(n)) ⊆ SPACE(S(n)/ log S(n)).
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Time Hierarchy Theorem
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Time Hierarchy Theorem

Theorem (Hartmanis and Stearns, 1965). If f and g are time constructible such that
f(n) log f(n) = o(g(n)), then TIME(f(n)) ⊊ TIME(g(n)).

Consider L decided by the following Turing Machine D:
On input x, simulate Mx on x in g(|x|) steps.
If the simulation is finished in g(|x|) steps, output Mx(x).

By definition L ∈ TIME(g(n)).
Suppose L were in TIME(f(n)). Let L be decided by Mz with time bound 2f(n) such
that z satisfies f(|z|) log f(|z|) < g(|z|). Then
▶ D(z) = Mz(z) by assumption, and
▶ D(z) = Mz(z) since D can complete the simulation of Mz(z).

傅育熙，上海交通大学，2023 年秋季学期 时间复杂性 68 / 81



Exponential Hierarchy

EXP =
⋃
c>1

TIME(2nc
)

2EXP =
⋃
c>1

TIME(22nc
)

3EXP =
⋃
c>1

TIME(222
nc

)

...
ELEMENTARY = EXP ∪ 2EXP ∪ 3EXP ∪ . . .
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Nondeterministic Time Hierarchy

1. Cook showed that NTIME(nr(n)) ⊊ NTIME(nr′(n)) if 1 ≤ r(x) < r′(x).
2. Seiferas, Fischer and Meyer proved that f(n + 1) = o(g(n)) implies

NTIME(f(n)) ⊊ NTIME(g(n)).

3. Z̆ák came up with a simpler proof of the separation result.

1. Cook. A Hierarchy for Nondetermintstic Time Complexity. Journal of Computer and System Sciences, 1973.
2. Seiferas, Fischer and Meyer. Separating Nondeterministic Time Complexity Classes. Journal of ACM, 1978.
3. Z̆ák. A Turing Machine Time Hierarchy. Theoretical Computer Science, 1983.
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Nondeterministic Time Hierarchy Theorem

Theorem. If f and g are time constructible such that f(n + 1) = o(g(n)), then

NTIME(f(n)) ⊊ NTIME(g(n)).

Z̆ák’s proof is given on the next two slides. An NDTM Z is defined on the next slide.
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1. The head of the input tape and the head of the first worktape keep moving to
right in synchrony at full speed.
▶ If the input length is 1 or the input contains a 0, Z rejects.
▶ The worktape head writes down 1 in the cell with index 1, it then keeps writing

down 0, and occasionally it writes down 1.
▶ Let h0, h1, h2, . . . be the indices of the worktape cells with 1’s, defined in Step 2.

2. In the second worktape, Z enumerates NDTMs hardwired with a 2f(n)-timer.
Let L1,L2, . . . be the enumeration.
▶ Having generated Li, Z computes Li−1(1

hi−1+1); Z then writes down Li−1(1
hi−1+1)

on the worktape and at the same time it marks 1 at location hi on the first worktape.

3. Suppose the input is 1n with n > 1. After scanning the input, do the following.
3.1 If n = hi then Z accepts 1n if and only if Li−1(1

hi−1+1) = 0;
3.2 If hi−1 < n < hi then Z simulates Li−1 on 1n+1 for g(n) steps nondeterministically.

In Step 2, Z gets Li−1 and 1hi−1+1 by looking back at the most recent history! 1
hi−1+1 − 1

hi−2+1
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Let L be the language accepted by Z.
1. L ∈ NTIME(g(n)) since Step 3.1 costs no time and Step 3.2 costs at most O(g(n))-time.
2. L /∈ NTIME(f(n)).

▶ Assume that some NDTM Li accepted L in 2f(n)-time.
▶ Let i be so large that the nondeterministic simulation in Step 3.2 can be completed.

Here is the contradiction.

Li(1
hi+1)=Z(1hi+1)=Li(1

hi+2)=Z(1hi+2)= . . . =Li(1
hi+1)=Z(1hi+1) 6=Li(1

hi+1).

▶ =, because both Z and Li accept L,
▶ =, since the simulation in Step 3.2 can be completed, and
▶ 6=, due to the negation in Step 3.1.
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The technique used in the proof is called lazy diagonalization.
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By Time Hierarchy Theorem we have

TIME(nc) ⊊ TIME(2nc
).

Is it true that the inequality

TIME(b(n)) ⊊ TIME(2b(n))

holds for all total computable function b(x)?
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Gap Theorem
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Theorem. For each total computable function r(x) ≥ x, a total computable function
b(x) exists such that TIME(b(x)) = TIME(r(b(x))).

1. Boris Trakhtenbrot. Turing Computations with Logarithmic Delay. Algebra and Logic 3(4):33-48, 1964. (in Russian)
2. Allan Borodin. Computational Complexity and the Existence of Complexity Gaps. Journal of the ACM 19(1):158-174, 1972.
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Proof of Gap Theorem

Define a sequence of numbers k0 < k1 < k2 < . . . < kx by

k0 = 0,

ki+1 = r(ki) + 1, for i < x.

The x + 1 intervals [k0, r(k0)], [k1, r(k1)], …, [kx, r(kx)] form a partition of [0, r(kx)].

Let P(i, k) denote the following local (hence decidable) property:
▶ For every j ≤ i and every input z to Mj such that |z| = i, either Mj(z) halts in k

steps or it does not halt in r(k) steps.

For each machine Mi we diagonalize on the input strings whose size is no more than i.
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Proof of Gap Theorem

Let ni =
∑i

j=0 |Γj|i, the number of input of size i to M0, . . . ,Mi.
▶ The ni numbers of computation step cannot fill all of [k0, r(k0)], …, [kni , r(kni)].
▶ It follows that there is at least one j ≤ ni such that P(i, kj) is true.
▶ Let b(i) be the least such kj.

Thus P(i, b(i)) is true for all i.

Suppose that Mj accepts some L in r(b(n)) time.
▶ For every x with |x| ≥ j we know by definition that Mj(x) either halts in b(|x|)

steps or does not halt in r(b(|x|)) steps.
It follows that for sufficiently large x, Mg(x) halts in b(|x|) steps.
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By Time Hierarchy Theorem b(x) is not time constructible.
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Turing Award (1993) in recognition of their seminal paper that lays down the
foundations for computational complexity theory.
The terminology computational complexity was introduced by Hartmanis and Stearns.

1. J. Hartmanis and R. Stearns. On the Computational Complexity of Algorithms. Transactions of AMS, 117:285-306, 1965.
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