
PCP Theorem



[PCP Theorem is] the most important result in complexity theory since Cook’s Theorem.

Ingo Wegener, 2005
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S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof Verification and the
Hardness of Approximation Problems. J. ACM, 1998. FOCS 1992.

Irit Dinur. The PCP Theorem by Gap Amplification. J. ACM, 2007. STOC 2006.

The 1st proof is algebraic, the 2nd one is combinatorial and non-elementary.

Computational Complexity, by Fu Yuxi PCP Theorem 2 / 141



Two ways to view the PCP Theorem:
▶ It is a result about locally testable proof systems.
▶ It is a result about hardness of approximation.

PCP = Probabilistically Checkable Proof
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Approximation Algorithm
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Since the discovery of NP-completeness in 1972, researchers had been looking for
approximate solutions to NP-hard optimization problems, with little success.
The discovery of PCP Theorem in 1992 explains the difficulty.

1. V. Vazirani. Approximation Algorithms. Springer, 2001.
2. D. Williamson, D. Shmoys. The Design of Approximation Algorithms. CUP, 2010.
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Suppose ρ : N → (0, 1). A ρ-approximation algorithm A for a maximum, respectively
minimum optimization problem satisfies

A(x)
Max(x) ≥ ρ(|x|),

respectively
Min(x)
A(x) ≥ ρ(|x|)

for all x.
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SubSet-Sum

Given m items of sizes s1, s2, . . . , sm, and a positive integer C, find a subset of the
items that maximizes the total sum of their sizes without exceeding the capacity C.

▶ There is a well-known dynamic programming algorithm.
▶ Using the algorithm and a parameter ϵ a (1−ϵ)-approximation algorithm can be

designed that runs in O
(
(1
ϵ − 1) · n2) time.

▶ We say that SubsetSum has an FPTAS. poly(n, 1
ϵ
).
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KnapSack

Let U = {u1, u2, . . . , um} be the set of items to be packed in a knapsack of size C. For
1 ≤ j ≤ m, let sj and vj be the size and value of the j-th item, respectively.
The objective is to fill the knapsack with items in U whose total size is at most C and
such that their total value is maximum.

▶ There is a similar dynamic programming algorithm.
▶ Using the algorithm and a parameter ϵ one can design a (1−ϵ)-approximation

algorithm of O
(
(1
ϵ − 1) · n 1

ϵ

)
time.

▶ We say that KnapSack has a PTAS.

Computational Complexity, by Fu Yuxi PCP Theorem 9 / 141



Max-3SAT

For each 3CNF φ, the value of φ, denoted by val(φ), is the maximum fraction of
clauses that can be satisfied by an assignment to the variables of φ.
▶ φ is satisfiable if and only if val(φ) = 1.

Max-3SAT is the problem of finding the maximum val(φ).
▶ A simple greedy algorithm for Max-3SAT is 1

2 -approximate.
▶ We say that Max-3SAT is in APX.

By definition, FPTAS ⊆ PTAS ⊆ APX ⊆ OPT. We will see that the inclusions are strict assuming P ≠ NP.

Computational Complexity, by Fu Yuxi PCP Theorem 10 / 141



7
8-Approximation Algorithm for Max-3SAT

Let φ = φ1 ∧ . . . ∧ φm. Let L = {φ1, . . . , φm}.
For j ∈ [m], define the weight w(φj) =

1
2|φj| , where |φj| is the number of variables in φj. m

8

Suppose x1, . . . , xi−1 have been assigned values.
Let Li be those in L that contain xi, and Li those that contain xi.

1. If
∑

C∈Li
w(C) ≥

∑
C∈Li

w(C), let xi := 1. Remove Li from L, and remove xi from L.

2. If
∑

C∈Li
w(C) <

∑
C∈Li

w(C), let xi := 0. Remove Li from L, and remove xi from L.

▶ Initially the overall weight is m/8. This is an invariant property of the algorithm.
▶ Upon termination, each clause in L has weight 1. There are no more than 1

8 m clauses left.
▶ At least 7

8 m clauses have been removed.

1. D. Johnson. Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci 9, 256–278, 1974.
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Max-IS

Min-VC + Max-IS = m.

A 1
2 -approximation algorithm for Min-VC. It turns out to be the best one could have.

1. Pick up a remaining edge and collect the two end nodes.
2. Remove all edges adjacent to the two nodes.
3. Goto Step 1 if there is at least one remaining edge.

▶ Is Min-VC in PTAS?
▶ Is Max-IS in APX?

1. S. Khot, O. Regev. Vertex Cover Might be Hard to Approximate to within 2 − ϵ. 18th IEEE Annual
Conference on Computational Complexity, 2003.
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A breakthrough in the study of approximation algorithm was achieved in early 1990’s.

[1991]. There is no 2log1−ϵ(n)-approximation algorithm for Max-IS unless SAT ∈ SUBEXP.
[1992]. Max-IS is not in APX if P 6= NP.

1. U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive Proofs and the Hardness of Approximating Cliques. FOCS 1991.
JACM, 1996.

2. S. Arora and S. Safra. Probabilistic Checking of Proofs: A New Characterization of NP. FOCS 1992. JACM, 1998.
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Two Views of PCP Theorem
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Surprisingly, IP = PSPACE. Even more surprisingly, MIP = NEXP.

The latter can be interpreted as saying that nondeterminism can be traded off for

randomness + interaction.
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Interactive Proof Viewpoint

Suppose L is an NP problem and x is an input string.
1. Prover provides a proof π of polynomial length.
2. Verifier uses at most logarithmic many random bits, and makes a constant

number of queries on π.

▶ A query i is a location of logarithmic length. The answer to query i is π(i).
▶ We assume that verifier is nonadaptive in that its selection of queries is based only

on input and random string.
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Probabilistically Checkable Proofs

Suppose L is a language and q, r : N → N.

L has an (r(n), q(n))-PCP verifier if a P-time verifier V exists satisfying the following.
▶ Efficiency. On input x and given access to any location of a proof π of length ≤

q(n)2r(n), the verifier V uses at most r(n) random bits and makes at most q(n)
nonadaptive queries to the proof π before it outputs ‘1’ or ‘0’.

▶ Completeness. If x ∈ L, then ∃π.Pr[Vπ(x) = 1] = 1.
▶ Soundness. If x /∈ L, then ∀π.Pr[Vπ(x) = 1] ≤ 1/2.

Vπ(x) denotes the random variable with x and π fixed.
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Probabilistically Checkable Proofs

1. Proof length ≤ q(n)2r(n). At most q(n)2r(n) locations can be queried by verifier.
2. L ∈ NTIME(q(n)2O(r(n))).

▶ An algorithm guesses a proof of length q(n)2r(n).
▶ It executes deterministically 2r(n) times the verifier’s algorithm.
▶ The total running time is bounded by q(n)2r(n)·2r(n)·T(n) logT(n) = q(n)2O(r(n)).

Both random bits and query time are resources. An (r(n), q(n))-PCP verifier has
▶ randomness complexity r(n)� and
▶ query complexity q(n).

Sometimes one is concerned with proof complexity q(n)2r(n).
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PCP Hierarchy

A language is in PCP(r(n), q(n)) if it has a (cr(n), dq(n))-PCP verifier for some c, d.

PCP(r(n), q(n)) ⊆ NTIME(q(n)2O(r(n))).

▶ PCP(0, log) = P.
▶ PCP(0, poly) = NP.
▶ PCP(log, poly) = NP.
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PCP Hierarchy

1. PCP(poly, poly) ⊆ NEXP.

2. PCP(log, log) ⊆ NP.

3. PCP(log, 1) ⊆ NP.

In three influential papers in the history of PCP, it is proved that the above ‘⊆’ can be
strengthened to ‘=’.
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The PCP Theorem

PCP Theorem. NP = PCP(log, 1).

Every NP-problem has specifically chosen certificates whose correctness can be verified
probabilistically by checking only 3 bits.

Computational Complexity, by Fu Yuxi PCP Theorem 21 / 141



Example

GNI ∈ PCP(poly, 1).
▶ Suppose both G0 and G1 have n vertices.
▶ Proofs of size 2n2 are indexed by adjacent matrix representations.

▶ If the location, a string of size n2, represents a graph isomorphic to Gi, it has value i.
▶ The verifier picks up b ∈ {0, 1} at random, produces a random permutation of Gb,

and queries the bit of the proof at the corresponding location.

Computational Complexity, by Fu Yuxi PCP Theorem 22 / 141



Can we scale down PCP Theorem further?

Fact. If NP ⊆ PCP(o(log), o(log)), then P = NP.
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Scale-Up PCP Theorem

Theorem. PCP(poly, 1) = NEXP.
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Hardness of Approximation Viewpoint

For many NP-hard optimization problems, computing approximate solutions is no
easier than computing the exact solutions.
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The PCP Theorem, Hardness of Approximation

PCP Theorem. There exists ρ < 1 such that for every L ∈ NP there is a P-time
computable function f : L → 3SAT such that

x ∈ L ⇒ val(f(x)) = 1,
x /∈ L ⇒ val(f(x)) < ρ.

▶ Figure out the significance of the theorem by letting L = 3SAT.
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The PCP Theorem, Hardness of Approximation

PCP Theorem cannot be proved using Cook-Levin reduction.
▶ val(f(x)) tends to 1 even if x /∈ L.

“The intuitive reason is that computation is an inherently unstable, non-robust
mathematical object, in the sense that it can be turned from non-accepting to
accepting by changes that would be insignificant in any reasonable metric.”

Papadimitriou and Yannakakis, 1988
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Corollary. There exists some ρ < 1 such that if there is a P-time ρ-approximation
algorithm for Max-3SAT then P = NP.

▶ The ρ-approximation algorithm for Max-3SAT is NP-hard.
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From PCP Verifier to Nonapproximability

Suppose V? is a PCP-verifier for L that, upon receiving an input x of length n, generates a
c log n long random string and asks a constant number ℓ of questions.
pcp configuration: 〈r, q1, a1, . . . , qℓ, aℓ〉, or simply 〈r, a1, . . . , aℓ〉. |pcp cfg.| = c log(n) + ℓ.

Graph Gx:
▶ the vertices are pcp configurations that force V to accept.
▶ 〈r, q1, a1, . . . , qℓ, aℓ〉 and 〈r′, q′

1, a′1, . . . , q′
ℓ, a′ℓ〉 are connected iff they are consistent in the

sense that for all g, h ∈ [ℓ] the equality qg = q′
h implies the equality ag = a′h.

Let ω(Gx) be the largest clique.

Lemma. ω(Gx) = maxΠ Pr[VΠ(x) = 1]·2c log n.
Corollary. MaxClique does not have 1

2 -approximation algorithm.
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Equivalence of the Two Views
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CSP, Constraint Satisfaction Problem
If q is a natural number, then a qCSP instance φ with n variables is a collection of
constraints φ1, . . . , φm : {0, 1}n → {0, 1} such that for each i ∈ [m] the function φi
depends on q of its input locations.
We call q the arity of φ, and m the size of φ.
Every constraint is of size O(log n).

An assignment u ∈ {0, 1}n satisfies a constraint φi if φi(u) = 1. Let

val(φ) = max
u∈{0,1}n

{∑n
i=1 φi(u)

m

}
.

We say that φ is satisfiable if val(φ) = 1.

qCSP is a generalization of 3SAT.

Computational Complexity, by Fu Yuxi PCP Theorem 31 / 141



1. We assume that n ≤ qm.
2. Since every φi can be described by a formula of size q2q, and every variable can be

coded up by log n bits, a qCSP instance can be described by O(mq2q log n) bits.
3. The greedy algorithm for MAX-3SAT can be applied to MAXqCSP to produce an

assignment satisfying ≥ 1
2q val(φ)m constraints.

If we think of φi as a circuit, it is of constant size.
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Gap CSP

Suppose q ∈ N and ρ ≤ 1.
Let ρ-GAPqCSP be the promise problem of determining if a qCSP instance φ satisfies
either (1) val(φ) = 1 or (2) val(φ) < ρ.

We say that ρ-GAPqCSP is NP-hard if for every NP-problem L some P-time computable
function f : L → ρ-GAPqCSP exists such that

x ∈ L ⇒ val(f(x)) = 1,
x /∈ L ⇒ val(f(x)) < ρ.

PCP Theorem. There exists some ρ ∈ (0, 1) such that ρ-GAP3SAT is NP-hard.
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PCP Theorem. There exist q ∈ N and ρ ∈ (0, 1) such that ρ-GAPqCSP is NP-hard.
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Equivalence Proof

PCP Theorem ⇒ PCP Theorem.

This is essentially the Cook-Levin reduction.
1. Suppose NP ⊆ PCP(log, 1). Then 3SAT has a PCP verifier V that makes q

queries using c log n random bits.
2. Given input x with |x| = n and random string r ∈ {0, 1}c log n, V(x, r) is a Boolean

function of type {0, 1}q → {0, 1}.
3. φ = {V(x, r)}r∈{0,1}c log n is a P-size qCSP instance.

▶ By completeness, x ∈ 3SAT ⇒ val(φ) = 1.
▶ By soundness, x /∈ 3SAT ⇒ val(φ) ≤ ρ

def
= 1/2.

4. The map from 3SAT to 1
2 -GAPqCSP is P-time computable.

▶ V runs in P-time.
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Equivalence Proof

PCP Theorem ⇐ PCP Theorem.

Suppose L∈NP and ρ-GAPqCSP is NP-hard for some q∈N, ρ < 1. By assumption
there is some P-time reduction f : L → ρ-GAPqCSP.

1. The verifier for L works as follows:
▶ On input x, compute the qCSP instance f(x) = {φi}i∈[m].
▶ A PCP proof π is an assignment to the variables. The verifier randomly chooses

i ∈ [m] and checks if φi is satisfied by reading the relevant q bits of the proof.
2. If x ∈ L, the verifier always accepts; otherwise it accepts with probability < ρ.
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Equivalence Proof

PCP Theorem ⇒ PCP Theorem.

This is very much like the equivalence between SAT and 3SAT.
1. Let ϵ > 0 and q ∈ N be such that (1−ϵ)-GAPqCSP is NP-hard.
2. Let φ = {φi}m

i=1 be a qCSP instance with n variables.
3. Each φi is the conjunction of at most 2q clauses, each being the disjunction of at

most q literals.
4. If all assignments fail at least an ϵ fragment of the constraints of φ, then all

assignments fail at least a ϵ
2q fragment of the clauses of the SAT instance.

5. Consequently all assignments fail at least a ϵ
q2q fragment of the clauses of the

3SAT instance.
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Proof View Inapproximability View
PCP verifier V CSP instance φ
PCP proof π assignment to variables u

proof length |π| number of variables n
number of queries q arity of constraints q

number of random bits r logarithm of number of constraints logm
soundness parameter ϵ maximum fraction ρ of the violated constraints of no instances

NP ⊆ PCP(log, 1) ρ-GAPqCSP is NP-hard

The equivalence of the proof view and the inapproximability view is essentially due to
the Cook-Levin Theorem for PTM.
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Inapproximability
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Min-VC and Max-IS are inherently different from the perspective of approximation.
▶ Min-VC + Max-IS = n.
▶ ρ-approximation algorithm of Max-IS ⇒ n−IS

n−ρIS -approximation algorithm of Min-VC.
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Lemma. There is a P-time computable function f that maps an m clause 3CNF φ to a
7m-vertex graph f(φ) whose independent set is of size val(φ)m.

The standard Karp reduction from 3SAT to Max-IS is as follows:
▶ Each clause is translated to a clique of 7 nodes, each node represents a (partial)

assignment that validates the clause.
▶ Two nodes from two different cliques are connected if and only if they conflict.

A formula φ of m clauses is translated to a graph with 7m nodes, and an assignment
satisfying l clauses of φ if and only if the graph has an independent set of size l.
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Theorem. The following statements are valid.
1. ∃ρ′ ∈ (0, 1). ρ′-approximation to Min-VC is NP-hard, and
2. ∀ρ ∈ (0, 1). ρ-approximation to Max-IS is NP-hard.

[∃ρ. ρ-approximation to Max-IS is NP-hard.]∗ By PCP Theorem, ρ-approximation to
Max-3SAT is NP-hard for some ρ. So by Lemma ρ-approximation to Max-IS is NP-hard.
1. Referring to the map of Lemma, the minimum vertex cover has size 7m − val(φ)m.
Let ρ′ = 6

7−ρ . Suppose Min-VC had a ρ′-approximation algorithm.
▶ If val(φ) = 1, it would produce a vertex cover of size ≤ 1

ρ′ (6m) = (7 − ρ)m.
▶ If val(φ) < ρ, the minimum vertex cover has size > (7 − ρ)m.

The ρ′-approximation algorithm must return a vertex cover of size > (7 − ρ)m.

The first proposition is established. The second will be proved by making use of [_]∗.
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2. We prove that if Max-IS were ρ
2 -approximate, it would be ρ-approximate as well.

1. Let G be the input graph. Let K, k be such that ρ
2
(K

k
)
>
(
ρK
k
)
. Consider Gk:

▶ The vertices are k-size subsets of VG;
▶ Two vertices S1, S2 are disconnected if S1 ∪ S2 is an independent set of G.

2. Apply the ρ
2 -approximation algorithm I to Gk, and derive an independent set of G

from the output of I.

▶ Suppose the size of the largest independent set of G is at least K. Then the size
of the largest independent set of Gk is ≥

(K
k
)
.

▶ The output of I is an independent set of size ≥ ρ
2
(K

k
)
>
(
ρK
k
)
.

▶ An independent set of size > ρK can be derived from the output. A contradiction.

Given an input graph, apply brutal force to see if there is an independent set of size at
most K. If the answer is yes, we are done. Otherwise use the above self-reduction.
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Fourier Transform Technique
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A Boolean function f : {0, 1}n → {0, 1} is a linear function if

f(x + y) = f(x) + f(y),

where “+” is the addition operation in F2. Linear Functions can be seen as vectors.

f(x) = x1f(e1) + . . .+ xnf(en).
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Fourier Transform over Fn
2

Boolean functions have been studied using Fourier transform over Fn
2.

We shall use {+1,−1} instead of {0, 1} whenever it is technically convenient.
▶ 0 ↔ (−1)0 = 1 and 1 ↔ (−1)1 = −1.
▶ {0, 1}n is turned into {±1}n.
▶ “addition in F2” is turned into “integer multiplication”.

The notation y·z stands for 〈y1z1, . . . , ynzn〉, where y, z ∈ R{±1}n .
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Fourier Transform over Fn
2

The 2n-dimensional Hilbert space R{±1}n is defined as follows: For f, g ∈ R{±1}n ,
1. (f + g)(x) = f(x) + g(x),
2. (cf)(x) = cf(x), and
3. expectation inner product: 〈f, g〉 = Ex∈{±1}n [f(x)·g(x)].

Standard orthogonal basis: {ex}x∈{±1}n .
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Fourier Transform over Fn
2

Fourier Basis: {χα}α⊆[n], where χα(x) =
∏

i∈α xi.
1. χ∅ = 1.
2. Fourier basis functions are linear functions. The converse is also true.

Fourier basis is orthonormal.
▶ 〈χα, χα〉 = Ex∈{±1}n [χα(x)χα(x)] = Ex∈{±1}n [χα(x·x)] = Ex∈{±1}n [1] = 1.
▶ 〈χα, χβ〉 = Ex∈{±1}n [χα(x)χβ(x)] = 0 if α 6= β.

Random Subsum Principle.
▶ If u 6= v then for exactly half the choices of x, u � x 6= v � x.
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Fourier Transform over Fn
2

f =
∑

α⊆[n] f̂αχα for every f ∈ R{±1}n , where f̂α is the αth Fourier coefficient of f.

Lemma. (i) 〈f, g〉 =
∑

α⊆[n] f̂αĝα. (ii) (Parseval’s Identity) 〈f, f〉 =
∑

α⊆[n] f̂2α.

Proof.
〈f, g〉 = 〈

∑
α⊆[n] f̂αχα,

∑
β⊆[n] ĝβχβ〉 =

∑
α,β⊆[n] f̂αĝβ〈χα, χβ〉 =

∑
α⊆[n] f̂αĝα.
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Fourier Transform over Fn
2

Example.
1. Majority function of 3 variables = 1

2u1 +
1
2u2 +

1
2u3 − 1

2u1u2u3.
2. Projection function λx1 . . . xn.xi. Here f̂α is 1 if α = {i} and is 0 if α 6= {i}.
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Fourier Transform over Fn
2

Theorem. Suppose f : {±1}n → {±1} satisfies Prx,y[f(x·y) = f(x)f(y)] = 1
2 + ϵ. Then there is

some α ⊆ [n] such that f̂α ≥ 2ϵ.

The assumption is equivalent to Ex,y[f(x·y)f(x)f(y)] = 1
2 + ϵ− ( 1

2 − ϵ) = 2ϵ. Now

2ϵ = Ex,y[f(x·y)f(x)f(y)] = Ex,y[(
∑
α

f̂αχα(x·y))(
∑
β

f̂βχβ(x))(
∑
γ

f̂γχγ(y))]

= Ex,y[
∑
α,β γ

f̂α f̂β f̂γχα(x)χα(y)χβ(x)χγ(y)]

=
∑
α,β,γ

f̂α f̂β f̂γEx,y[χα(x)χα(y)χβ(x)χγ(y)]

=
∑
α,β,γ

f̂α f̂β f̂γEx[χα(x)χβ(x)]Ey[χα(y)χγ(y)]

=
∑
α

f̂3
α ≤ (max

α
f̂α)
∑
α

f̂2
α = max

α
f̂α⟨f, f⟩ = max

α
f̂α.

The last equality is due to the fact that f is Boolean.
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Fourier Transform over Fn
2

Suppose f : {±1}n → {±1} satisfies

Prx,y∈{±1}n [f(x·y)= f(x)f(y)] = 1
2 + ϵ.

By the previous theorem f̂α ≥ 2ϵ for some Fourier coefficient f̂α of f. Thus

〈f, χα〉 ≥ 2ϵ.

In other words f coincides with the basis function χα on ≥ 1
2 + ϵ fraction of inputs.
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Random Test of Linearity

The basis functions are precisely the linear functions. χα(x·y) = χα(x)χα(y).

Suppose f : {0, 1}n → {0, 1} satisfies

Prx,y∈{0,1}n [f(x+ y) is equal to f(x)+ f(y)] = 1
2 + ϵ.

Then f coincides with a linear function on at least 1
2 + ϵ fraction of inputs.
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Random Test of Linearity

Let ρ ∈ [0, 1]. The functions f, g : {0, 1}n → {0, 1} are ρ-close if

Prx∈R{0,1}n [f(x) = g(x)] ≥ ρ.

Theorem. Let f : {0, 1}n → {0, 1} be such that for some ρ > 1
2 ,

Prx,y∈R{0,1}n [f(x + y) = f(x) + f(y)] ≥ ρ.

Then f is ρ-close to a linear function.
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Local Testing of Linear Functions

A local test of f checks if f is a linear function by making a constant number of queries.
▶ It accepts every linear function, and
▶ it rejects every function that is far from being linear with high probability.

For δ ∈ (0, 1/2) a (1 − δ)-linearity test rejects with probability > 1
2 any function not

(1 − δ)-close to a linear function by testing

f(x+ y) = f(x) + f(y)

randomly for 1
δ times. The acceptance probability is ≤ (1 − δ)

1
δ ≈ 1

e < 1
2 .

If the test accepts with probability greater than 1/2, then the function is (1 − δ)-close
to a linear function.
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Local Decoding

Suppose δ < 1
4 and f is (1 − δ)-close to some linear function f̃.

Given x one can learn f̃(x) by making only two queries to f.
1. Choose x′ ∈R {0, 1}n;
2. Set x′′ = x + x′;
3. Output f(x′) + f(x′′).

By union bound f̃(x) = f̃(x′) + f̃(x′′) = f(x′) + f(x′′) holds with probability ≥ 1 − 2δ.
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Efficient Conversion of NP Certificate to PCP Proof
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Proofs of PCP Theorems involve some interesting ways of encoding NP-certificates
and the associated methods of checking if a string is a valid encoding.

One idea is to amplify any error that appears in an NP-certificate.
We shall showcase how it works by looking at a problem to which the amplification
power of Walsh-Hadamard Code can be exploited.

Theorem. NP ⊆ PCP(poly(n), 1).
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Walsh-Hadamard Code

The Walsh-Hadamard function WH : {0, 1}n → {0, 1}2n encodes a string of length n by
a function in n variables over F2:

WH(u) : x 7→ u � x,

where u � x =
∑n

i=1 uixi (mod 2).

Walsh-Hadamard code is an error correcting code with distance 1/2.
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Walsh-Hadamard Codeword

We say that f is a Walsh-Hadamard codeword if f = WH(u) for some u ∈ {0, 1}n.

Walsh-Hadamard codewords are precisely the linear functions.
Proof.
A linear function f is the same as WH(f), where

f =


f(e1)
f(e2)

...
f(en)

 .
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Quadratic Equation in F2

Suppose A is an m × n2 matrix and b is an m-dimensional vector with values in F2.
Let (A,b) ∈ QUADEQ if there is an n-dimensional vector u such that

A(u ⊗ u) = b,

where u ⊗ u is the tensor product of u.

u ⊗ u = (u1u1, . . . , u1un, . . . , unu1, . . . , unun)
†.
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Quadratic Equation in F2

An instance of QUADEQ over u1, u2, u3, u4, u5:

u1u2 + u3u4 + u1u5 = 1
u1u1 + u2u3 + u1u4 = 0

A satisfying assignment is (0, 0, 1, 1, 0).
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QUADEQ is NP-Complete

CKT-SAT ≤K QUADEQ.
▶ All wires are turned into variables.
▶ Boolean equality x∨ y = z relating the inputs to the output is turned into algebraic

equality (1− x)(1− y) = 1− z in F2, which is equivalent to xx+ yy+ xy+ zz = 0.
▶ ¬x = z is turned into xx + zz = 1.
▶ x ∧ y = z is turned into xy + zz = 0.
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From NP Certificate to PCP Proof

A certificate for (A,b) is an n-dimensional vector u witnessing (A,b) ∈ QUADEQ.
▶ To check if u is a solution, one reads the n bits of u and checks the m equations.

We convert an NP-certificate u to the PCP-proof WH(u)WH(u ⊗ u).
▶ The proof is a string of length 2n + 2n2 .
▶ Using the proof it is straightforward to verify probabilistically if (A,b) ∈ QUADEQ.
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Verifier for QUADEQ

Step 1. Verify that f, g are linear functions.
1. Perform a 0.999-linearity test on f, g.

If successful we may assume that f(r) = u � r and g(z) = w � z.

The test makes a constant number of queries to f, g.
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Verifier for QUADEQ

Step 2. Verify that g encodes (u ⊗ u)� _.
1. Get independent random r, r′.
2. Reject if f(r)f(r′) 6= g(r ⊗ r′).
3. Repeat the test 10 times.

▶ In a correct proof f(r)f(r′) = (
∑

i uiri)(
∑

j ujr′j) =
∑

i,j uiujrir′j = g(r ⊗ r′).
▶ Assume w 6= u ⊗ u. Let matrices W and U be w and respectively u ⊗ u. One has

▶ g(r ⊗ r′) = w � (r ⊗ r′) =
∑

i,j wijrir′j = rWr′, and
▶ f(r)f(r′) = (u ⊗ r)(u ⊗ r′) = (

∑
i uiri)(

∑
j ujr′j) = rUr′.

rW, rU differ for at least 1
2 of r’s; and rWr′, rUr′ differ for at least 1

4 of (r, r′)’s.
▶ The overall probability of rejection is at least 1 − (3

4)
10 > 0.9.

The verification makes a constant number of queries to f, g.
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Verifier for QUADEQ

Step 3. Verify that g encodes a solution.
1. Take a random subset S of [m].
2. Reject if g(

∑
k∈S Ak,_) 6=

∑
k∈S bk.

▶ There is enough time to check A(u ⊗ u) = b.
▶ However since m is part of the input, the number of queries, which must be a constant,

should not depend on m.
▶ If {k ∈ [m] | g(Ak,_) 6= bk} 6= ∅, then PrS⊆R[m][|S ∩ {k ∈ [m] | g(Ak,_) 6= bk}| is odd] = 1

2 .

Note that g(
∑

k∈S Ak,_) =
∑

k∈S g(Ak,_) by linearity.

A constant number of queries are made.
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Suppose the PCP verifier for QUADEQ makes a total of q0 queries.
It follows from the completeness of QUADEQ that all NP problems have PCP verifiers
that toss coins for a polynomial number of time and make precisely q0 queries.
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Proof of PCP Theorem
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CSP with Nonbinary Alphabet

qCSPW is analogous to qCSP except that the alphabet is [W] instead of {0, 1}.
The constraints are functions of type [W]q → {0, 1}.

For ρ ∈ (0, 1), we define the promise problem ρ-GAPqCSPW analogous to ρ-GAPqCSP.
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3COL is a case of 2CSP3.
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PCP Theorem states that ρ-GAPqCSP is NP-hard for some q, ρ.

The proof we shall describe is based on the following observation:
1. If φ of m constraints is unsatisfied, then val(φ) ≤ 1 − 1

m .
2. There is a construction that increases the gap.

The idea is to start with an NP-problem, then apply Step 2 for log(m) times.
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Let f be a function mapping CSP instances to CSP instances.

It is a complete linear-blowup reduction (CL-reduction) if it is P-time computable and
the following are valid for every CSP instance φ.

1. Completeness. If φ is satisfiable then f(φ) is satisfiable.
2. Linear Blowup. If φ has n variables, f(φ) has no more than Cn variables. If φ has

m constraints, f(φ) has no more than Cm constraints.
▶ C, W depend only on the problem parameter q, hence linearity.
▶ C, W do not depend on anything of the problem instance φ(n,m).

We will define two CL-reductions that will be repeated log(m) times.
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Main Lemma. There exist constants q0 ≥ 3, ϵ0 > 0 and CL-reduction f such that for
every q0CSP instance φ and every ϵ < ϵ0, f(φ) is a q0CSP instance satisfying

val(φ) ≤ 1 − ϵ⇒ val(f(φ)) ≤ 1 − 2ϵ.

q0CSP Instance Arity Alphabet Constraint Gap
φ q0 binary m 1 − ϵ
⇓ ⇓ ⇓ ⇓ ⇓

f(φ) q0 binary Cm 1 − 2ϵ

The q0 is the number of queries of the PCP verifier for QUADEQ.
In the following proof, ϵ0, ℓ, W, W′, t are functions of q0, and d is an absolute value.
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Proof of PCP Theorem

Let q0 ≥ 3 and ϵ0 > 0 be given by the Main Lemma. A CL-reduction from q0CSP to
(1−2ϵ0)-GAPq0CSP is obtained as follows:

1. q0CSP is NP-hard.
2. For a q0CSP instance φ with m constraints, apply Main Lemma for logm times to

amplify the gap. We get an instance ψ.
3. If φ is satisfiable, then ψ is satisfiable. Otherwise according to Main Lemma

val(ψ) ≤ 1 − 2max{log(m),log(2ϵ0)} · 1
m ≤ 1 − 2ϵ0.

4. |ψ| ≤ Clog(m)m = poly(|φ|). Conclude that (1−2ϵ0)-GAPq0CSP is NP-hard.

C depends on two constants, q0 and 2 (the size of alphabet).
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Main Lemma is proved in three steps.
1. Prove that every qCSP instance can be turned into a “nice” qCSPW instance.
2. Gap Amplification. Construct a CL-reduction f that increases both the gap and

the alphabet size of a “nice” qCSP instance. [Dinur’s proof]
3. Alphabet Reduction. Construct a CL-reduction g that decreases the alphabet size

to 2 with a modest reduction in the gap. [Proof of Arora et al.]

1. 1st Proof: Algebraic (first part) + Algebraic (second part)
2. 2nd Proof: Combinatorial (first part) + Algebraic (second part)
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Gap Amplification. For all numbers ℓ, q, there are number W, ϵ0 ∈ (0, 1) and a CL-reduction
gℓ,q such that for every qCSP instance φ, ψ = gℓ,q(φ) is a 2CSPW instance that satisfies the
following for all ϵ < ϵ0.

val(φ) ≤ 1 − ϵ⇒ val(ψ) ≤ 1 − ℓϵ.

Alphabet Reduction. There exist a constant q0 and a CL-reduction h such that for every
2CSPW instance φ, ψ = h(φ) is a q0CSP instance satisfying

val(φ) ≤ 1 − ϵ⇒ val(ψ) ≤ 1 − ϵ/3.

CSP Instance Arity Alphabet Constraint Gap
φ q0 binary m 1 − ϵ
⇓ ⇓ ⇓ ⇓ ⇓

f(φ) 2 nonbinary C′m 1 − 6ϵ
⇓ ⇓ ⇓ ⇓ ⇓

g(f(φ)) q0 binary C′′C′m 1 − 2ϵ
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Dinur makes use of expander graphs to construct new constraints.

Let φ be a 2CSPW instance with n variables. The constraint graph Gφ of φ is defined
as follows:

1. the vertex set is [n], and
2. (i, j) is an edge if there is a constraint on the variables ui, uj. Parallel edges and

self-loops are admitted.
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A 2CSPW instance φ is nice if the followings are valid:
1. There is a constant d such that Gφ is a (d, 0.9)-expander.
2. At every vertex half of the adjacent edges are self loops.

A nice CSP instance looks like an expander. In a nice CSP a t+ 1 step random walk is
very much like a t step random walk.
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Lemma. Let G be a d-regular n-vertex graph, S be a vertex subset and T = S. Then

|E(S,T)| ≥ (1 − λG)
d|S||T|
|S|+ |T| . (1)

The vector x defined below satisfies ‖x‖2
2 = |S||T|(|S|+ |T|) and x⊥1.

xi =

{
+|T|, i ∈ S,
−|S|, i ∈ T.

Let Z =
∑

i,j Ai,j(xi − xj)2. By definition Z = 2
d |E(S,T)|(|S|+ |T|)2. On the other hand

Z =
∑

i,j
Ai,jx2

i − 2
∑

i,j
Ai,jxixj +

∑
i,j

Ai,jx2
j = 2‖x‖2

2 − 2〈x,Ax〉.

Since x⊥1, 〈x,Ax〉 ≤ λG‖x‖2
2 (cf. Rayleigh quotient).
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Let G = (V,E) be an expander and S ⊆ V with |S| ≤ |V|/2. The following holds.

Pr(u,v)∈E[u∈ S, v∈ S] ≤ |S|
|V|

(
1
2 +

λG
2

)
. (2)

Observe that |S|/|V| = Pr(u,v)∈E[u∈ S, v∈ S] + Pr(u,v)∈E[u∈ S, v∈ S]. And by (1), one has

Pr(u,v)∈E[u∈ S, v∈ S] = E(S, S)/d|V| ≥ |S|
|V| ·

1
2 · (1−λG).

We are done by substituting |S|/|V| − Pr(u,v)∈E[u∈ S, v∈ S] for Pr(u,v)∈E[u∈ S, v∈ S].

Pr(u,v)∈Eℓ [u∈ S, v∈ S] ≤ |S|
|V|

(
1
2 +

λℓG
2

)
. (3)
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Step 1: Reduction to Nice Instance

The reduction consists of three steps.

q0CSP instance Step1.1
=⇒ 2CSP2q0 instance

Step1.2
=⇒ 2CSP2q0 instance with regular constraint graph

Step1.3
=⇒ nice 2CSP2q0 instance.

In all the three steps the fraction of violated constraints decreases by a constant factor.
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Step 1: Reduction to Nice Instance

Step 1.1. There exists a CL-reduction that maps a q0CSP instance φ to a 2CSP2q0

instance ψ such that
val(φ) ≤ 1 − ϵ⇒ val(ψ) ≤ 1 − ϵ

q0
.

Suppose φ has variables x1, . . . , xn and m constraints.
▶ The new instance ψ has variables x1, . . . , xn, y1, . . . , ym, where yi takes value in

{0, 1}q0 . A value in {0, 1}q0 codes up an assignment to the variables in φi.
▶ For each variable xj in φi, construct the constraint ψi,j stating that yi satisfies φi

and yi is consistent with xj.

▶ An assignment that satisfies ψ is the same thing as an assignment that satisfies φ.
▶ A constraint splits into q0 constraints.
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Step 1: Reduction to Nice Instance

Step 1.2. There exist an absolute constant d′ and a CL-reduction that maps a 2CSPW
instance φ to a 2CSPW instance ψ such that

val(φ) ≤ 1 − ϵ⇒ val(ψ) ≤ 1 − ϵ

100Wd′

and that Gψ is d′-regular. W = 2q0 by the construction of Step 1.1.

Let {Gk}k be an explicit (d′−1, 0.9)-expander. We get ψ by replacing each k-degree
node of Gφ by Gk and adding the identity constraint (of the form yj

i = yj′
i , where

i ∈ [n]) to each edge (j, j′) of Gk. If φ has m constraints, ψ has d′m constraints.
Suppose val(φ) ≤ 1 − ϵ and v is an unsatisfying assignment to ψ.
It suffices to prove that v violates at least ϵm

100W constraints of ψ. Continue on the next slide.

Fact. For every c ∈ (0, 1) there is a constant d and an algorithm that, given input n, runs in poly(n) time and outputs an (n, d, c)-expander.
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Step 1: Reduction to Nice Instance
Let u be the assignment to φ that is defined by the plurality of the assignment v to ψ.
Let ti be the number of vj

i’s, where j ∈ [k], that disagree with ui. Clearly ti ≤ k(1− 1
W ).

If
∑n

i=1 ti is large, then on average Gk already contains enough violated constraints.

1.
∑n

i=1 ti ≥ 1
4ϵm. Let Si = {yj

i | vj
i = ui} and let Si = {y1

i , . . . , yk
i } \ Si. The number of

constraints of Gk violated by v is at least

E(Si, Si)
(1)
≥ (1−λGk)

(d′ − 1)|Si||Si|
|Si|+ |Si|

=
1
10

d′ − 1
k |Si||Si| ≥

d′ − 1
10k

k
W |Si| ≥

d′ − 1
10k

k
Wti ≥ 1

10Wti.

Now
∑

i∈[n] E(Si, Si) ≥ ϵm
40W = ϵ

40Wd′ ·d′m.

2.
∑n

i=1 ti <
1
4ϵm. Since val(φ) ≤ 1 − ϵ, there is at least ϵm constraints violated in φ by u.

These ϵm constraints are also in ψ with variables being v.
Since every constraint has two variables, less than 1

4ϵm + 1
4ϵm constraints have values in

ψ different from those in φ. So at least 1
2ϵm constraints are violated.
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Step 1: Reduction to Nice Instance
Step 1.3. There is an absolute constant d and a CL-reduction that maps a 2CSPW instance φ
with Gφ being d′-regular for some d′ ≤ d to a 2CSPW instance ψ such that

val(φ) ≤ 1 − ϵ⇒ val(ψ) < 1 − ϵ

10d
and that Gψ is nice, 4d-regular, and half of the edges adjacent to each vertex are self-loops.

There is a constant d and an explicit (d, 0.1)-expander {Gk}k∈N. We assume that φ contains n
variables and that φ is d-regular (adding self-loops if d′ < d).
Let G2d⟲

n be Gn extended with 2d self-loops on each node, all constraints being tautological.
We get ψ from φ by overlapping the nodes of Gφ and the nodes of G2d⟲

n . Then

λGψ ≤ 1
4 ·λGφ +

3
4 ·λG2d⟲

n
< 0.9.

Notice that “adding” decreases ϵ by a factor ≤ d and “overlapping” by a further factor ≤ 4.
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A path of length t defines the conjunction of t constraints. If t is large enough, the
chance for the conjunction being violated is significant.

For this simple idea to work, the following issues must be addressed:
1. The arity 2t is dependent of m and the number of constraints is exponential.
2. Even if t = O(logm), adding constraints to guarantee consistency of assignment

would blow up the number of constraints non-linearly.

We look for a constant t.
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Step 2: Gap Amplification, from ψ to ψt

Construction of the 2CSPW′ instance ψt: Variables.

1. Let x1, . . . , xn denote the variables of ψ.
2. ψt contains n variables y1, . . . , yn ∈ W′ < Wd5t , where yi is an assignment to

those of x1, . . . , xn reachable within t steps from xi.
For i, j ∈ [n] we say that an assignment to yi claims a value for xj.

t
xi

xj

xk

t−δt

The belt zone is for consistency checking.
Do not forget the self loops.

Computational Complexity, by Fu Yuxi PCP Theorem 88 / 141



Step 2: Gap Amplification, from ψ to ψt

Construction of the 2CSPW′ instance ψt: Constraints.

Introduce in ψt a constraint Cp =
∧

j∈[t−δt,t] C
j
p for each 2t−δt step path p = (xi0 , . . . , xi2t−δt

)
such that the following are valid.

1. δt = o(
√

t).
2. For each j ∈ [t−δt, t], Cj

p is obtained from the constraint of the j-th edge by replacing
xij , xij+1 respectively by yi1 ’s claim for xij and yi2t+1 ’s claim for xij+1 .

txi1 xi2t−δt
t δt

Do not forget the self-loops.
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Step 2: Gap Amplification

Lemma. An algorithm exists that given δt = o(
√

t) and a nice 2CSPW instance ψ with
n variables, m= dn

2 edges, d-degree Gψ, produces a 2CSPW′ instance ψt satisfying 1-4.
1. W′ < Wd5t and ψt has d2t−1

t ·m constraints. take δt = log(t).

2. If ψ is satisfiable then ψt is satisfiable.
3. The formula ψt is produced in poly(m,Wd5t

) time. Wd5t
is a constant.

4. If val(ψ) = 1 − ϵ for ϵ < 1
dδt

, then val(ψt) ≤ 1 − ℓϵ for ℓ = δt
44dW4 . 1

δt
is subtle.

Gap Amplification follows immediately from the lemma.
▶ If ℓ = 6 and W = 2q0 , we get a constant t and a constant ϵ0 = 1

dδt
.

▶ In this case ψt is produced in poly time.

The conditions 1, 2 and 3 of the lemma are satisfied by the constraints of ψt.
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Step 2: Gap Amplification, random generation of constraints

A random 2t − δt step path p = (xi0 , . . . , xi2t−δt
) is picked up with probability 2

n·d2t−δt .
Equivalently such a random path can be chosen in any of the following manners.

1. Pick up a random node, and take a 2t − δt step random walk from the node.
2. Pick up a random node, and then take a j-step random walk from the node and a

(2t − δt − j)-step random walk from the node.
3. Pick up a random edge, and then take a j-step random walk from one node of the

edge and a (2t − δt − j − 1)-step random walk from the other node of the edge.

a random constraint of ψt = a random path of length 2t − δt.
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Step 2: Gap Amplification, plurality assignment

Fix an arbitrary assignment v1, . . . , vn to y1, . . . , yn.

We would like to define an assignment to x1, . . . , xn from v1, . . . , vn.
1. Let Zi ∈ [W] be a random variable defined by the following.

▶ Starting from the vertex i, take a t step random walk in Gψ to reach some vertex k;
output vk’s claim for xi.

Let wi denote the most likely value of Zi.
2. We call w1, . . . ,wn the plurality assignment to x1, . . . , xn. Clearly Pr[Zi=wi] ≥ 1

W .

There is a set F of ϵm = ϵdn
2 constraints in ψ violated by the plurality assignment.
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Step 2: Gap Amplification

For j ∈ [t−δt, t] the edge (xij , xij+1) in p = (xi0 , . . . , xi2t−δt
) is truthful if vi0 claims the

plurality value for xij and vi2t−δt
claims the plurality value for xij+1 .

If p has an edge that is both truthful and in F, the constraint Cp is violated.

Computational Complexity, by Fu Yuxi PCP Theorem 93 / 141



Step 2: Gap Amplification

Suppose p = (xi0 , . . . , xi2t−δt
) is a random path, and j ∈ [t − δt, t].

Claim. Prp[(xij , xij+1) is truthful] ≥ 1
2W2 .

Claim. Prp[(xij , xij+1) is truthful and is in F] ≥ 1
2W2 ϵ.

Proof.
We know that Pr[vi0 claims the plurality value for xit ] ≥ 1

W . We can prove that

Pr[vi0 claims the plurality value for xij ] ≥
3
4 ·

1
W .

It follows that Prp[(xij , xij+1) is truthful] ≥ (3
4 ·

1
W)(3

4 ·
1
W) ≥ 1

2W2 .
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Let Sj be the random variable for the number of heads in a j-step random walk. Now

Pr[Sj = k] − Pr[Sj = k + 1] =
1
2j

( j
k

)
−

1
2j + 1

(j + 1
k

)
=

1
2j

[( j
k

)
−

1
2

[( j
k

)
+

( j
k − 1

)]]
=

1
2j+1

[( j
k

)
−

( j
k − 1

)]
.

It follows that

j+1∑
k=0

∣∣Pr[Sj = k] − Pr[Sj = k + 1]
∣∣ =

1
2j + 1

j+1∑
k=0

∣∣∣∣( j
k

)
−

( j
k − 1

)∣∣∣∣
=

1
2j

(j+1)/2∑
k=0

(( j
k

)
−

( j
k − 1

))

≤
1
2j

( j
j/2

)

≤
1
2j

j!
((j/2)!)2

.
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By the Stirling formula,

1
2j

j!
((j/2)!)2 ≤

√
2πj
( j

e
)j e 1

12j(√
2π(j/2)

(
j/2
e

)j/2
e 1

6j+1

)2 ≤ 4
5 ·

2j
√j .

It follows that

∆(Sj, Sj+1) =
1
2

j+1∑
k=0

|Pr[Sj = k]− Pr[Sj = k+ 1]| ≤ 2
5 ·

1√j .

By the triangle inequality

∆(St−δt , St) ≤ 2
5

(
1√

t − δt
+ . . .+

1√
t

)
<

δt√
t

≤ 1
4W

for appropriate t and δt.
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Step 2: Gap Amplification

Let V be the random variable for the number of edges among the middle δt edges that
are truthful and in F.
Prp[V > 0] = Prp[Cp is violated]. If Prp[V > 0] ≥ ϵ′, then at least ϵ′ fraction of ψt’s
constraints are violated.

Claim. E[V] ≥ δt· ϵ
2W2 .

Proof.
By the previous claim, the probability of an edge in the middle interval of size δ

√
t that

is truthful and in F is at least ϵ
2W2 . Then E[V] ≥ δt· ϵ

2W2 by linearity.
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Step 2: Gap Amplification

Claim. E[V2] ≤ 11δtdϵ.
Proof.
▶ Let V′ be the number of edges in the middle interval that are in F. Now V ≤ V′.

It suffices to show that E[V′2] ≤ 11δtdϵ.
▶ For j ∈ [t − δt, . . . , t], let Ij be an indicator random variable that is 1 if the jth

edge is in F and 0 otherwise. Then V′ =
∑

j∈[t−δt,...,t] Ij.
▶ Let S be the set of the end points of the edges in F. Then |S|

dn = ϵ. continue on next slide.
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Step 2: Gap Amplification

E[V′2] = E
[∑

j
I2j

]
+ E

∑
j ̸=j′

IjIj′


= ϵδt + 2

∑
j<j′

Pr[jth edge is in F ∧ j′th edge is in F]

≤ ϵδt + 2
∑
j<j′

Pr[jth vertex of walk lies in S ∧ j′th vertex of walk lies in S]

≤ ϵδt + 2
∑

j
Pr[jth vertex of walk lies in S] ·

∑
j′>j

Pr(a,b)∈Ej′−j [a ∈ S, b ∈ S]

(3)
≤ ϵδt + 2

∑
j

dϵ ·
∑
j′>j

dϵ
(

1
2 +

(λG)
j′−j

2

)
|S|
n = dϵ

≤ ϵδt + (δt)
2(dϵ)2

1 +
∑
k≥1

(λG)
k

 λG < 0.9 and δtdϵ < 1

≤ 11δtdϵ.
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Finally we conclude that

Pr[V> 0] ≥ E[V]2
E[V2]

≥
(
δt·

ϵ

2W2

)2
· 1

11δtdϵ
>

δt
44dW4 ϵ = ℓϵ.

Lemma. For every non-negative random variable V, Pr[V > 0] ≥ E[V]2

E[V2] .

Proof.
E[V|V>0]2 ≤ E[V2|V>0] by convex property. The lemma follows from the following.

▶ E[V2|V>0] =
∑

i i2 · Pr[V=i|V>0] =
∑

i i2 ·
Pr[V=i]
Pr[V>0] =

E[V2]
Pr[V>0] .

▶ E[V|V>0]2 = (
∑

i i · Pr[V=i|V>0])2 =
(∑

i i ·
Pr[V=i]
Pr[V>0]

)2
=
(

E[V]
Pr[V>0]

)2
.
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Step 3: Alphabet Reduction

We look for an algorithm that transforms a 2CSPW instance to a q0CSP instance.

A simple idea is to turn a variable over [W] to logW boolean variables.
▶ A constraint can be turned into a circuit C of size bounded by 22 logW < W4.
▶ This would produce a CSP instance of arity 2 logW.

The problem with this idea is that 2 logW is greater than q0 (in fact W ≥ 2q0).
▶ If we apply Gap Amplification and Alphabet Reduction for logm times, we would get a

CSP instance whose arity depends on the input size.
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Step 3: Alphabet Reduction

A more sophisticated idea is to design a PCP checker for constraint checking!

1. We turn the 2CSPW problem to evaluation checking problem for CKT-SAT.
2. We further turn it to solution checking problem for QUADEQ.
3. We then apply the construction of the PCP verifier (with q0 queries!) for QUADEQ.
4. Finally we turn the PCP verifier to a q0CSP instance.

PCP of Proximity, Verifier Composition, Proof Composition.
▶ In some occasions a verifier is allowed to make only a small or constant number of

queries. In other words it cannot read any complete assignment to variables.
▶ A solution is to see an assignment as part of a proof. Consequently a verifier can

only get to see a fragment of the proof. This is the PCP verifier for QUADEQ!
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Step 3: Alphabet Reduction

Suppose a constraint has been converted to a QUADEQ instance.
▶ Let u1 and u2 be assignments to logW variables.
▶ Let c be bit string of size ℓ = poly(W) that represents the quadratic equations

derived from the circuit C. We assume that the first 2 logW bits of c are u1u2.

Let π1π2π3 be a PCP proof for the QUADEQ instance, where
▶ π1 is supposedly WH(u1), π2 is supposedly WH(u2) and π3 is supposedly WH(c).
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Step 3: Alphabet Reduction

The PCP verifier does the following:
1. Check that π1, π2 and π3 are 0.99-close to WH(u1), WH(u2) and WH(c) respectively.
2. Check that the first 2 logW bits of c are u1u2. This is done by concatenation test:

2.1 Choose randomly x, y ∈ {0, 1}log W.
2.2 Check that π3(xy0|c|−2 log W) = π1(x) + π2(y). the error probability is 1/2.

A constant number of checks are done in the Step 2 of the above test.
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Step 3: Alphabet Reduction

PCP of Proximity. There is a PCP verifier for every old constraint.

There is a verifier V that, given any circuit C with 2k input variables, runs in poly(|C|)
time, uses poly(|C|) random bits, and enjoys the following property.

1. If u1,u2 ∈ {0, 1}k and u1u2 is a satisfying assignment for C, then there is some
π3 ∈ {0, 1}2poly(|C|) such that V accepts WH(u1)WH(u2)π3 with probability 1.

2. For π1, π2 ∈ {0, 1}2k and π3 ∈ {0, 1}2poly(|C|) , if V accepts π1π2π3 with probability
> 1/2, then π1 and π2 are 0.99-close to WH(u1) and WH(u2) respectively for some
u1,u2 ∈ {0, 1}k, where u1u2 is a satisfying assignment to C.
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Step 3: Alphabet Reduction

The PCP verifier can be turned into a q0CSP instance. This is the proof of the
equivalence between PCP Theorem and PCP Theorem.
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Step 3: Alphabet Reduction

Fact. If the value of the old CSP is ≤ 1−ϵ, then the value of the new CSP is ≤ 1−1
3ϵ.

Suppose an assignment to the new variables satisfied > 1−1
3ϵ fraction of the new

constraints. By decoding an assignment to the old variables satisfied a 1−δ fraction of
the old constraints. For each violated old constraint Cs, at least half of the set Cs of
the new constraints is violated. Thus 1

2δ ≤
1
3ϵ. So at least 1−δ ≥ 1−2

3ϵ > 1 − ϵ
fraction of the old constraints were violated, contradicting to the assumption.

This finishes the proof of Alphabet Reduction as well as the PCP Theorem.
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Håstad’s 3-Bit PCP Theorem
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Hardness of 2CSPW

A 2CSP instance is regular if its constraint graph is regular.

A 2CSP instance satisfies projection property if for each constraint φ(x1, x2) and each
value u of x1 there is a unique value v of x2 such that φ(u, v) = 1.
In other words there is a function h : [W] → [W] such that φ(u, v) iff h(u) = v.
We may identify φ to h.

Computational Complexity, by Fu Yuxi PCP Theorem 109 / 141



Hardness of 2CSPW

Corollary. There are some ν and some W such that ν-GAP2CSPW is NP-hard.

Raz Theorem. There is a c > 1 such that for every t > 1, ϵ-GAP2CSPW is NP-hard for
ϵ = 2−t, W = 2ct. This is true also for 2CSPW instances that are regular and have the
projection property.

In Raz Theorem one may choose ϵ as small as possible while keeping W not too large.
1. R. Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, 1998, and in STOC ’95.

Computational Complexity, by Fu Yuxi PCP Theorem 110 / 141



Håstad Theorem.
For every δ ∈ (0, 1/2) and every L ∈ NP, there is a PCP verifier V for L that makes
three binary queries and satisfies completeness with parameter 1 − δ and soundness
with a parameter at most 1

2 + δ.
Moreover, given a proof π ∈ {0, 1}m, V chooses i1, i2, i3 ∈R [m] and b ∈D {0, 1}
according to some distribution D and accepts iff πi1 + πi2 + πi3 = b (mod 2).

1. J. Håstad. Some Optimal Inapproximability Results. J. ACM, 48:798-859, 2001, also in STOC’97.
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Threshold Result by Håstad Theorem

An instance of MAX-E3LIN consists of finitely many equations of the form

xi1 + xi2 + xi3 = b (4)

taking values in F2. One looks for the size of the largest set of satisfiable equations.

Håstad Theorem reveals that an NP-complete problem L has a PCP verifier that checks if a
proof validates equations of the form (4). It also tells us how to reduce L to MAX-E3LIN.
Therefore it is NP-hard to compute a 1/2+δ

1−δ -approximation to MAX-E3LIN for each δ ∈ (0, 1/2).
In other words ( 1

2+ϵ)-approximation to MAX-E3LIN is NP-hard for all ϵ ∈ (0, 1/2).

It is straightforward to give a 1
2 -approximation algorithm for MAX-E3LIN. Just assign a truth

value to a variable such that it validates at least as many constraints as it invalidates.
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Threshold Result for MAX-3SAT

Fact. For all ϵ ∈ (0, 1/8) computing (7
8+ϵ)-approximation to MAX-3SAT is NP-hard.

Convert x + y + z = 0 to four clauses x ∨ y ∨ z, x ∨ y ∨ z, x ∨ y ∨ z, x ∨ y ∨ z and
x + y + z = 1 to four clauses x ∨ y ∨ z, x ∨ y ∨ z, x ∨ y ∨ z, x ∨ y ∨ z.
If an assignment to x, y, z satisfies the equation, it satisfies all the 4 clauses. Otherwise
it satisfies 3 of the clauses.
By the previous reduction, we see that in the yes case at least a 1 − ϵ fraction of the
clauses are satisfied, and in the no case at most a 1 − (1

2 − ϵ)× 1
4 = 7

8 + ϵ
4 fraction of

the clauses are satisfied.

There is a 7
8 -approximation algorithm to MAX-3SAT.
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Long Code

Let W ∈ N.
A function f : {±1}W → {±1} is a coordinate function if f(x1, . . . , xW) = xw for some
w ∈ W. In other words f = χ{w}.

The long code for [W] encodes each w ∈ [W] by all the values of χ{w}.
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Local Test for Long Code

Let δ ∈ (0, 1).

1. Choose x, y ∈R {±1}W.
2. Choose a noise vector z ∈D {±1}W using distribution D defined as follows:

For i ∈ [W], choose zi = +1 with probability 1 − ρ and zi = −1 with probability ρ.
3. Accept if f(x)f(y) = f(xyz), reject otherwise.

If f = χ{w}, then f(x)f(y)f(xyz) = xwyw(xwywzw) = zw. The test accepts iff zw = 1,
which happens with probability 1 − ρ.
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Local Test for Long Code

Lemma. If the test accepts with probability 1
2 + δ, then

∑
α f̂3α(1 − 2ρ)|α| ≥ 2δ.

If the test accepts with probability 1
2 + δ, then Ex,y,z[f(x)f(y)f(xyz)] = 2δ. Hence,

2δ ≤ Ex,y,z

(∑
α

f̂αχα(x)
)∑

β

f̂βχβ(y)

(∑
γ

f̂γχγ(xyz)
)

= Ex,y,z

∑
α,β,γ

f̂α f̂β f̂γχα(x)χβ(y)χγ(x)χγ(y)χγ(z)

 =
∑
α

f̂3αEx[χα(z)]

=
∑
α

f̂3αEx

[∏
w∈α

zw

]
=

∑
α

f̂3α
∏
w∈α

Ex[zw] =
∑
α

f̂3α(1 − 2ρ)|α|.

The smaller α is, the more significant f̂α is. See the next corollary.
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Local Test for Long Code

Corollary. If f passes the long code test with probability 1
2 + δ, then for k = 1

2ρ log
1
ϵ ,

there is α with |α| ≤ k such that f̂α ≥ 2δ − ϵ.

By the previous lemma,

2δ ≤
∑
α

f̂3α(1 − 2ρ)|α| =
∑
|α|≤k

f̂3α(1 − 2ρ)|α| +
∑
|α|>k

f̂3α(1 − 2ρ)|α|

≤ max
|α|≤k

f̂α +
∑
|α|>k

f̂2α(1 − 2ρ)|α|

≤ max
|α|≤k

f̂α + (1 − 2ρ)k

≤ max
|α|≤k

f̂α + ϵ.
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Bifolded Long Code

A function f : {±1}W → {±1} is bifolded if f(−v) = −f(v) for all v ∈ {±1}W.

The coordinate function is bifolded because χ{w}(−v) = −χ{w}(v).

We may assume without loss of generality that the long code in Håstad’s verifier is
bifolded. Define f(v) if the most significant bit of v is 1.
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Bifolded Long Code

If f : {±1}W → {±1} is bifolded and f̂α 6= 0 then |α| must be an odd number (and in
particular, nonzero).

If |α| is even, then

f̂α = 〈f, χα〉 = Ev[f(v)
∏

i∈α vi] = 0

since
∏

i∈α vi =
∏

i∈α(−vi).

Bifolded function has only odd size set indexed Fourier coefficients.
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Håstad’s Verifier VH

1. VH expects a proof π̃ of length n2W coding n functions f1, . . . , fn : {±}W → {±},
which are the bifolded long codes of an assignment to the variables.
2. VH randomly chooses a constraint φr(i, j) described by a function h : [W] → [W].
3. VH verifies that fi, fj code up w and u respectively such that h(w) = u.
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Håstad’s Verifier VH

The Basic Håstad Test.
1. Input. Two functions f, g : {±}W → {±} and a function h : [W] → [W].
2. Goal. Check that f, g are the long codes of w, u respectively such that h(w) = u.
3. Test.

3.1 VH chooses v, y ∈R {±1}W.
3.2 VH chooses noise vector z ∈ {±1}W by letting zi = +1 with probability 1 − ρ and

zi = −1 with probability ρ.
3.3 VH accepts if

f(v)g(y) = f(h−1(y)vz)

and rejects otherwise.

For u ∈ [W] let h−1(u) = {w : h(w) = u}.
For y ∈ {±1}W let h−1(y) ∈ {±1}W be such that

(
h−1(y)

)
(w) = yh(w) for all w ∈ [W].

Computational Complexity, by Fu Yuxi PCP Theorem 121 / 141



Håstad’s Verifier VH

Notice that f, v constitute a location in π̃. It follows from the equivalence

f(v)g(y) = f(h−1(y)vz) iff f(v)g(y)f(h−1(y)vz) = 1

that, by translating back from {±1} to {0, 1}, the verifier VH accepts iff

π̃[i1] + π̃[i2] + π̃[i3] = 0 (mod 2)

for the corresponding i1, i2, i3 ∈ [n2W].
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Main Claim. If φ is satisfiable, there is a proof VH accepts with probability 1 − ρ. If
val(φ) ≤ ϵ, no proof is accepted by VH with probability > 1/2 + δ, where δ =

√
ϵ/ρ.

Håstad’s 3-Bit PCP Theorem is proved by taking ρ = ϵ1/3, which makes the soundness
parameter at most 1/2 + ϵ1/3 and the completeness parameter at least 1 − ϵ1/3.
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Proof of Completeness Part

If φr is satisfiable, the proof π̃ contains the bifolded long code encodings of the n
values in [W]. Suppose f, g are the long codes of w, u ∈ [W] satisfying h(w) = u.

f(v)g(y)f(h−1(y)vz) = vwyu(h−1(y)wvwzw)

= vwyu(yh(w)vwzw)

= v2
wy2

uzw

= zw.

Thus VH accepts iff zw = +1, which happens with probability 1 − ρ.
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Proof of Soundness Part

For each α ⊆ [W], we define a set

h2(α) = {u ∈ [W] | {w ∈ W | h(w) = u} ∩ R is of odd size}.

Notice that for every v ∈ h2(α) there is at least one w ∈ α such that h(w) = v.

Computational Complexity, by Fu Yuxi PCP Theorem 125 / 141



Proof of Soundness Part

Lemma. Let f, g : {±1}W → {±1} be bifolded functions and h : [W] → [W] be such
that they pass the Basic Håstad’s Test with probability at least 1/2 + δ. Then∑

α⊆[W],α ̸=∅

f̂2αĝh2(α)(1 − 2ρ)|α| ≥ 2δ.

If the Basic Håstad’s Test accepts f, g, then f and g are correlated.
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Proof of Soundness Part

By hypothesis E[f(v)g(y)f(h−1(y)vz)] ≥ 2δ. Using the Fourier expansions of f, g one gets

2δ ≤ Ev,y,z

(∑
α

f̂αχα(v)
)∑

β

ĝβχβ(y)

(∑
γ

f̂γχγ(vh−1(y)z)
)

=
∑
α,β,γ

f̂αĝβ f̂γEv,y,z[χα(v)χβ(y)χγ(v)χγ(h−1y)χγ(z)]

=
∑
α,β

f̂2αĝβEy,z[χα(h−1y)χα(z)χβ(y)]

=
∑
α,β

f̂2αĝβEz[χα(z)]Ey[χα(h−1(y))χβ(y)]

=
∑
α,β

f̂2αĝβ(1 − 2ρ)|α|Ey[χα(h−1(y))χβ(y)].
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Proof of Soundness Part

To continue one has

Ey[χα(h−1(y))χβ(y)] = Ey[
∏
w∈α

h−1(y)w
∏
u∈β

yu] (Definition of Fourier basis χ_)

= Ey[
∏
w∈α

yh(w)

∏
u∈β

yu] (Definition of h−1)

= Ey[
∏

v∈h2(α)

yv
∏
u∈β

yu] (
∏
w∈α

yh(w) =
∏

v∈h2(α)

yv)

= 〈χh2(α), χβ〉

=

{
1 if h2(α) = β

0 otherwise
(Fourier basis is orthonormal)
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Proof of Soundness Part

Hence

2δ ≤
∑
α,β

f̂2αĝβ(1 − 2ρ)|α|Ey[χα(h−1(y))χβ(y)]

=
∑
α

f̂2αĝh2(α)(1 − 2ρ)|α|

=
∑
α ̸=∅

f̂2αĝh2(α)(1 − 2ρ)|α|.

The last equality holds since all even Fourier coefficients of an bifolded function are 0.
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Proof of Soundness Part

Lemma. Suppose φ is an instance of 2CSPW such that val(φ) < ϵ. If ρ, δ satisfy
ρδ2 > ϵ, the verifier VH accepts any proof with probability at most 1/2 + δ.

The Lemma completes the proof of Main Claim and of Håstad’s 3-bit PCP Theorem.
Proof.
If VH accepts a proof π̃ with probability > 1/2 + δ, we can construct an assignment π
probabilistically such that the expected fraction of the satisfying constraints is ≥ ρδ2.
But then val(φ) ≥ ρδ2 > ϵ, contradicting to the assumption.

The proof of the lemma is given on the next few slides.
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Proof of Soundness Part, Proof of the Lemma

Choosing π randomly.

1. For each i ∈ [n], use the bifolded function fi given by π̃ to define a distribution Di
over [W] as follows:
1.1 Firstly select a set α ⊆ [W] with probability f̂i

2
α.

1.2 Then select an element w at random from α.
This is well-defined because

∑
α f̂i

2
α = 〈fi, fi〉 = 1 and f̂i∅ = 0.

2. Pick π[i] by drawing a random sample from distribution Di.

The assignment π is a random element of the product distribution
∏n

i=1 Di.
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Proof of Soundness Part, Proof of the Lemma

We intend to prove that

Eπ[Er∈[m][π satisfies φr]] ≥ ρδ2. (5)

Let 1
2 + δr be Pr[VH accepts π̃|φr is chosen]. It is sufficient to prove

Prπ[π satisfies φr] ≥ ρδ2
r . (6)

▶ Er[
1
2 + δr] =

1
2 + δ implies Er[δr] = δ.

▶ Eπ[Er[π satisfies φr]] = Er[Eπ[π satisfies φr]] ≥ Er[ρδ2
r ] ≥ ρEr[δr]2 = ρδ2.
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Proof of Soundness Part, Proof of the Lemma
Let φr(i, j) be the r-th constraint and h be the function describing the constraint. Now

Prπ[π satisfies φr] = Prπ[h(π[i]) = π[j]].

Let f = fi, g = fj. Recall that π[i], π[j] are picked by choosing α with probability f̂2α, β with
probability ĝ2

β , and then choosing π[i] ∈R α, π[j] ∈R β randomly. Hence

Prπ[h(π[i]) = π[j]] =
∑
α

f̂2α
∑
β

ĝ2
β ·Prπ [h(π[i])=π[j] | π[i]∈α, π[j]∈β]

≥
∑
α

f̂2αĝ2
h2(α)

·Prπ [h(π[i])=π[j] | π[i]∈α, π[j]∈ h2(α)]

≥
∑
α

f̂2αĝ2
h2(α)

1
|α|

.

By the previous lemma, 2δr ≤
∑
α f̂2αĝh2(α)(1 − 2ρ)|α|.
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Proof of Soundness Part, Proof of the Lemma

Now 1 − x ≤ e−x ≤ x−1 holds for all x > 0. Therefore

(1 − 2ρ)|α| ≤ (e−2ρ)|α| = (e−4ρ|α|)1/2 ≤ (4ρ|α|)−1/2 ≤ 2√
ρ|α|

.

Hence
δr
√
ρ ≤

∑
α

f̂2αĝh2(α)
1√
|α|

.

It follows from the Cauchy-Schwartz inequality that

δr
√
ρ ≤

∑
α

f̂2αĝh2(α)
1√
|α|

≤

(∑
α

f̂2α

)1/2(∑
α

f̂2αĝ2
h2(α)

1
|α|

)1/2

≤

(∑
α

f̂2αĝ2
h2(α)

1
|α|

)1/2

.

So ρδ2
r ≤

∑
α f̂2αĝ2

h2(α)
1
|α| ≤ Prπ[h(π[i])=π[j]] = Prπ[π satisfies φr].
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Historical Remark
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Interactive proof, Zero knowledge, IP.

It all started with the introduction of interactive proof systems.
1. Shafi Goldwasser, Silvio Micali, Charles Rackoff. The Knowledge Complexity of Interactive

Proofs. STOC’85, SIAM, 1989.
2. László Babai and Shlomo Moran. Arthur-Merlin Games: A Randomized Proof System, and a

Hierarchy of Complexity Classes. STOC’85, JCSS, 1988.

The authors of the papers shared the first Gödel Prize (1993).

Goldwasser and Sipser. Private Coins versus Public Coins in Interactive Proof Systems. STOC’86.
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“1989 was an extraordinary year.” László Babai, 1990

1. N. Nisan. Co-SAT has multi-prover interactive proofs, e-mail announcement. Nov. 27,
1989.

2. C. Lund, L. Fortnow, H. Karloff, N. Nisan. The polynomial time hierarchy has interactive
proofs, e-mail announcement, Dec. 13, 1989.

3. A. Shamir. IP=PSPACE, e-mail announcement, Dec. 26, 1989.
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On Jan. 17, 1990 another email was sent out by L. Babai, L. Fortnow, and L. Lund.
▶ Non-Deterministic Exponential Time has Two Prover Interactive Protocols. FOCS 1990.

CC 1991.
The main theorem of the paper, MIP = NEXP, inspired almost all future development of PCP
theory and a lot of future development in derandomization theory. It can be interpreted as

NEXP = PCP(poly, poly).
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A profitable shift of emphasis was made that, instead of scaling down the time or
space complexity of verifier, scales down the randomness and query complexity.

Babai, Fortnow, Levin, and Szegedy showed NP ⊆ PCP(polylog, polylog).

1. L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computation in Polylogarithmic Time.
STOC, 1991.
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2001 Gödel Prize

1. NP ⊆ PCP(log · log log, log · log log).
2. NP = PCP(log, log).
3. NP = PCP(log, 1).

1. U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive Proofs and the
Hardness of Approximating Cliques. FOCS’91, JACM, 1996.

2. S. Arora and S. Safra. Probabilistic Checking of Proofs: A New Characterization of NP.
FOCS’92, JACM, 1998.

3. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof Verification and the Hardness
of Approximation Problems. FOCS’92, JACM, 1998.
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2019 Gödel Prize

Irit Dinur. The PCP Theorem by Gap Amplification. J. ACM, 2007. STOC 2006.
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