Space Complexity



Space is a computation resource. Unlike time it can be reused.
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Space Bounded Computation
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Space Bounded Computation

Let S:N — Nand L C {0,1}*.

We say that L € SPACE(S(n)) if there is some ¢ and some TM deciding L that never
uses more than ¢S(n) nonblank worktape locations on inputs of length n.
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Space Constructible Function

Suppose S: N — N and S(n) > log(n).

1. Sis space constructible if there is a Turing Machine that computes the function
1"+ LS(n)s in O(S(n)) space.

2. Sis fully space constructible if there is a Turing Machine that upon receiving 1”
uses exactly S(n)-space.

The two definitions are equivalent in terms of marking cells.
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Space Bounded Computation, the Nondeterministic Case

L € NSPACE(S(n)) if there is some ¢ and some NDTM deciding L that never uses
more than ¢S(n) nonblank worktape locations on inputs of length n, regardless of its
nondeterministic choices.

For space constructible function S(n) we could allow a machine in NSPACE(S(n)) to
diverge and to use more than cS(n) space in unsuccessful computation paths.
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Configuration

A configuration of a running TM M with input x consists of the following:

» the state;
> the content Of the WOI’k tape; [In the study of space complexity one may always assume that there is one work tape.]

» the head positions.

We write Cgiart for the unique initial configuration.

We assume that there is a single accepting configuration C.ccep:.
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Configuration Graph

A configuration graph Gur x of M with input x is a directed graph:
» the nodes are configurations;

P the arrows are one-step computations.

“M accepts x" iff “there is a path in Gy x from Cggart to Caccept
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Reachability Predicate for Configuration Graph

Suppose M is an S(n)-space TM.
» A vertex of Gy is described using O(S(]x|)) bits.
» Therefore Gy x has at most 20(5(x)) nodes.

There is an O(S(n))-size (string) CNF ¢ « such that for every two configurations C and C,
> oM x(C C)=1iff C— C is an edge in Gy x.

omx(C, C') can be checked by essentially comparing C and C’ bit by bit, accomplished in both
» O(S(n)) time, and O(log S(n)) space.
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Space vs. Time

Theorem. Suppose S(n) : N — N is space constructible. Then

TIME(S(n)) C SPACE(S(n)) C€ NSPACE(S(n)) C TIME(2°05(M)),

A TM for NSPACE(S(n)) C TIME(2°G5(")) constructs Gy, in 2°5(") time, and
then applies the breadth first search algorithm to the reachability instance

< GM7X7 Cstart ) Caccept) .
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Space vs. Time

Theorem. For all space constructible S(n), TIME(S(n)) C SPACE(S(n)/log S(n)).

o 8 K

1. Hopcroft, Paul and Valiant. On Time versus Space and Related Problems. FOCS, 1975.
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Space Complexity Class
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L
NL
PSPACE

NPSPACE

= SPACE(log(n)),
= NSPACE(log(n)),
ef USPACE(nC),

>0
= | JNSPACE(r").

>0
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Games are Harder than Puzzles

NP C PSPACE.
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Example

The following problems are in L:

EVEN & {x | x has an even number of 1's},
PLUS def {(tmu,cna,em+ ny) | myn € N},
wop &

{(Lma,Lna,cm x ny) | mon € N}
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PATH is in NL

PATH = {(G, s, t) | there is a path from s to t in the digraph G}.

Theorem. PATH € NL.

Proof.
Both a node and a counter can be stored in logspace. O
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Uni

HER,

versal Turing Machine without Space Overhead

Theorem. There is a universal TM that operates without space overhead for input
TM'’s with space complexity > log(n).

A universal TM can simulate M, by recording all the non-blank tape content of M, in
its single work tape, and k counters are used to store the locations of the readers.

Some additional space, whose size depends only on M, is necessary for bookkeeping.
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Space Hierarchy Theorem

Theorem. If f, g are space constructible such that f(n) = o(g(n)), then

SPACE(f(n)) C SPACE(g(n)).

We design V by modifying the universal machine so that
» V(x) simulates M,(x), and
» it stops when it is required to use more than g(n) space, and

P it negates the result after it completes simulation.

If V was executed in f(n) space, then V = M, for some large enough « so that V can
complete the simulation of M, on a.

But then M, () = V() = M, ().

1. J. Hartmanis and R. Stearns. On the Computational Complexity of Algorithms. Transactions of AMS, 117:285-306, 1965.
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Logspace Reduction
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Logspace Reduction

A function f: {0,1}* — {0,1}* is implicitly logspace computable if the following hold:
1. JeVx|fix)| < c|x°,
2. {{x,)) | i<|fix)|} €L and
3. {{x, ) | ix)i=1} € L.

Problem B is logspace reducible to problem C, written B <; C, if there is an implicitly
logspace computable fsuch that x € Biff f(x) € C.

> LOgSpace reductions are Kal’p I’eductions. [The converse implication is unknown.]

» All known NP-completeness results can be established using logspace reduction.
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Transitivity of Logspace Reduction

Lemma. If B<; Cand C<; Dthen B<; D.

Let Mf, M, be logspace machines that compute x, i — f(x); respectively y, j — g(y);.

We construct a machine that, given input x,j with j < |g(f(x))|, outputs g(f(x));.

» The machine operates as if f(x) were stored on a virtual tape.
P |t stores the address i of the current cell of the virtual tape.
> It uses O(log |f(x)|) = O(log|x|) space to calculate g(f(x));.
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Logspace Computability

A function f: {0,1}* — {0,1}* is logspace computable if it can be computed by a TM
that has a write-once output tape using O(log n) work tape space.

Lemma. Implicitly logspace computability = logspace computability.
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PSPACE Completeness
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Space Completeness

A language L' is PSPACE-hard if L <; L’ for every L € PSPACE.
If in addition L’ € PSPACE then L’ is PSPACE-complete.
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Quantified Boolean Formula

HER,

A quantified Boolean formula (QBF) is a formula of the form
Qux1Qax2 ... Quxx-ip(xX1, - - -, Xn)

where each Q; is one of the two quantifiers V,3, xi, ..., x, range over {0,1}, and ¢ is
a quantifier free Boolean formula containing no free variables other than xi, ..., x,.

Let TQBF be the set of true QBFs.
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Quantified Boolean Formula

Suppose ¢ is a CNF.
» € SAT if and only if Ix.¢ € TQBF.

» € TAUTOLOGY if and only if Vx.¢ € TQBF.
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Stockmeyer-Meyer Theorem. TQBF is PSPACE-complete.

Iz K

1. Larry Stockmeyer, Albert Meyer. Word Problems Requiring Exponential Time. STOC, 1973.
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Proof of Stockmeyer-Meyer Theorem

TQBF € PSPACE. Suppose ) = Q1x1 Q2x2 . . . Qnxn.0(X1, ..., Xp).
» A counter of length n is identified to an assignment.
» Apply the depth first tree traversal algorithm.

It is actually a linear space algorithm.

Q171

Q272 Q272
W ro=1 W ro=1
Q’ﬂx’ll
Iny l'nzl
1

0
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Proof of Stockmeyer-Meyer Theorem

Let M be a TM that decides L in polynomial space, say S(n) space.

We reduce x € {0,1}* to a QBF ¢, of size O(S(|x])?) in logspace such that M(x) = 1
iff oy is true.

1. Construct in logspace 1y such that ¢o(C, C) is true if and only if C— C.

2. Let ¢;(C, C') be true if and only if there exists a path of length < 2/ from Cto C.
It can be defined by the following formula, which is computable in logspace.

JCVDWD?.((D'=CA D*=C") v (D'=C" A D*’=C)) = v;_1(D", D).

3. Now [ = [¢hi1| + ¢ S(|x]). Hence [ou] = [ths(jx)| = O(S(Ix1)?).

Every variable is coded up by a string of length log S(|x|). But ..
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QBF Game

Two players make alternating moves on a board of the game.
Ix1Vxo3x3Vxyg - - - Ixopn—1Vxon.0(X1, - . -, X2n).

Player | moves first. It has a winning strategy if ¢ is true after Player Il's last move, no
matter how Player Il plays.

» Deciding if Player | has a winning strategy for QBF game is PSPACE-complete.

1. Christos Papadimitriou. Games Against Nature. FOCS, 1983.
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Savitch Theorem
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Savitch Theorem. If S is space constructible then NSPACE(S(n)) C SPACE(S(n)?).

Suppose N is an NDTM that decides L in S(n) space.

Given x € {0,1}*, a divide-and-conquer depth first algorithm can be designed that
searches for a path from Cgtart t0 Caccept in Gy x.

The depth of the recursive calls is S(|x]).

1. W. Savitch. Relationships between Nondeterministic and Deterministic Tape Complexities. JCSS, 177-192, 1970.
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Proof of Savitch Theorem

Gy
a c
S Ccl/A\C? Ioc, AN
Cstart C} oGy Cy Caccept
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PSPACE = NPSPACE
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NL Completeness
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NL-Completeness

Cis NL-complete if it is in NL and B <; C for every B € NL.
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NL-Completeness

HER,

Theorem. PATH is NL-complete.

Suppose a nondeterministic TM N decides L in O(log(n)) space. A logspace reduction
from L to PATH is defined by the following reduction:

X = <GN,X7 Cstart7 Caccept>-

The graph Gy« is represented by an adjacent matrix, every bit of it can be calculated
in O(|C]) = O(log |x|) space.

We may assume that all space bounded TM's terminate by making use of counters.
It follows that PATH remains NL-complete if only acyclic graphs are admitted.
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FHEAZIE R, 2023 AERKFEI

NL is nothing but PATH.
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Immerman-Szelepcsényi Theorem
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Savitch Theorem implies coNPSPACE = NPSPACE.
However coNL = NL is a different story.
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Immerman-Szelepcsényi Theorem. PATH € NL. ¢

1. R. Szelepcsényi. The Method of Forcing for Nondeterministic Automata. Bulletin of EATCS, 1987.

2. N. Immerman. Nondeterministic Space is Closed under Complementation. SIAM Journal Computing, 1988.
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Proof of Immerman-Szelepcsényi Theorem

Design a logspace NDTM N such that for vertices s, t of a graph G with n-vertices,
N((G, s, t)) = 1 iff there is no path from s to t.

For i€ [n—1],
» let C; be the set of nodes reachable from s in i-steps, and [y definition ¢, c ¢, € ... c ¢, 1]
» let ¢; = |C;|. Notice that ¢; can be stored in logspace.

We can store a fixed number of ¢;'s, but we cannot store any of C's.

Set ¢cir1 = 0. For each vertex v # s, N guesses C; and increments ¢ if either v € G
or u— v for some u € C,.

» For each uin C; check that s reaches to v in i steps. This is PATH.
» A counter is maintained to ensure that |G| = ¢;.

After c,—1 has been calculated, guess C,_1 and accept if t ¢ C,—_1.
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Immerman-Szelepcsényi Theorem

Corollary. For every space constructible S(n) > log(n), one has

coNSPACE(S(n)) = NSPACE(S(n)).
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Theorem. 2SAT is NL-complete.

Given (G, s, t), where G is acyclic, we translate an edge x — y to the clause XV y. We
also add clauses s and t. This is a logspace reduction from acyclic PATH to 2SAT.

There is also a logspace reduction from 2SAT to PATH.
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By Hierarchy Theorems some of the following inclusions are strict.
L CNL CP C NP C PSPACE C EXP.

Yet we don't know which is strict.

> |t is widely believed that NL C P.

”
> “L = NL" is a major open problem in the structural theory.
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