Space Complexity

Space is a computation resource. Unlike time it can be reused.

Synopsis

- 1. Space Bounded Computation
- 2. Logspace Reduction
- 3. PSPACE Completeness
- 4. Savitch Theorem
- 5. NL Completeness
- 6. Immerman-Szelepcsényi Theorem

Space Bounded Computation

Space Bounded Computation

Let $S : \mathbf{N} \to \mathbf{N}$ and $L \subseteq \{0, 1\}^*$.

We say that $L \in \mathbf{SPACE}(S(n))$ if there is some c and some TM deciding L that never uses more than cS(n) nonblank worktape locations on inputs of length n.

Space Constructible Function

Suppose $S : \mathbf{N} \to \mathbf{N}$ and $S(n) \ge \log(n)$.

- 1. S is space constructible if there is a Turing Machine that computes the function $1^n \mapsto \llcorner S(n) \lrcorner$ in O(S(n)) space.
- 2. S is fully space constructible if there is a Turing Machine that upon receiving 1^n uses exactly S(n)-space.

The two definitions are equivalent in terms of marking cells.

Space Bounded Computation, the Nondeterministic Case

 $L \in NSPACE(S(n))$ if there is some *c* and some NDTM deciding *L* that never uses more than cS(n) nonblank worktape locations on inputs of length *n*, regardless of its nondeterministic choices.

For space constructible function S(n) we could allow a machine in NSPACE(S(n)) to diverge and to use more than cS(n) space in unsuccessful computation paths.

Configuration

A configuration of a running TM \mathbb{M} with input x consists of the following:

- the state;
- the content of the work tape; [In the study of space complexity one may always assume that there is one work tape.]
- the head positions.

We write C_{start} for the unique initial configuration.

We assume that there is a single accepting configuration C_{accept} .

A configuration graph $G_{\mathbb{M},x}$ of \mathbb{M} with input x is a directed graph:

- the nodes are configurations;
- the arrows are one-step computations.

" \mathbb{M} accepts x" iff "there is a path in $G_{\mathbb{M},x}$ from C_{start} to C_{accept} ".

Reachability Predicate for Configuration Graph

Suppose \mathbb{M} is an S(n)-space TM.

- ▶ A vertex of $G_{\mathbb{M},x}$ is described using O(S(|x|)) bits.
- ▶ Therefore $G_{\mathbb{M},x}$ has at most $2^{O(S(|x|))}$ nodes.

There is an O(S(n))-size (string) CNF $\varphi_{\mathbb{M},x}$ such that for every two configurations C and C',

•
$$\varphi_{\mathbb{M},x}(\mathcal{C},\mathcal{C}') = 1$$
 iff $\mathcal{C} \to \mathcal{C}'$ is an edge in $\mathcal{G}_{\mathbb{M},x}$.

 $\varphi_{\mathbb{M},x}(C, C')$ can be checked by essentially comparing C and C' bit by bit, accomplished in both $\triangleright O(S(n))$ time, and $O(\log S(n))$ space.

Space vs. Time

Theorem. Suppose $S(n) : \mathbf{N} \to \mathbf{N}$ is space constructible. Then

 $TIME(S(n)) \subseteq SPACE(S(n)) \subseteq NSPACE(S(n)) \subseteq TIME(2^{O(S(n))}).$

A TM for $NSPACE(S(n)) \subseteq TIME(2^{O(S(n))})$ constructs $G_{\mathbb{M},x}$ in $2^{O(S(n))}$ time, and then applies the breadth first search algorithm to the reachability instance

 $\langle G_{\mathbb{M},x}, C_{\mathtt{start}}, C_{\mathtt{accept}} \rangle.$

Theorem. For all space constructible S(n), $TIME(S(n)) \subseteq SPACE(S(n)/\log S(n))$.

1. Hopcroft, Paul and Valiant. On Time versus Space and Related Problems. FOCS, 1975.

Space Complexity Class

$$\mathbf{L} \stackrel{\text{def}}{=} \mathbf{SPACE}(\log(n)),$$
$$\mathbf{NL} \stackrel{\text{def}}{=} \mathbf{NSPACE}(\log(n)),$$
$$\mathbf{PSPACE} \stackrel{\text{def}}{=} \bigcup_{c>0} \mathbf{SPACE}(n^c),$$
$$\mathbf{NPSPACE} \stackrel{\text{def}}{=} \bigcup_{c>0} \mathbf{NSPACE}(n^c).$$

空间复杂性

Games are Harder than Puzzles

$NP \subseteq PSPACE.$

Example

The following problems are in L:

空间复杂性

 $PATH = \{ \langle G, s, t \rangle \mid \text{there is a path from } s \text{ to } t \text{ in the digraph } G \}.$

Theorem. PATH \in **NL**.

Proof.

Both a node and a counter can be stored in logspace.

Universal Turing Machine without Space Overhead

Theorem. There is a universal TM that operates without space overhead for input TM's with space complexity $\geq \log(n)$.

A universal TM can simulate \mathbb{M}_{α} by recording all the non-blank tape content of \mathbb{M}_{α} in its single work tape, and *k* counters are used to store the locations of the readers. Some additional space, whose size depends only on \mathbb{M}_{α} , is necessary for bookkeeping.

Space Hierarchy Theorem

Theorem. If f, g are space constructible such that f(n) = o(g(n)), then

 $\mathbf{SPACE}(f(n)) \subsetneq \mathbf{SPACE}(g(n)).$

We design ${\mathbb V}$ by modifying the universal machine so that

- ▶ $\mathbb{V}(x)$ simulates $\mathbb{M}_x(x)$, and
- \blacktriangleright it stops when it is required to use more than g(n) space, and
- it negates the result after it completes simulation.

If \mathbb{V} was executed in f(n) space, then $\mathbb{V} = \mathbb{M}_{\alpha}$ for some large enough α so that \mathbb{V} can complete the simulation of \mathbb{M}_{α} on α .

But then $\overline{\mathbb{M}_{\alpha}(\alpha)} = \mathbb{V}(\alpha) = \mathbb{M}_{\alpha}(\alpha)$.

^{1.} J. Hartmanis and R. Stearns. On the Computational Complexity of Algorithms. Transactions of AMS, 117:285-306, 1965.

Logspace Reduction

Logspace Reduction

A function $f: \{0,1\}^* \to \{0,1\}^*$ is implicitly logspace computable if the following hold:

- 1. $\exists c. \forall x. | f(x) | \leq c |x|^c$,
- 2. $\{\langle x, i \rangle \mid i \leq |f(x)|\} \in \mathbf{L}$ and
- 3. $\{\langle x, i \rangle \mid f(x)_i = 1\} \in \mathbf{L}.$

Problem *B* is logspace reducible to problem *C*, written $B \leq_L C$, if there is an implicitly logspace computable *f* such that $x \in B$ iff $f(x) \in C$.

- Logspace reductions are Karp reductions. [The converse implication is unknown.]
- All known NP-completeness results can be established using logspace reduction.

Transitivity of Logspace Reduction

Lemma. If $B \leq_L C$ and $C \leq_L D$ then $B \leq_L D$.

Let \mathbb{M}_f , \mathbb{M}_g be logspace machines that compute $x, i \mapsto f(x)_i$ respectively $y, j \mapsto g(y)_j$. We construct a machine that, given input x, j with $j \leq |g(f(x))|$, outputs $g(f(x))_j$.

- The machine operates as if f(x) were stored on a virtual tape.
 - It stores the address i of the current cell of the virtual tape.
 - ▶ It uses $O(\log |f(x)|) = O(\log |x|)$ space to calculate $g(f(x))_j$.

Logspace Computability

A function $f: \{0,1\}^* \to \{0,1\}^*$ is logspace computable if it can be computed by a TM that has a write-once output tape using $O(\log n)$ work tape space.

Lemma. Implicitly logspace computability = logspace computability.

PSPACE Completeness

A language L' is **PSPACE**-hard if $L \leq_L L'$ for every $L \in$ **PSPACE**. If in addition $L' \in$ **PSPACE** then L' is **PSPACE**-complete.

A quantified Boolean formula (QBF) is a formula of the form

 $Q_1 x_1 Q_2 x_2 \ldots Q_n x_x \varphi(x_1, \ldots, x_n)$

where each Q_i is one of the two quantifiers $\forall, \exists, x_1, \ldots, x_n$ range over $\{0, 1\}$, and φ is a quantifier free Boolean formula containing no free variables other than x_1, \ldots, x_n .

Let TQBF be the set of true QBFs.

Quantified Boolean Formula

Suppose φ is a CNF.

- ▶ $\varphi \in SAT$ if and only if $\exists \tilde{x}. \varphi \in TQBF$.
- $\varphi \in \text{TAUTOLOGY}$ if and only if $\forall \widetilde{x}. \varphi \in \text{TQBF}$.

Stockmeyer-Meyer Theorem. TQBF is PSPACE-complete.

1. Larry Stockmeyer, Albert Meyer. Word Problems Requiring Exponential Time. STOC, 1973.

Proof of Stockmeyer-Meyer Theorem

TQBF \in **PSPACE**. Suppose $\psi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n . \varphi(x_1, \dots, x_n)$.

- ▶ A counter of length *n* is identified to an assignment.
- Apply the depth first tree traversal algorithm.

It is actually a linear space algorithm.

Proof of Stockmeyer-Meyer Theorem

Let \mathbb{M} be a TM that decides L in polynomial space, say S(n) space. We reduce $x \in \{0,1\}^*$ to a QBF φ_x of size $O(S(|x|)^2)$ in logspace such that $\mathbb{M}(x) = 1$ iff φ_x is true.

1. Construct in logspace ψ_0 such that $\psi_0(\mathcal{C}, \mathcal{C}')$ is true if and only if $\mathcal{C} \to \mathcal{C}$.

2. Let $\psi_i(C, C)$ be true if and only if there exists a path of length $\leq 2^i$ from C to C. It can be defined by the following formula, which is computable in logspace.

 $\exists C'' \forall D^1 \forall D^2.((D^1 = C \land D^2 = C'') \lor (D^1 = C'' \land D^2 = C')) \Rightarrow \psi_{i-1}(D^1, D^2).$

3. Now $|\psi_i| = |\psi_{i-1}| + c \cdot S(|x|)$. Hence $|\varphi_x| = |\psi_{S(|x|)}| = O(S(|x|)^2)$.

Every variable is coded up by a string of length $\log S(|x|)$. But ...

QBF Game

Two players make alternating moves on a board of the game.

$$\exists x_1 \forall x_2 \exists x_3 \forall x_4 \cdots \exists x_{2n-1} \forall x_{2n} \varphi(x_1, \dots, x_{2n}).$$

Player I moves first. It has a winning strategy if φ is true after Player II's last move, no matter how Player II plays.

▶ Deciding if Player I has a winning strategy for QBF game is **PSPACE**-complete.

^{1.} Christos Papadimitriou. Games Against Nature. FOCS, 1983.

Savitch Theorem

Savitch Theorem. If *S* is space constructible then $NSPACE(S(n)) \subseteq SPACE(S(n)^2)$.

Suppose \mathbb{N} is an NDTM that decides *L* in *S*(*n*) space.

Given $x \in \{0,1\}^*$, a divide-and-conquer depth first algorithm can be designed that searches for a path from $C_{\texttt{start}}$ to $C_{\texttt{accept}}$ in $G_{\mathbb{N},x}$.

The depth of the recursive calls is S(|x|).

^{1.} W. Savitch. Relationships between Nondeterministic and Deterministic Tape Complexities. JCSS, 177-192, 1970.

Proof of Savitch Theorem

空间复杂性

$\mathbf{PSPACE} = \mathbf{NPSPACE}$

NL Completeness

NL-Completeness

C is **NL**-complete if it is in **NL** and $B \leq_L C$ for every $B \in$ **NL**.

NL-Completeness

Theorem. PATH is NL-complete.

Suppose a nondeterministic TM \mathbb{N} decides *L* in $O(\log(n))$ space. A logspace reduction from *L* to PATH is defined by the following reduction:

$$x \mapsto \langle G_{\mathbb{N},x}, C_{\mathtt{start}}, C_{\mathtt{accept}} \rangle.$$

The graph $G_{\mathbb{N},x}$ is represented by an adjacent matrix, every bit of it can be calculated in $O(|C|) = O(\log |x|)$ space.

We may assume that all space bounded TM's terminate by making use of counters. It follows that PATH remains **NL**-complete if only acyclic graphs are admitted.

 \mathbf{NL} is nothing but PATH.

Immerman-Szelepcsényi Theorem

Savitch Theorem implies coNPSPACE = NPSPACE.

However $\mathbf{coNL} = \mathbf{NL}$ is a different story.

Immerman-Szelepcsényi Theorem. $\overline{PATH} \in NL$.

1. R. Szelepcsényi. The Method of Forcing for Nondeterministic Automata. Bulletin of EATCS, 1987.

2. N. Immerman. Nondeterministic Space is Closed under Complementation. SIAM Journal Computing, 1988.

Proof of Immerman-Szelepcsényi Theorem

Design a logspace NDTM \mathbb{N} such that for vertices *s*, *t* of a graph *G* with *n*-vertices, $\mathbb{N}(\langle G, s, t \rangle) = 1$ iff there is no path from *s* to *t*.

For $i \in [n-1]$,

▶ let C_i be the set of nodes reachable from s in *i*-steps, and [By definition $c_1 \subseteq c_2 \subseteq ... \subseteq c_{n-1}$.]

▶ let $c_i = |C_i|$. Notice that c_1 can be stored in logspace.

We can store a fixed number of c_i 's, but we cannot store any of C_i 's.

Set $c_{i+1} = 0$. For each vertex $v \neq s$, \mathbb{N} guesses C_i and increments c_{i+1} if either $v \in C_i$ or $u \rightarrow v$ for some $u \in C_i$.

For each u in C_i check that s reaches to u in i steps. This is PATH.

• A counter is maintained to ensure that $|C_i| = c_i$.

After c_{n-1} has been calculated, guess C_{n-1} and accept if $t \notin C_{n-1}$.

Immerman-Szelepcsényi Theorem

Corollary. For every space constructible $S(n) \ge \log(n)$, one has

coNSPACE(S(n)) = NSPACE(S(n)).

Theorem. 2SAT is NL-complete.

Given $\langle G, s, t \rangle$, where G is acyclic, we translate an edge $x \to y$ to the clause $\overline{x} \lor y$. We also add clauses s and \overline{t} . This is a logspace reduction from acyclic PATH to 2SAT.

There is also a logspace reduction from 2SAT to \overline{PATH} .

By Hierarchy Theorems some of the following inclusions are strict.

```
L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP.
```

Yet we don't know which is strict.

- \blacktriangleright It is widely believed that $\mathbf{NL}\subsetneq \mathbf{P}.$
- " $\mathbf{L} \stackrel{?}{=} \mathbf{NL}$ " is a major open problem in the structural theory.