
NP Completeness

NP-completeness was introduced by Stephen Cook in 1971 in a foundational paper.

Leonid Levin independently introduced the same concept and proved that a variant of
SAT is NP-complete.

1. S. Cook. The Complexity of Theorem-Proving Procedures. STOC, 1971.
2. L. Levin. Universal Search Problems. PINFTRANS: Problems of Information Transmission, 1973. (Translated by Trakhtenbrot)

Computational Complexity, by Fu Yuxi NP Completeness 1 / 77

The question “P ?
= NP” became known since 1971.

Computational Complexity, by Fu Yuxi NP Completeness 2 / 77

Synopsis

1. NP-Completeness
2. Cook-Levin Theorem
3. Karp Theorem
4. Ladner Theorem
5. Baker-Gill-Solovay Theorem
6. On Relativization

Computational Complexity, by Fu Yuxi NP Completeness 3 / 77

NP-Completeness

Computational Complexity, by Fu Yuxi NP Completeness 4 / 77

Gödel proved (1931): Theorem Proving is undecidable.
Gödel questioned (1956): What happens if we are only interested in theorems with
short proofs?

Computational Complexity, by Fu Yuxi NP Completeness 5 / 77

From now on “polynomial time” is abbreviated to “P-time”.

Computational Complexity, by Fu Yuxi NP Completeness 6 / 77

On the Definition of NP

Theorem. A language L ⊆ {0, 1}∗ is in NP if and only if there exists a polynomial
p : N → N and a P-time TM M, called a verifier for L, such that for every x ∈ {0, 1}∗,

x ∈ L iff ∃u∈{0, 1}p(|x|).M(x, u)= 1.

If x ∈ L and u ∈ {0, 1}p(|x|) satisfy M(x, u)=1, then we call u a certificate for x with
respect to L and M.

A sequence of successful choices can be seen as a certificate. Conversely a certificate
can be generated nondeterministically.

Computational Complexity, by Fu Yuxi NP Completeness 7 / 77

NP and Efficient Verifiability

P: The class of efficiently solvable problems.
NP: The class of efficiently verifiable problems.

▶ A problem in P will be called a P-problem.
▶ A problem in NP will be called an NP-problem.

Computational Complexity, by Fu Yuxi NP Completeness 8 / 77

NP-Problems

1. IndSet, TSP, Subset Sum, 0/1 IntProg, dHamPath
2. Graph Isomorphism, Factoring
▶ Babai’s result in 2015, 2polylog.
▶ Prime Factoring is NP-complete.

3. Linear Programming, Primality

Computational Complexity, by Fu Yuxi NP Completeness 9 / 77

One can reduce one problem to another without even knowing any solutions to either.

Computational Complexity, by Fu Yuxi NP Completeness 10 / 77

Karp Reduction

Suppose L, L′ ⊆ {0, 1}∗.
We say that L is Karp reducible to L′, denoted by L ≤K L′, if there is a P-time
computable function r : {0, 1}∗ → {0, 1}∗ such that for every x ∈ {0, 1}∗,

x ∈ L iff r(x) ∈ L′.

If L ≤K L′ ≤K L′′ then L ≤K L′′.

Computational Complexity, by Fu Yuxi NP Completeness 11 / 77

Hardness and Completeness

We say that L′ is NP-hard if L ≤K L′ for every L ∈ NP.
We say that L′ is NP-complete if L′ is NP-hard and L′ ∈ NP.

Fact.
1. If language L is NP-hard and L ∈ P, then P = NP.
2. If language L is NP-complete, then L ∈ P iff P = NP.

Computational Complexity, by Fu Yuxi NP Completeness 12 / 77

Does there exist an NP-complete problem any way?

Computational Complexity, by Fu Yuxi NP Completeness 13 / 77

Bounded Halting Problem, the problem of all NP-problems

Theorem. The following language is NP-complete:

TMSAT def
= {⟨α, x, 1n, 1t⟩ | ∃u∈{0, 1}n. Mα(x, u) outputs 1 in t steps}.

Let L ∈ NP be decided by a q-time TM M using p-size certificate. Then “x ∈ L” iff

∃u ∈ {0, 1}p(|x|).M(x, u) outputs 1 in q(|x|+p(|x|)) steps

iff “⟨⌞M⌟, x, 1p(|x|), 1q(|x|+p(|x|))⟩ ∈ TMSAT”.

The Karp reduction maps x of size n onto ⟨⌞M⌟, x, 1p(n), 1q(n+p(n))⟩.

Computational Complexity, by Fu Yuxi NP Completeness 14 / 77

A language L ⊆ {0, 1}∗ is in coNP def
=

{
L | L ∈ NP

}
if there exists a polynomial

p : N → N and a P-time TM M such that

x ∈ L iff ∀u∈{0, 1}p(|x|).M(x, u)=1

for every x.

P ⊆ coNP ∩ NP.

Computational Complexity, by Fu Yuxi NP Completeness 15 / 77

P = NP Implies coNP = NP.

Computational Complexity, by Fu Yuxi NP Completeness 16 / 77

Theorem. If P = NP then EXP = NEXP.
Proof.
Suppose L ∈ NEXP is accepted by an NDTM in 2nc time. Then

Lpad =
{

x012|x|c | x ∈ L
}
∈ NP.

By assumption Lpad ∈ P. But then L ∈ EXP.

The padding technique used in this proof was introduced by Berman and Hartmanis.

1. Berman and Hartmanis. On Isomorphisms and Density of NP and Other Complete Sets. STOC, 1976.

Computational Complexity, by Fu Yuxi NP Completeness 17 / 77

Cook-Levin Theorem

Computational Complexity, by Fu Yuxi NP Completeness 18 / 77

Conjunctive Normal Form

A CNF formula has the form ∧
i

∨
j

vij

 ,

where vij is called a literal, and
∨

j vij a clause. A literal is either a propositional
variable, or the negation of a propositional variable.

A kCNF formula is a CNF formula in which all clauses contain at most k literals.

Computational Complexity, by Fu Yuxi NP Completeness 19 / 77

The First Natural NP-Complete Problem

SAT is the language of all satisfiable CNF formulae.

▶ The set of the unsatisfiable DNF’s is the complement of SAT.
▶ The set of the satisfiable DNF’s is in P.

Computational Complexity, by Fu Yuxi NP Completeness 20 / 77

3SAT

Fact. 2SAT ∈ P.

Fact. SAT ≤K 3SAT.
Proof.
For example u1 ∨ u2 ∨ u3 ∨ u4 ∨ u5 is satisfiable iff

(u1 ∨ u2 ∨ v) ∧ (¬v ∨ u3 ∨ w) ∧ (¬w ∨ u4 ∨ u5)

is satisfiable.

Corollary. 3SAT is NP-complete if SAT is NP-complete.

Computational Complexity, by Fu Yuxi NP Completeness 21 / 77

Cook-Levin Theorem

Theorem (Cook, 1971; Levin, 1973). SAT is NP-complete.

Computational Complexity, by Fu Yuxi NP Completeness 22 / 77

Formula for Equality

Intuitively the formula

(x1 ∨ y1) ∧ (x1 ∨ y1) ∧ . . . ∧ (xn ∨ yn) ∧ (xn ∨ yn)

is equivalent to
(x1 = y1) ∧ . . . ∧ (xn = yn).

Computational Complexity, by Fu Yuxi NP Completeness 23 / 77

Formula for Boolean Function

Claim. For every Boolean function f : {0, 1}ℓ → {0, 1}, there is an ℓ-variable CNF
formula φf of size at most ℓ2ℓ such that φf(u) = f(u) for every u ∈ {0, 1}ℓ, where the
size of a CNF formula is defined to be the number of ∨/∧ symbols.

Let φf be ∧
v∈{0,1}ℓ∧f(v)=0

Cv(z1, . . . , zℓ)

where for each v, Cv(v) = 0 and Cv(u) = 1 for every u ̸= v.

Computational Complexity, by Fu Yuxi NP Completeness 24 / 77

Proof of Cook-Levin Theorem

Suppose L ∈ NP.
Let M be an oblivious P-time TM and p a polynomial such that for every x ∈ {0, 1}∗,

x ∈ L iff ∃u∈{0, 1}p(|x|).M(x, u) = 1.

We shall construct a P-time computable function φ_ : L → SAT such that “φx ∈ SAT
iff x ∈ L”, which is equivalent to saying that

φx ∈ SAT iff ∃u∈{0, 1}p(|x|).M(xu) = 1.

We may assume that M is oblivious.

Computational Complexity, by Fu Yuxi NP Completeness 25 / 77

The First Proof

1 0 0 1 1 1

1 0 0 1 1 11 0 0 1 1 11 0 0 1 1 1

1 0 0 1 1 1 a b

1 0 0 1 1 1 A B

1 0 0 1 1 11 0 0 1 1 11 0 0 1 1 1 1

C0

C1

Ci

Ci+1

Ct

V

v

Computational Complexity, by Fu Yuxi NP Completeness 26 / 77

The First Proof

1 0 0 1 1 1C0

Ct+1

Ct

C1 C C C C

C C C C

CCCC

Computational Complexity, by Fu Yuxi NP Completeness 27 / 77

The Second Proof

The idea is that φx should be a CNF formula such that
▶ it codes up the execution sequence of M(xu) from the initial configuration to the

final configuration, and
▶ M(xu) = 1 iff the CNF formula is satisfiable.

Computational Complexity, by Fu Yuxi NP Completeness 28 / 77

The Second Proof

We choose to encode snapshots rather than configurations.
▶ “Computation is local.”

The i-th snapshot zi depends only on zi−1, prev(i), inputpos(i).
▶ The current state is calculated from zi−1.
▶ The symbol at the input tape is read at inputpos(i).
▶ The other symbols are collected from prev(i)’s.

Computational Complexity, by Fu Yuxi NP Completeness 29 / 77

The Second Proof

Now x ∈ L if and only if

∃y ∈ {0, 1}|x|+p(|x|).∃z1 . . . zT(|x|).φx(y, z1, . . . , zT(|x|))

where φx(y, z1, . . . , zT(|x|)) is the conjunction of the following propositions.
1. x is a prefix of y;
2. z1 encodes the initial snapshot;
3. zT(|x|) encodes the final snapshot with output 1;
4. zprev(i), zi−1, zi and yinputpos(i) must satisfy the relationship imposed by the

transition function.

The size of zi is bounded by (3c + log n)23c+log n, where c is the size of snapshot.
Conclude that φx(y, z̃) is of polynomial length.

Computational Complexity, by Fu Yuxi NP Completeness 30 / 77

The Second Proof

φx(y, z̃) is constructed in P-time.

▶ Calculate |x ◦ u| in P-time, and
▶ Simulate M on 0|x◦u| in P-time to calculate

▶ the head positions at the i-th step, and
▶ for each work tape the largest j < i such that at the j-th step the head of the work

tape was scanning the same cell as it is scanning at the i-th step.

Computational Complexity, by Fu Yuxi NP Completeness 31 / 77

Property of Cook-Levin Reduction

The reduction is a Levin reduction.
▶ A reduction from an NP language to another is a Levin reduction if it provides an

efficient method to transform certificates to certificates forward and backward.

The reduction is parsimonious.
▶ A reduction r from an NP language to another NP language is parsimonious if the

number of the certificates of x is equal to the number of the certificates of r(x).

The reduction can be done in logspace.
▶ Confer Papadimitriou’s book.

Computational Complexity, by Fu Yuxi NP Completeness 32 / 77

Decision vs. Search

Search problems are evidently harder than the corresponding decision problems. They
are however equivalent in some sense.

Theorem. If P = NP, then for every NP language L, there is a P-time TM that on
input x ∈ L outputs a certificate for x.
Proof.
Construct a Levin reduction from L ∈ NP to SAT.
Given a CNF formula with n variables, we can call upon a P-time algorithm for SAT for
n + 1 times to find a certificate for the formula if it is satisfiable. We then apply the
Levin reduction to get a certificate for x.

Computational Complexity, by Fu Yuxi NP Completeness 33 / 77

Theorem. The following language is co-NP-complete:

TAUTOLOGY = {φ | φ is a tautology}.

“L ∈ coNP” ⇒ “L ∈ NP” ⇒ “L ≤K SAT” ⇒ “L ≤K SAT”.

Computational Complexity, by Fu Yuxi NP Completeness 34 / 77

Karp Theorem

Computational Complexity, by Fu Yuxi NP Completeness 35 / 77

Soon after Cook’s paper, Richard Karp showed in 1972 that 21 combinatorial problems
are NP-complete.

1. Reducibility Among Combinatorial Problems. In Complexity of Computer Computations, R. Miller and J. Thatcher (editors), 85-103, 1972.

Computational Complexity, by Fu Yuxi NP Completeness 36 / 77

Karp’s 21 NP-Complete Problems
SAT
▶ 0-1 Integer Programming
▶ Clique

▶ Set Packing
▶ Vetex Cover

▶ Set Covering, Feedback Node Set, Feedback Arc Set
▶ Directed Hamilton Circuit

▷ Undirected HC
▶ 3-SAT

▶ Chromatic Number
▶ Clique Cover
▶ Exact Cover

▷ Hitting Set, Steiner Tree, 3-Dimensional Matching
▷ Knapsack

▷ Job Sequencing
▷ Partition

▷ Max Cut

Computational Complexity, by Fu Yuxi NP Completeness 37 / 77

Michael R. Garey and David S. Johnson.
▶ Computers and Intractability – A Guide to the Theory of NP-Completeness, 1979.

Computational Complexity, by Fu Yuxi NP Completeness 38 / 77

Gödel’s Question Answered

Let A be a familiar axiomatic system. Let THEOREM be the problem{
(φ, 1|φ|c) | φ has a formal proof of length ≤ |φ|c in A

}
.

This is the finite version of Hilbert’s problem.

Fact. THEOREM is NP-complete.
Proof.
1. In familiar axiomatic systems, such as PA and ZF, verification runs in time
polynomial in the length of proof.
2. Arithmetization, for example.

Computational Complexity, by Fu Yuxi NP Completeness 39 / 77

Gödel essentially raised the question “P ?
= NP” as early as in 1956 in a private

communication to John von Neumann.

Computational Complexity, by Fu Yuxi NP Completeness 40 / 77

Berman-Hartmanis Conjecture

Conjecture. NP-complete problems are polynomially isomorphic.

Evidence:
▶ A ≤1

K B for all known NP-complete problems A,B.
▶ If A ≤1

K B ≤1
K A then A ∼=p B.

The proof is similar to that of Myhill Isomorphism Theorem.

Cook-Levin reductions are ≤1
K.

Computational Complexity, by Fu Yuxi NP Completeness 41 / 77

Berman-Hartmanis Conjecture

Fact. Berman-Hartmanis Conjecture implies P ̸= NP.

A dense language cannot be p-isomorphic to a sparse language.
▶ SAT is dense.
▶ {1n | n ∈ N} is sparse.

A set S ⊆ {0, 1}∗ is dense if |S≤n| = 2nO(1) ; it is sparse if |S≤n| = nO(1).

Computational Complexity, by Fu Yuxi NP Completeness 42 / 77

Ladner Theorem

Computational Complexity, by Fu Yuxi NP Completeness 43 / 77

We have seen many NP-complete problems.
Is there an NP-problem that is neither in P nor NP-complete?

Finding such a problem is at least as hard as proving “P ̸= NP”.

Computational Complexity, by Fu Yuxi NP Completeness 44 / 77

Ladner Theorem. If P ̸= NP, then there is a language neither in P nor NP-complete.

1. Richard Ladner. On the Structure of Polynomial Time Reducibility. J. ACM, 1975.

Computational Complexity, by Fu Yuxi NP Completeness 45 / 77

Motivation

We know that SAT is NP-complete whereas 2SAT is in P.
The idea is to remove from SAT just enough instances so that the remaining set is not
NP-complete, but not enough to make it in P.

Technically think of ψ01n as ψ ∧ v1 ∧ . . . ∧ vn. Observe that
▶ {

ψ01|ψ|c | ψ ∈ SAT
}

is NP-complete, whereas
▶

{
ψ012|ψ| | ψ ∈ SAT

}
is in P.

We will find some H(x) such that |ψ|H(|ψ|) does the job.

Computational Complexity, by Fu Yuxi NP Completeness 46 / 77

The problem
SATH =

{
ψ01|ψ|H(|ψ|)

| ψ ∈ SAT
}
,

and the function

H(n) =

 i, i < log log n is the smallest index of a TM such that
Mi(x) outputs SATH(x) in i|x|i steps for all x with |x| ≤ log n,

log log n, otherwise

are inter-dependent by definition.

1. SATH and H(n) are well defined. H(n) is nondecreasing since i<H(n) implies i <H(n+1).
2. SATH ∈ NP because H(n) is computable in o(n3)-time. Confer

T(n) = (log log n)2log n(c·C logC + 2log n+T(log n) + . . .),

where C = (log log n)(log n)log log n and c = o(log n).

Computational Complexity, by Fu Yuxi NP Completeness 47 / 77

Fact. If H(N) is finite, then some Mi decides SATH in ini-steps.
Proof.
If H(N) is finite, then since H is nondecreasing, some i exists such that H(n) = i for all
large n. But then Mi decides SATH in i|x|i steps.

Fact. SATH ∈ P iff H(N) is finite.
Proof.
Suppose Mi decides SATH in cnc-steps for some c. Let i be such that i ≥ c. Then
H(n) ≤ i for all large n.

Lemma. If P ̸= NP then SATH /∈ P.
Proof.
If SATH ∈ P, then SAT ≤K SATH by the above fact.

Computational Complexity, by Fu Yuxi NP Completeness 48 / 77

Lemma. If P ̸= NP then SATH is not NP-complete.

Assume that SATH were NP-complete.
▶ There would be some ini time Karp reduction r : SAT → SATH.
▶ Fix some N such that |r(φ)| = |ψ01|ψ|H(|ψ|) | > N implies |ψ| <

√
|φ|.

A P-time algorithm Sat(φ) for SAT is defined as follows:
1. Compute r(φ), which must be ψ01|ψ|H(|ψ|) for some ψ.
2. If |r(φ)| > N, call Sat(ψ) recursively, otherwise apply brutal force.

The depth of recursive call is bounded by log log |φ|.

Computational Complexity, by Fu Yuxi NP Completeness 49 / 77

Under plausible complexity theoretical assumptions, there are natural problems that are
not NP-complete. However none of these problems has been shown to lie outside P.

Computational Complexity, by Fu Yuxi NP Completeness 50 / 77

Baker-Gill-Solovay Theorem

Computational Complexity, by Fu Yuxi NP Completeness 51 / 77

Isn’t it tempting to look for a very clever use of diagonalization to construct an
intermediate language without assuming P ̸= NP?

Computational Complexity, by Fu Yuxi NP Completeness 52 / 77

Theodore Baker, John Gill and Robert Solovay published in 1975 a profound result
that brought up the issue of relativization.

1. Relativizations of the P =? NP Question. SIAM Journal on Computing, 4(4):431-442, 1975.

Computational Complexity, by Fu Yuxi NP Completeness 53 / 77

Oracle Turing Machine

An Oracle Turing Machine (OTM) is a TM M? that has additionally one read-write
oracle tape and states qquery, qyes, qno.
▶ To execute M? we need to specify an oracle B ⊆ {0, 1}∗.
▶ During an execution whenever MB enters the state qquery, the machine moves into

the state qyes if a ∈ B and qno if a /∈ B, where a is what is on the oracle tape.
▶ A query to B counts as a single computation step.

We write MB(x) for the output of MB on input x.

Nondeterministic Oracle TM’s are defined in the same manner.

Computational Complexity, by Fu Yuxi NP Completeness 54 / 77

The Gödel encoding of the OTM’s is independent of any oracle.
▶ M?

0, M?
1, M?

2, …

Computational Complexity, by Fu Yuxi NP Completeness 55 / 77

PO and NPO

Suppose O ⊆ {0, 1}∗.
▶ PO is the set of all languages decidable by P-time TM’s with access to O.
▶ NPO is the set of all languages acceptable by P-time NDTM’s with access to O.

NPO[k] ⊆ NPO.
▶ The oracle can be queried for at most k times in any run.

Computational Complexity, by Fu Yuxi NP Completeness 56 / 77

The complexity class NPNP for example is defined as follows:

NPNP =
⋃

L∈NP
NPL.

Computational Complexity, by Fu Yuxi NP Completeness 57 / 77

Example

1. SAT ∈ PSAT.

2. PA = P if A ∈ P.

3. NPNP = NPSAT.

Computational Complexity, by Fu Yuxi NP Completeness 58 / 77

Cook Reduction

A language L is Cook reducible to a language L′ if there is a P-time OTM M? such
that L is decided by ML′ .
▶ L is Cook reducible to L′ iff L is Cook reducible to L′.

Computational Complexity, by Fu Yuxi NP Completeness 59 / 77

Meditation on Reduction

Historically,
▶ Cook used the P-time Turing reduction in the 1971 paper,
▶ Karp restricted to the P-time m-reduction in the 1972 paper,
▶ Levin defined reduction for search problems in the 1973 paper.

Why Karp reduction in the definition of NP-completeness? Why not Cook reduction?
▶ Completeness is better defined in terms of Cook reduction.

▶ Yet all known NP-completeness results can be established using Karp reduction.
▶ NP = coNP if reductions are understood as Cook reductions.

Computational Complexity, by Fu Yuxi NP Completeness 60 / 77

Lowness

A complexity class B is low for a complexity class A if AB = A.
▶ Problems in B are not only solvable, they are also easy to solve in A’s viewpoint.

Computational Complexity, by Fu Yuxi NP Completeness 61 / 77

Lowness

If A is low for itself then A is closed under complement, provided it is powerful enough
to negate boolean results.
▶ P is low for itself.
▶ NP is believed not to be low for itself.
▶ PSPACE is low for itself.
▶ L is low for itself.
▶ EXP is not low for itself, although EXP = EXP.

Computational Complexity, by Fu Yuxi NP Completeness 62 / 77

Baker-Gill-Solovay Theorem. There are A,B such that PA = NPA and PB ̸= NPB.

Computational Complexity, by Fu Yuxi NP Completeness 63 / 77

Proof of Baker-Gill-Solovay Theorem, Case A

Let A be the following language

{⟨α, x, 1n⟩ | Mα outputs 1 on x within 2n steps}.

Then EXP ⊆ PA ⊆ NPA ⊆ EXP. Hence PA = NPA.

Computational Complexity, by Fu Yuxi NP Completeness 64 / 77

Proof of Baker-Gill-Solovay Theorem, Case B

Basic idea of oracle B:
▶ A machine that only makes a polynomial number of queries can never get it right

for every input.
▶ A machine that makes an exponential number of queries can always make the

right judgments for all inputs.

Computational Complexity, by Fu Yuxi NP Completeness 65 / 77

Proof of Baker-Gill-Solovay Theorem, Case B

Let B0 = ∅ and n0 = 0. Construct Bi+1 from Bi as follows:
▶ Let ni+1 be larger than n0, n1, . . . , ni.

▶ Moreover ni+1 must be larger than the size of all strings that have been raised as
questions by MB0

0 (x1), . . . ,M
Bi−1
i−1 (xi), where |x1| = n1 + 1, . . . , |xi| = ni + 1.

▶ Run MBi
i on 1ni+1 for 2ni+1−1 steps.

▶ If MBi
i (1ni+1) does not stop in 2ni+1−1 steps, let Bi+1 = Bi.

▶ If MBi
i (1ni+1) is accepted in 2ni+1−1 steps, let Bi+1 = Bi.

▶ If MBi
i (1ni+1) is rejected in 2ni+1−1 steps, let Bi+1 = Bi ∪ {s}, where |s| = ni+1 and s is

not queried when executing MBi
i (1ni+1).

Let B =
⋃

i∈N Bi.

Computational Complexity, by Fu Yuxi NP Completeness 66 / 77

Proof of Baker-Gill-Solovay Theorem, Case B

Let UB be defined as follows:

UB = {1n | B contains a string of length n}.

Lemma. UB ∈ NPB and UB /∈ PB.
Proof.
Assume that MB

i decided UB in P-time T(n). Let i be such that T(ni) < 2ni−1. Then

MB
i (1ni+1)= 0 ⇔ MBi+1

i (1ni+1)= 0 ⇒ MBi
i (1ni+1)= 1 ⇒ MBi+1

i (1ni+1)= 1 ⇔ MB
i (1ni+1)= 1.

This is a contradiction.

Computational Complexity, by Fu Yuxi NP Completeness 67 / 77

On Relativization

Computational Complexity, by Fu Yuxi NP Completeness 68 / 77

Relativization

A proof of A ̸= B (A = B) relativizes if it is also essentially a proof of AO ̸= BO (
AO = BO) without specifying the oracle O.

Computational Complexity, by Fu Yuxi NP Completeness 69 / 77

“We feel that this is further evidence of the difficulty of the P ?
= NP question. …

It seems unlikely that ordinary diagonalization methods are adequate for producing an
example of a language in NP but not in P; such diagonalizations, we would expect,
would apply equally well to the relativized classes. …
On the other hand, we do not feel that one can give a general method for simulating
nondeterministic machines by deterministic machines in polynomial time, since such a
method should apply as well to relativized machines.”

Baker, Gill, and Solovay

Computational Complexity, by Fu Yuxi NP Completeness 70 / 77

Relativization Barrier

Whatever a proof of P ̸= NP (or P = NP) is, it cannot be a proof that relativizes. It
seems to rule out any possibility of using diagonalization/simulation to settle the issue.
▶ This appears very surprising since Recursion Theory does relativize and Complexity

Theory can be seen as a resource bounded version of Recursion Theory.

Computational Complexity, by Fu Yuxi NP Completeness 71 / 77

Relativization Barrier in 1975-1988

Hopcroft (1984):
This perplexing state of affairs is obviously unsatisfactory as it stands. No
problem that has been relativized in two conflicting ways has yet been solved,
and this fact is generally taken as evidence that the solutions of such problems
are beyond the current state of mathematics.

The researchers were not aware of a true complexity theoretical statement whose
negation is also true in some relativized world.
▶ The general practice was either to prove something or to refute it in some

relativized world.

Computational Complexity, by Fu Yuxi NP Completeness 72 / 77

Relativization Barrier, Mystery or Myth

From early on researchers have noticed that separation by relativization often exploits
difference of oracle access mechanisms.
▶ Baker-Gill-Solovay Theorem.
▶ Another example is Hopcroft, Paul and Valiant’s result that

TIME(S(n)) ⊊ SPACE(S(n)) for space constructible S(n).
▶ Hartmanis, Chang, Chari, Ranjan, and Rohatgi have come up with an oracle A such

that TIMEA(S(n)) = SPACEA(S(n)).
▶ Speedup Theorem.

Computational Complexity, by Fu Yuxi NP Completeness 73 / 77

“This example demonstrates the danger in thinking of oracle worlds as a way of
relativizing complexity classes – oracles do not relativize complexity classes, they only
relativize the machines.”

Hartmanis, Chang, Chari, Ranjan and Rohatgi, 1992.

Computational Complexity, by Fu Yuxi NP Completeness 74 / 77

We will see that some big proofs in complexity theory are non-relativzing.

Computational Complexity, by Fu Yuxi NP Completeness 75 / 77

P ?
= NP

Computational Complexity, by Fu Yuxi NP Completeness 76 / 77

only time can tell.

Computational Complexity, by Fu Yuxi NP Completeness 77 / 77

