
Circuit Complexity



Circuit model aims to offer unconditional lower bound results.
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Boolean Circuit Model
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Boolean circuit is a nonuniform computation model that allows a different algorithm to
be used for each input size.

Boolean circuit model appears mathematically simpler, with which one can talk about
combinatorial structure of computation.
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Boolean Circuit

An n-input, single-output boolean circuit is a dag with
▶ n sources (vertex with fan-in 0), and
▶ one sink (vertex with fan-out 0).

All non-source vertices are called gates and are labeled with
▶ ∨,∧ (vertex with fan-in 2), and
▶ ¬ (vertex with fan-in 1).

A Boolean circuit is monotone if it contains no ¬-gate.

If C is a boolean circuit and x ∈ {0, 1}n is some input, then the output of C on x,
denoted by C(x), is defined in the natural way.
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Example

1. {1n | n ∈ N}.

2. {⟨m, n,m+n⟩ | m, n ∈ N}.

傅育熙，上海交通大学，2023 年秋季学期 电路复杂性 6 / 72



Boolean Circuit Family

The size of a circuit C, notation |C|, is the number of gates in it.

Let S : N → N be a function.
An S(n)-size boolean circuit family is a sequence {Cn}n∈N of boolean circuits, where
Cn has n inputs and a single output, and |Cn| ≤ S(n) for every n.
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Circuit Model Accepts Undecidable Language

A unary language L ⊆ {1n | n ∈ N} is accepted by a linear size circuit family.

Fact. Not every unary language is decidable.
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Nonuniform Complexity Class

A problem L is in SIZE(S(n)) if there exists an S(n)-size circuit family {Cn}n∈N such
that for each x ∈ {0, 1}n, x ∈ L iff Cn(x) = 1.

Unlike in a uniform model, SIZE(cS(n)) ̸= SIZE(S(n)) for c > 2. This follows from
Circuit Hierarchy Theorem.
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Boolean Functions are Hard

Shannon. Most n-ary boolean functions have circuit complexity > 2n
n − o(2n

n ).

Lupanov. The size complexity of the hardest n-ary boolean function is < 2n
n + o(2n

n ).

Lutz. The size complexity of the hardest n-ary boolean function is > 2n
n (1 + c log n

n ) for
some c < 1 and all large n.

1. C. Shannon. The Synthesis of Two-Terminal Switching Circuits. Bell System Technical Journal. 28:59-98, 1949.
2. O. Lupanov. The Synthesis of Contact Circuits. Dokl. Akad. Nauk SSSR (N.S.) 119:23-26, 1958.
3. J. Lutz. Almost Everywhere High Nonuniform Complexity. JCSS, 1992.
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Shannon’s Counting Argument
Fixing output gate, the number of functions defined by S-size circuits is bounded by

(S + n + 2)2S3S

(S − 1)!
<

(S + n + 2)2S(3e)S

SS S

= (1 +
n + 2

S )S(3e(S + n + 2))SS

< (e n+2
S 3e(S + n + 2))SS

< (3e2(S + n + 2))SS
< (6e2S)SS.

To define an ϵ-fraction of the functions, (7e2S)S ≥ ϵ22
n must be valid. It follows that

S(log(7e2) + log S) ≥ 2n − log ϵ−1. (1)

It is easy to see that S ≤ 2n
n − log(1ϵ ) would contradict (1).
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By Shannon Theorem and Lupanov Theorem, the circuit Cf for the hardest n-ary
boolean function f has the following bounds:

|Cf| = 2n

n ± o
(
2n

n

)
.

Frandsen and Miltersen have provided a proof of the following.

2n

n

(
1 +

log n
n − O

(
1

n

))
≤ |Cf| ≤

2n

n

(
1 + 3

log n
n + O

(
1

n

))
.

1. G. Frandsen and P. Miltersen. Reviewing Bounds on the Circuit Size of the Hardest Functions. Information Processing Letters, 2005.
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Circuit Hierarchy Theorem

Theorem. If n < (2 + ϵ)S(n) < S′(n) ≪ 2n/n for ϵ > 0, then SIZE(S(n)) ⊊ SIZE(S′(n)).

Let
m = max m.

(
S′(n) ≥

(
1 +

ϵ

4

) 2m

m

)
.

The condition guarantees that 0 < m < n for large n. It follows from the assumption that

S(n) <
(
1− ϵ

4 + 2ϵ

)
2m

m .

Consider the set Bm,n of all n-ary Boolean functions that depend only on the first m inputs.
▶ By Lupanov Theorem, Bm,n ⊆ SIZE(S′(n)) for large n.
▶ By Shannon Theorem, Bm,n ̸⊆ SIZE(S(n)) for large n.
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Uniform Circuit
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A circuit family {Cn}n∈N is uniform if there is an implicitly logspace computable
function mapping 1n to Cn.
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Uniform Circuit Family and P

Theorem. A language is accepted by a uniform circuit family if and only if it is in P.

‘⇒’: Trivial.
‘⇐’: A proof is given on the next two slides.
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From P to Uniform Circuit Family
Suppose M is a one tape TM bounded in time by T(n) = cnc.
▶ Given input 1n one writes down t = cnc in logspace.
▶ Let C0, . . . ,Ct be the configurations. Let Cij be the j-th symbol of Ci.

1 0 0 1 1 1

1 0 0 1 1 11 0 0 1 1 11 0 0 1 1 1

1 0 0 1 1 1 a b

1 0 0 1 1 1 A B

1 0 0 1 1 11 0 0 1 1 11 0 0 1 1 1 1

C0

C1

Ci

Ci+1

Ct

V

v
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Boolean Formula for Turing Computation

1 0 0 1 1 1C0

Ct+1

Ct

C1 C C C C

C C C C

CCCC

Input to Cij = output of C(i−1)(j−1), C(i−1)j, C(i−1)(j+1).
All Cij’s can be computed by a fixed circuit C whose size depends only on M.
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Circuit Satisfiability

A binary string is in CKT-SAT if it represents an n-input boolean circuit C such that
∃u∈{0, 1}n.C(u) = 1.
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From NP to Circuit Satisfiability

Lemma. L ≤L CKT-SAT for every L ∈ NP.

Let L ∈ NP, p be a polynomial, and M be a P-time TM such that

x ∈ L iff ∃u∈{0, 1}p(|x|).M(x, u) = 1.

Now apply to M(x, u) the logspace reduction defined on page 18.
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From CKT-SAT to SAT

Lemma. CKT-SAT ≤L SAT.

Introduce a boolean variable for every gate input and every gate output.
The formula is a big conjunction of the clauses relating input and output variables.
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Cook-Levin reduction is computable in logspace.
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P/poly
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Turing Machines that Take Advice

Let T, a : N → N be functions. The class of languages decidable by T(n)-time TM’s
with a(n) bits of advice, denoted

DTIME(T(n))/a(n),

contains every L such that there exists a countable sequence {αn}n∈N of strings with
αn ∈ {0, 1}a(n) and a TM M satisfying

x ∈ L iff M(x, αn) = 1

for all x ∈ {0, 1}n, where on input x, αn the machine M stops in O(T(n)) steps.
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Complexity Class (_)/poly

Complexity class defined by TM using advice.
▶ P/poly is the class of languages decidable by P-time TM using P-size advice.
▶ NP/poly is the class of languages decidable by P-time NDTM using P-size advice.
▶ L/poly …

1. R. Karp and R. Lipton. Turing Machines that Take Advice. STOC, 1980.
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P/poly

Theorem. P/poly =
∪

c SIZE(cnc).

If L is computable by a P-size {Cn}n∈N, we use the description of Cn as advice.
Conversely we apply the reduction defined on page 18 to the TM’s that take advice,
and hard-wire the advice to the circuit.
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Karp-Lipton Theorem
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It follows from P ⊆ P/poly that NP ̸⊆ P/poly would imply NP ̸= P.
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Karp-Lipton Theorem. If NP ⊆ P/poly then PH =
∑p

2.

▶ ∏
2 SAT is the set of the true QBFs of the form ∀_∃_._.

▶ ∑
2 SAT is the set of the true QBFs of the form ∃_∀_._.

1. R. Karp and R. Lipton. Turing Machines that Take Advice. STOC, 1980.
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The basic idea:
1. Construct some P-time M such that, for some polynomial q, ψ ∈

∏
2 SAT if and

only if ∃w∈{0, 1}q(|ψ|).∀u∈{0, 1}q(|ψ|).M(ψ) = 1.
2. Non-uniformity of circuits is dealt with by ∃ quantifier.

If NP ⊆ P/poly, then SAT would be solved by a P-size circuit family {Cn}n∈N.
1. Given ψ = ∀u∈{0, 1}m.∃v∈{0, 1}m.φ(u, v), there is a P-time machine that upon

input u outputs the formula φ(u, v).
2. By assumption φ(u, v) ∈ SAT is decided by a P-size circuit C′.
3. By self reducibility there exists a circuit C of polynomial q size such that C(u) = v

whenever φ(u, v) is satisfiable.

Conclude that ∀u∈{0, 1}m.∃v∈{0, 1}m.φ(u, v) if and only if
∃C∈{0, 1}q(|ψ|).∀u∈{0, 1}m.(C is a boolean circuit) ∧ φ(u,C(u)).
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Meyer Theorem. If EXP ⊆ P/poly then
∑

2 SAT is EXP-hard.

Let L ∈ EXP be decided by a 2p(n)-time one tape TM M. Given input x ∈ {0, 1}n,
there is an exponential time TM computing the i-th configuration Ci and the head
position hi. There is another exponential time TM computing the i-th configuration
Cip and the head position hip , where ip = max j.j < i ∧ hj = hi.
If EXP ⊆ P/poly, there are P-size circuit D and Dp, say of size q(n) such that x ∈ L if
and only if

∃D,Dp∈{0, 1}q(n)∀i∈{0, 1}p(n).T(x,D(i),D(i − 1),Dp(i)) = 1,

where the P-time TM T is defined by the transition function.

1. R. Karp and R. Lipton. Turing Machines that Take Advice. STOC, 1980.
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NC and AC
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Massively Parallel Computer

Off-the-shelf micro processers linked via interconnection network.
The processors compute in lock-step; and the communication overhead is O(log(n)),
where n is the number of processor.
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Efficient Parallel Algorithm

A problem has an efficient parallel algorithm if, for each n, it can be solved for inputs
of size n using a parallel computer of nO(1) processors in logO(1)(n) time.
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Matrix Multiplication

There is an efficient parallel algorithm for the multiplication of two (n×n)-matrices of
numbers using n3 processors and log(n) time.
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Massively Parallel Computing in Circuit Model

Computations in a circuit can be largely carried out in parallel.
The flatter a circuit is, the more parallel its computation can be.
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NC

A language L is in NCd if L can be decided by a uniform circuit family {Cn}n∈N of
poly(n) size and of O(logd(n)) depth.

NC =
∪
d∈N

NCd.

Nick’s Class was introduced by Nick Pippenger.
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AC

ACd extends NCd by admitting unbounded fan-in’s.

AC =
∪
d∈N

ACd.

▶ A P-size fan-in can be simulated by a tree of bounded fan-in’s of depth O(log(n)).
▶ Consequently NCi ⊆ ACi ⊆ NCi+1.
▶ Hence

AC = NC.

Gates in a circuit of unbounded fan-in can be arranged in layers in alternating fashion.
This is convenient when reasoning about circuits.
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Boolean Matrix Multiplication

Suppose A is a boolean (n×n)-matrix. Now

(A2)ij =
n∨

k=1

Aik ∧ Akj.

If there are n3 processors, then the calculation of all Aik ∧ Akj’s requires one parallel
step, and the calculation of all (A2)ij’s needs log(n) parallel steps.

▶ A2 is in NC1.
▶ An is in NC2.
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Reachability is in NC2

Using matrix representation we see immediately that graph reachability is just the
boolean matrix multiplication problem.
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Parallel Prefix Algorithm

Given x1, . . . , xn, we compute x1, x1 + x2, x1 + x2 + x3, …, x1 + x2 + . . .+ xn.

▶ In one parallel step we get the following

x1 + x2, x3 + x4, . . . , xn−1 + xn.

▶ In 2(log(n)− 1) parallel steps we get inductively the sequence

x1 + x2, x1 + x2 + x3 + x4, x1 + x2 + x3 + x4 + x5 + x6, . . . .

▶ We get all the sums in one more parallel step.

The time complexity is 2 log(n), discounting the network cost.
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Carry Lookahead Addition

Problem: Calculate
∑n

i=0 ai2i +
∑n

i=0 bi2i with an = bn = 0.

Let xi be the carry at the i-th position, where 0 ≤ i ≤ n−1. Define

gi = ai ∧ bi, the carry generate bit;
pi = ai ∨ bi, the carry propagate bit.

Now xi = gi ∨ (pi ∧ xi−1) = gi ∨ (pi ∧ gi−1)∨ (pi ∧ pi−1 ∧ xi−2). Introduce the operation

(g′, p′)⊙ (g, p) = (g ∨ (p ∧ g′), p ∧ p′).

Let (g0, p0) = (a0∧b0, 0). The carries x0, . . . , xn−1 can be calculated in 2 log n parallel steps as

(g0, p0), (g0, p0)⊙ (g1, p1), (g0, p0)⊙ (g1, p1)⊙ (g2, p2), . . . .

Finally a1⊕b1⊕ x0, . . . , an ⊕bn ⊕ xn−1 can be calculated in parallel, where ⊕ is the exclusive or.
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NC = Problems with Efficient Parallel Algorithm

Theorem. L has efficient parallel algorithms if and only if L ∈ NC.

Let L ∈ NC be decided by a circuit family of O(nc)-size and O(logd(n))-depth. Assign
a processor to each node. The running time of the computer is O(logd+1(n)).
Conversely a processor is replaced by a small circuit, and the interconnection network
is replaced by circuit wires.
▶ The running time of a processor is in polylog.

NC is the class of problems that have efficient parallel algorithms.
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P-Completeness
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Does every problem in P have an efficient parallel algorithm?

We intend to characterize a class of P-time solvable problems that are most unlikely to
have any parallel algorithms.

What is the right notion of reduction?
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Lemma. An implicitly logspace computable function is efficiently parallel.

Here is the argument:
1. All output bits can be calculated in parallel.
2. The adjacency matrix of the configuration graph of an implicitly logspace

computable function can be constructed by an efficient parallel algorithm.
3. Reachability is in NC2.
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P-Completeness

A language is P-complete if it is in P and every problem in P is logspace reducible to it.
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Circuit Evaluation is P-Complete

1 0 0 1 1 1C0

Ct+1

Ct

C1 C C C C

C C C C

CCCC

Circuit-Eval is the language consisting of all pairs ⟨C, x⟩ where C is an n-input
circuit and x ∈ {0, 1}n is such that C(x) = 1.
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Monotone Circuit Evaluation is P-Complete

We can recycle the reduction defined on the previous page.
▶ We turn C into C′ by pushing negation operations downwards and remove them.

Similarly we construct C′ from C.
▶ The monotone circuit is defined in terms of C′ and C′.

Notice that input may be doubled in length.

Monotone-CKT-SAT however is a very different story.
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The Most “Difficult” Problems in P

Theorem. Suppose L is P-complete. Then L ∈ NC iff P = NC.

1. An implicitly logspace computable function is efficiently parallel.
2. We are done by composing two efficient parallel algorithms.
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Inside P

Theorem. NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ . . . ⊆ NCi ⊆ . . .P.

1. NL ⊆ NC2. This is because PATH is in NC2.
2. NC1 ⊆ L. Let {Cn}n∈N accepts L ∈ NC1 and let x ∈ {0, 1}n.
▶ A string of length no more than log(n) is used to indicate the position of the

current gate of C.
▶ The initial value of this string is 0O(log n).

Using the depth first strategy, we only have to record the value of the current gate.

All we know is that AC0 and NC1 are separated by parity function.
This is Håstad Switching Lemma.
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Håstad Switching Lemma
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The following strict inclusions have been proved.

NC0 ⊊ AC0 ⊊ NC1.

The parity function ⊕n(x1, . . . , xn) is in NC1 but not in AC0.
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One powerful tool for proving lower bounds for constant height circuits is Håstad’s
Switching Lemma, which allows one to switch two layers of an alternating circuit,
leading to the removal of one layer.
By repeating the switching operation, one ends up with a circuit for computing a
constant function.

1. M. Furst, J. Saxe and M. Sipser. Parity, circuits, andthe polynomial time hierarchy.
Mathematical Systems Theory, 17:13–27, 1984. Prelim version FOCS’81.

2. A. Yao. Separating the polynomial-time hierarchy by oracles. FOCS’85.
3. J. Håstad. Almost optimal lower bounds for small depth circuits. STOC’86.
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The key is to transform a t-CNF to an s-DNF.

∨

∧ ∧

∨ ∨ ∨ ∨

∧ ∧ ∧ ∧

∨

∧ ∧

∧ ∧ ∧ ∧

∨ ∨ ∨ ∨

∧ ∧

∨ ∨ ∨ ∨

∨

A d-alternating circuit is a generalization of CNF/DNF.
1. A d-alternating circuit consists of d layers of ∧-gates/∨-gates in an alternating fashion.
2. In the bottom layer an input of a gate is either an input variable or the output of a ¬-gate

connected to an input variable.
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Minterm

A minterm of x1, . . . , xn is a conjunction of n literals such that every variable occurs
precisely once.
Suppose α is a binary string of length n. Let xα be the minterm that is true by the
assignment α.

Every n-ary Boolean function f is equivalent to a principal DNF:

f(x) =
∨

f(α)=1

xα.
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Suppose X = {x1, . . . , xn}.

We say that ρ : X → X ∪ {0, 1} is a restriction of X if ρ(x) ∈ {x, 0, 1} for all x ∈ X.
▶ x is unrestricted if ρ(x) = x,
▶ sup(ρ) def

= {x | ρ(x) ̸= x} is the support of ρ.

We say that ρ′ is a sub-restriction of ρ if sup(ρ′) ⊆ sup(ρ) and ρ′, ρ coincide on sup(ρ′).

If f is defined on X, then fρ is the Boolean function f(ρ(x1), . . . , ρ(xn)) whose set of
input/free variables is {x ∈ X | ρ(x) = x}.
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Minterm of Boolean Function

Suppose f(x1, . . . , xn) : {0, 1}n → {0, 1}, and ρ is a restriction of {x1, . . . , xn}.

The restirction ρ defines a minterm of f if
1. the value of fρ is 1 no matter what the remaining variables are assigned and
2. ρ has no proper sub-restriction that satisfies 1.

Let min(f) be the maximal size (number of literals/variables) of the minterms of f.
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Lemma. If min(f) ≤ s, then f : {0, 1}n → {0, 1} can be represented by an s-DNF.

We know that f(x) can be represented by the principal DNF
∨

f(α)=1 xα.
Let xβ be a minterm of f. There must be some α such that β ⊆ α.
If xβ is false, xα must be false, and consequently

∨α′ ̸=α
f(α′)=1 xα′ and f(x) are equivalent.

If xβ is true, f(x) must be true.
Therefore

f(x) ⇔ xβ ∨
α′ ̸=α∨

f(α′)=1

xα′ .

We are done by induction.

In fact f(x) is equivalent to the
∨

of all the minterms.
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Suppose 0 < n − u ≤ u < n.
A u size random restriction ρ to X = {x1, . . . , xn} is defined as follows: Choose a u size random
subset of X, and to each chosen variable x assign a value by tossing a coin, that is

ρ(x) =

{
1, with probability 1/2,
0, with probability 1/2.

Let Ru be the set of all restrictions to u variables. Obviously

|Ru| =

(
n
u

)
2u. (2)

Let Badf(u, s) = {ρ ∈ Ru | min(fρ) > s}. An element ρ of Badf(u, s) is bad because fρ is not
equivalent to any s-DNF.
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Razborov Lemma. If f is a t-CNF, then |Badf(u, s)| ≤ |Ru+s|·(4t)s.

Razborov’s idea is surprisingly simple:
Construct an encoding function e : Badf(u, s) → Ru+s×S and a decoding function,
where |S| ≤ (4t)s.

Suppose f is a t-CNF. Fix an order of the clauses of f and an order of the literals.
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Suppose ρ ∈ Badf(u, s), meaning that fρ has a minterm τ ′ of size s′ > s.
Obtain τ by removing s′ − s literals from τ ′. These s′ − s literals are made unrestricted.

Here are some observations about fρ:
1. Some clauses of f disappear from fρ.
2. Some literals in some clauses of f disappear from the clauses in fρ.
3. No clause of fρ is equivalent to 0 because fρ has a minterm.
4. fρτ cannot be the constant 1 function because τ is not a minterm for fρ; it cannot

be the constant 0 function according to 3.
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Let C1 be the first clause of f that is undetermined by ρ but is 1 by ρτ . [why does it exist?]

1. Let τ1 be τ confined to the t variables in C1.
Let α1 ∈ {0, 1}t be the characteristic function of the support of τ1, meaning that

α1(x) =

{
1, x ∈ sup(τ1),
0, x /∈ sup(τ1).

It follows from the definition of C1 that some x in C1 exists such that α1(x) = 1.
2. Let τ1 be the unique restriction defined as follows: the characteristic function of

its support is precisely α1, and the value of C1 by τ1 is undetermined.

It should be clear that with the help of C1 and α1, we can compute τ1.
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Replace ρ by ρτ1, and τ by τ \ τ1. Repeat the above construction inductively, we finally get

τ1, τ2, . . . , τm; τ1, τ2, . . . , τm; α1, α2, . . . , αm,

where m ≤ s and τ = τ1τ2 . . . τm.

We need some extra information to recover τ1, τ2, . . . , τm from τ
def
= τ1τ2 . . . τm.

▶ Let β ∈ {0, 1}s be defined by β(x) = 1 if τ(x) = τ(x) and by β(x) = 0 otherwise.

Now the encoding e is defined as follows:

e(ρ)
def
= ⟨ρτ1τ2 . . . τm, α1, α2, . . . , αm, β⟩.

We can recover ρ from e(ρ). Identify the first clause of f that is not set to 1 by ρτ1τ2 . . . τm.
Since no τi sets Ci to 1, the identified clause must be C1.
Recover τ1 from C1 and α1. Recover τ1 from τ1 and β. We then get ρτ1τ2 . . . τm.
By induction we eventually get ρτ1τ2 . . . τm, and ρ as well.
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Let’s estimate the size of e(ρ).

1. Since ρτ1τ2 . . . τm ∈ Ru+s, the number of such restrictions is bounded by |Ru+s|.
2. Suppose αi contains ki number of 1’s. Then ki ≥ 1, and k1 + . . .+ km = s.

The number of strings (α1, α2, . . . , αm) ∈ {0, 1}mt is bounded by∏
i∈[m]

(
t
ki

)
≤

∏
i∈[m]

tki = ts.

The number of (k1, . . . , km) satisfying k1 + . . .+ km = s is
( s−1

m−1

)
≤ 2s.

3. The number of β ∈ {0, 1}s is bounded by 2s.

Conclude that |e(ρ)| ≤ |Ru+s|·(4t)s.
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Håstad Switching Lemma. Suppose f is a t-CNF of n variables and p < 1
9t . Let ρ be a random

restriction of size u = (1− p)n. Then

Prρ∈RRu [min(fρ) > s] < (9pt)s
.

It follows from Razborov Lemma, the equality (2) and the inequality p < 1
5t that

Badf(u, s)
|Ru|

≤
( n

u+s
)
2u+s(4t)s(n
u
)
2u ≤

(
n − u

u

)s
(8t)s =

(
p

1− p

)s
(8t)s <

(
9

8

)s
(8pt)s = (9pt)s.

The justification of the second inequality is as follows:(
n

u + s

)
/

(
n
u

)
=

u!
(u + s)! ·

(n − u)!
(n − u − s)! <

1

us ·(n − u)s.

Remark. The upper bound is independent of n.
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Theorem. A (d+1)-alternating circuit computing ⊕n requires 2Ω(n1/d) gates.

Corollary. ⊕n /∈ AC0.

1. M. Furst, J. Saxe and M. Sipser. Parity, circuits, andthe polynomial time hierarchy.
Mathematical Systems Theory, 17:13–27, 1984. Prelim version FOCS’81.

2. A. Yao. Separating the polynomial-time hierarchy by oracles. FOCS’85.
3. J. Håstad. Almost optimal lower bounds for small depth circuits. STOC’86.
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Given a (d+1)-height S-size alternating circuit for ⊕n, we start by fixing the number of fan-ins
of the gates at the bottom layer. Wolg, assume that the bottom gates are ∨-gates.

Let p = 1/18, t = 1 and s = 2 log S.
1. Every bottom ∨-gate is a 1-DNF.
2. By Håstad Switching Lemma, a ∨-gate is equivalent to an s-CNF with probability at least

1− (9pt)s = 1− 1
S2 .

Conclude that there is a u size restriction that allows one to switch the two bottom layers.
▶ By merging the two consecutive layers of ∧-gates, we obtain a (d+1)-height alternating

circuit whose bottom layer ∨-gates have fan-in s = 2 log S.
▶ After the switching, the new circuit has at most pn = n

18 input variables.
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Set k = t = s = 2 log S and p = 1
18k .

1. The two bottom layers contain less than S number of s-CNFs.
2. By the same argument, all s-CNFs can be turned into s-DNFs with probability > 0.
3. The new circuit has 1

18k ·
n
18 input variables.

4. By merging the two consecutive layers of ∨-gates, we obtain a d-height
alternating circuit whose bottom layer ∧-gates have fan-in s = 2 log S.

Finally we get a two layer alternating circuit with at most 1
(18k)d−1 · n

18 = n
O((log S)d−1)

input variables and every gate in the bottom layer has fan-in 2 log S.
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The two layer alternating circuit is either a (2 log S)-CNF or a (2 log S)-DNF.

The two layer circuit has constant output by fixing an assignment to 2 log S variables.
It follows that by fixing an assignment to

n − n
O((log S)d−1)

+ 2 log S

input variables of the (d+1)-alternating circuit, it becomes a constant output circuit.
For ⊕n to be a constant function every input variable must be assigned a value. Thus

n ≤ n − n
O((log S)d−1)

+ 2 log S.

Consequently S = 2Ω(n1/d).
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The output of the n-ary threshold function Thn
k is 1 if there are at least k inputs are 1.

Thn
k /∈ AC0. This is because the parity function is the same as

k is odd∨
k∈[n]

(
Thn

k ∧ ¬(Thn
k+1)

)
.

Majn /∈ AC0.
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