
Randomized Computation



Eugene Santos looked at computability for Probabilistic TM.
John Gill studied complexity classes defined by Probabilistic TM.

1. Eugene Santos. Probabilistic Turing Machines and Computability. Proc. American Mathematical Society, 22: 704-710, 1969.
2. Eugene Santos. Computability by Probabilistic Turing Machines. Trans. American Mathematical Society, 159: 165-184, 1971.
3. John Gill. Computational Complexity of Probabilistic Turing Machines. STOC, 91-95, 1974.
4. John Gill. Computational Complexity of Probabilistic Turing Machines. SIAM Journal Computing 6(4): 675-695, 1977.
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Tail Distribution
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Markov’s Inequality

For all k > 0,
Pr[X ≥ kE[X]] ≤ 1

k ,

or equivalently
Pr[X ≥ v] ≤ E[X]

v .

▶ Observe that d · Pr[X ≥ d] ≤ E[X].
▶ We are done by letting d = kE[X].
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Moment and Variance
Information about a random variable is often expressed in terms of moments.
▶ The k-th moment of a random variable X is E[Xk].

The variance of a random variable X is

Var(X) = E[(X − E[X])2] = E[X2]− E[X]2.

The standard deviation of X is
σ(X) =

√
Var(X).

Fact. If X1, . . . ,Xn are pairwise independent, then

Var(
n∑

i=1
Xi) =

n∑
i=1

Var(Xi).
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Chebyshev Inequality

For all k > 0,
Pr[|X − E[X]| ≥ kσ] ≤ 1

k2 ,

or equivalently

Pr[|X − E[X]| ≥ k] ≤ σ2

k2 .

Apply Markov’s Inequality to the random variable (X − E[X])2.
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Moment Generating Function

The moment generating function of a random variable X is MX(t) = E[etX].
▶ If X and Y are independent, then MX+Y(t) = MX(t)MY(t).

▶ If differentiation commutes with expectation then the n-th moment E[Xn] = M(n)
X (0).

1. If t > 0 then Pr[X≥ a] = Pr[etX ≥ eta] ≤ E[etX]
eta . Hence Pr[X≥ a] ≤ mint>0

E[etX]
eta .

2. If t < 0 then Pr[X≤ a] = Pr[etX ≥ eta] ≤ E[etX]
eta . Hence Pr[X≤ a] ≤ mint<0

E[etX]
eta .

For a specific distribution one chooses some t to get a convenient bound. Bounds derived by
this approach are collectively called Chernoff bounds.
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Chernoff Bounds for Poisson Trials

Let X1, . . . ,Xn be independent Poisson trials with Pr[Xi = 1] = pi. Let X =
∑n

i=1 Xi.

▶ MXi(t) = E[etXi ] = piet + (1 − pi) = 1 + pi(et − 1) ≤ epi(et−1). [1 + x ≤ ex]

▶ Let µ = E[X] =
∑n

i=1 pi. Then

MX(t) ≤ e(et−1)µ.

For Bernoulli trials
MX(t) ≤ e(et−1)np.
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Chernoff Bounds for Poisson Trials

Theorem. Suppose 0 < δ < 1. Then

Pr [X ≥ (1 + δ)µ] ≤
[

eδ
(1 + δ)(1+δ)

]µ
≤ e−µδ2/3,

Pr [X ≤ (1 − δ)µ] ≤
[

e−δ

(1 − δ)(1−δ)

]µ
≤ e−µδ2/2.

Corollary. Suppose 0 < δ < 1. Then

Pr [|X − µ| ≥ δµ] ≤ 2e−µδ2/3.

If t > 0 then Pr[X ≥ (1 + δ)µ] = Pr[etX ≥ et(1+δ)µ] ≤ E[etX]
et(1+δ)µ ≤ e(et−1)µ

et(1+δ)µ . We get the first
inequality by setting t = ln(1 + δ). For t < 0 we set t = ln(1 − δ).
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When using pairwise independent samples, the error probability decreases linearly with
the number of samples.
When using totally independent samples, the error probability decreases exponentially
with the number of samples.
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Reference Book

1. C. Grinstead and J. Snell. Introduction to Probability. AMS, 1998.
2. M. Mitzenmacher and E. Upfal. Probability and Computing, Randomized Algorithm and

Probabilistic Analysis. CUP, 2005.
3. N. Alon and J. Spencer. The Probabilistic Method. John Wiley and Sons, 2008.
4. D. Levin, Y. Peres and E. Wilmer. Markov Chains and Mixing Times. AMS, 2009.
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Probabilistic Turing Machine
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Probabilistic Turing Machine

A Probabilistic Turing Machine (PTM) P is a Turing Machine with two transition
functions δ0, δ1.
▶ To execute P on an input x, we choose in each step with probability 1/2 to apply

transition function δ0 and with probability 1/2 to apply transition function δ1.
▶ All choices are independent.

We denote by P(x) the random variable corresponding to the value P produces on
input x.

Pr[P(x) = y] is the probability of P outputting y on the input x.
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Probabilistic TM vs Nondeterministic TM:
1. What does it mean for a PTM to compute a function?
2. How about time complexity?

Computational Complexity, by Fu Yuxi Randomized Computation 14 / 108



Probabilistic Computable Function

A function ϕ is computable by a PTM P in the following sense:

ϕ(x) =

{
y, if Pr[P(x) = y] > 1/2,
↑, if no such y exists.
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Probabilistically Decidable Problem

A language L is decided by a PTM P if the following holds:

Pr[P(x) = L(x)] > 1/2.
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Turing Completeness

Fact. The functions computable by PTM’s are precisely the computable functions.
Proof.
By fixing a Gödel encoding, it is routine to prove S-m-n Theorem, Enumeration
Theorem and Recursion Theorem.

PTM’s are equivalent to TM’s from the point of view of computability.
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Blum Time Complexity for Probabilistic Turing Machine

Definition (Trakhtenbrot, 1975; Gill, 1977). The Blum time complexity Ti of PTM Pi
is defined by

Ti(x) =

{
µn.Pr[Pi(x)=ϕi(x) in n steps] > 1/2, if ϕi(x) ↓,
↑, if ϕi(x) ↑ .

Neither the average time complexity nor the worst case time complexity is a Blum
complexity measure.
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Average Case Time Complexity

It turns out that average time complexity is a pathological complexity measure.

Lemma (Gill, 1977). Every recursive set is decided by some PTM with constant
average run time.
Proof.
Suppose recursive set W is decided by TM M. Define PTM P by
▶ repeat

simulate one step of M(x);
if M(x) accepts then accept; if M(x) rejects then reject;

until head;
if head then accept else reject.

The average run time is bounded by a small constant.
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Worst Case Time Complexity

A PTM P runs in T(n)-time if for any input x, P halts on x within T(|x|) steps
regardless of the random choices it makes.

The worst case time complexity is subtle since the execution tree of a PTM upon
receiving an input is normally unbounded.
▶ The problem is due to the fact that the error probability ρ(x) could tend to 1/2

fast, for example ρ(x) = 1/2 − 2−2|x| .
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Computation with Bounded Error

A function ϕ is computable by a PTM P with bounded error probability if there is
some positive ϵ < 1/2 such that for all x, y

ϕ(x) =

{
y, if Pr[P(x) = y] ≥ 1/2 + ϵ,
↑, if no such y exists.

Both average time complexity and worst case time complexity are good for bounded
error computability.
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Biased Random Source

In practice our coin is pseudorandom. It has a face-up probability ρ ̸= 1/2.
PTM’s with biased random choices = PTM’s with fair random choices?
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Biased Random Source

Fact. A coin with Pr[Heads] = 0.p1p2p3 . . . can be simulated by a PTM in expected O(1) time
if pi is computable in poly(i) time.

Our PTM P generates a sequence of random bits b1, b2, . . . one by one.
▶ If bi < pi, the machine outputs ‘Head’ and stops;
▶ If bi > pi, the machine outputs ‘Tail’ and stops;
▶ If bi = pi, the machine goes to step i + 1.

P outputs ‘Head’ at step i if bi < pi ∧ ∀j < i.bj = pj, which happens with probability 1/2i.
Thus the probability of ‘Heads’ is

∑
i pi

1
2i = 0.p1p2p3 . . ..

The expected number of coin flipping is
∑

i i 1
2i = 2.
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Biased Random Source

Fact. (von Neumann, 1951) A coin with Pr[Heads] = 1/2 can be simulated by a PTM
with access to a ρ-biased coin in expected time O(1).

The machine tosses pairs of coin until it gets ‘Head-Tail’ or ‘Tail-Head’. In the former
case it outputs ‘Head’, and in the latter case it outputs ‘Tail’.
The probability of ‘Head-Tail’/‘Tail-Head’ is ρ(1 − ρ).
The expected running time is 1/2ρ(1 − ρ).
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Finding the k-th Element

FindKthElement(k, {a1, . . . , an})

1. Pick a random i ∈ [n] and let x = ai.
2. Count the number m of aj’s such that aj ≤ x.
3. Split a1, . . . , an to two lists L ≤ x < H by the pivotal element x.
4. If m = k then output x.
5. If m > k then FindKthElement(k, L).
6. If m < k then FindKthElement(k − m,H).
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Finding the k-th Element

Let T(n) be the expected worst case running time of the algorithm.
Suppose the running time of the nonrecursive part is cn.
We prove by induction that T(n) ≤ 10cn.

T(n) ≤ cn +
1
n(

∑
j>k

T(j) +
∑
j<k

T(n − j))

≤ cn +
10c
n (

∑
j>k

j +
∑
j<k

(n − j))

≤ 10cn.

This is a ZPP algorithm.
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Polynomial Identity Testing

1. How do we check algorithmically if
∏

i∈[n](x− ai) = b?

2. An algebraic circuit has gates implementing +,−,× operators.
ZERO is the set of algebraic circuits calculating the zero polynomial.
Given polynomials p(x) and q(x), is p(x) = q(x)?

For simplicity assume that the values are taken from GF(p).
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Polynomial Identity Testing

Let C be an algebraic circuit. The polynomial computed by C has degree at most d.

Our algorithm does the following:
1. Randomly choose x1, . . . , xn from GF(q);
2. Accept if C(x1, . . . , xn) = 0 and reject otherwise.

By Schwartz-Zippel Lemma, the error probability is at most 1 − d/q. A coRP algorithm.

Schwartz-Zippel Lemma. If a polynomial p(x1, x2, . . . , xn) over GF(q) is nonzero and has
total degree at most d, then Pra1,...,an∈RGF(q)[p(a1, . . . , an) ̸= 0] ≥ 1 − d/q.
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Testing for Perfect Matching in Bipartite Graph

Lovácz (1979) reduced the matching problem to the problem of zero testing of the
determinant of the following matrix.
▶ A bipartite graph of size 2n is represented as an n × n matrix whose entry at (i, j)

is a variable xi,j if there is an edge from i to j and is 0 otherwise.
Pick a random assignment from [2n] and calculate the determinant.

A random parallel algorithm for matching.
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PP
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If P-time probabilistic decidable problems are defined using worst case complexity
measure without any bound on error probability, we get a complexity class that appears
much bigger than P.
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Problem Decided by PTM

Suppose T : N → N and L ⊆ {0, 1}∗.
A PTM P decides L in time T(n) if, for every x ∈ {0, 1}∗, Pr[P(x) = L(x)] > 1/2 and
P halts in T(|x|) steps regardless of its random choices.
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Probabilistic Polynomial Time Complexity Class

We write PP for the class of problems decided by P-time PTM’s.

Alternatively L is in PP if there exist a polynomial p : N → N and a P-time TM M
such that for every x ∈ {0, 1}∗,

Prr∈R{0,1}p(|x|) [M(x, r) = L(x)] > 1/2.
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Another Characterization of PP
L is in PP if there exist a polynomial p : N → N and a P-time TM M such that for
every x ∈ {0, 1}∗,

Prr∈R{0,1}p(|x|) [M(x, r) = 1] ≥ 1/2, if x ∈ L,
Prr∈R{0,1}p(|x|) [M(x, r) = 0] > 1/2, if x /∈ L.

1. If a computation that uses some δ1 transition ends up with a ‘yes’/‘no’ answer, toss the
coin twice and produce three ‘yes’s/‘no’s and one ‘no’/‘yes’.

2. If the computation using only δ0 transitions ends up with a ‘no’ answer, toss the coin and
announces the result.

3. If the computation using only δ0 transitions ends up with a ‘yes’ answer, answers ‘yes’.

We may swap ≥ and > in the above probabilistic inequalities.
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Lemma (Gill, 1977). NP, coNP ⊆ PP ⊆ PSPACE.

Suppose L is accepted by some NDTM N running in P-time. Design P that upon receiving x
executes the following:

1. Simulate N(x) probabilistically.
2. If a computation terminates with a ‘yes’ answer, then accept; otherwise toss a coin and

decide accordingly.

Clearly P decides L.
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PP-Completeness

Probabilistic version of SAT:
1. ⟨φ, i⟩ ∈ ♮SAT if more than i assignments make φ true.
2. φ ∈ MajSAT if more than half assignments make φ true.

1. J. Simons. On Some Central Problems in Computational Complexity. Cornell University, 1975.
2. J. Gill. Computational Complexity of Probabilistic Turing Machines. SIAM Journal Computing 6(4): 675-695, 1977.
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PP-Completeness

Theorem (Simon, 1975). ♮SAT is PP-complete.
Theorem (Gill, 1977). MajSAT ≤K ♮SAT ≤K MajSAT.

1. Probabilistically produce an assignment. Then evaluate the formula under the assignment.
This shows that MajSAT ∈ PP. Completeness by Cook-Levin reduction.
2. The reduction MajSAT ≤K ♮SAT is clear. Conversely given ⟨φ, i⟩, where φ contains n
variables, construct a formula ψ with 2n − 2ij − . . .− 2i1 true assignments, where i =

∑j
h=1 2ih .

▶ For example (xk+1 ∨ . . . ∨ xn) has 2n − 2k true assignments.

Let x be a fresh variable. Then ⟨φ, i⟩ ∈ ♮SAT if and only if x ∧ φ ∨ x ∧ ψ ∈ MajSAT.
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Closure Property of PP

Theorem. PP is closed under union and intersection.

1. R. Beigel, N. Reingold and D. Spielman. PP is Closed under Intersection, STOC, 1-9, 1991.
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BPP
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If P-time probabilistic decidable problems are defined using worst case complexity
measure with bound on error probability, we get a complexity class that is believed to
be very close to P.
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Problem Decided by PTM with Bounded-Error

Suppose T : N → N and L ⊆ {0, 1}∗.
A PTM P with bounded error decides L in time T(n) if for every x ∈ {0, 1}∗, P halts in
T(|x|) steps, and Pr[P(x) = L(x)] ≥ 2/3.

L ∈ BPTIME(T(n)) if there is some c such that L is decided by a PTM in cT(n) time.
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Bounded-Error Probabilistic Polynomial Class

We write BPP for
∪

c BPTIME(nc).

Alternatively L ∈ BPP if there exist a polynomial p : N → N and a P-time TM M
such that for every x ∈ {0, 1}∗,

Prr∈R{0,1}p(|x|) [M(x, r) = L(x)] ≥ 2/3.
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1. P ⊆ BPP ⊆ PP.

2. BPP = coBPP.
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How robust is our definition of BPP?
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Average Case

Fact. In the definition of BPP, we could use the expected running time instead of the
worst case running time.

Let L be decided by a bounded error PTM P in average T(n) time. Design a PTM that
simulates P for 9T(n) steps. It outputs ‘yes’ if P does not stop in 9T(n) steps.
By Markov’s inequality the probability that P does not stop in 9T(n) steps is at most 1/9.
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Error Reduction Theorem

Let BPP(ρ) denote the BPP defined with error probability ρ.

Theorem. BPP(1/2 − 1/nc) = BPP(2−nd
) for all c, d > 1.
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Error Reduction Theorem

Let L be decided by a bounded error PTM P in BPP(1/2− 1/nc). Design a PTM P′ as follows:
1. P′ simulates P on x for k = 12|x|2c+d + 1 times, obtaining k results y1, . . . , yk ∈ {0, 1}.
2. If the majority of y1, . . . , yk are 1, P′ accepts x; otherwise P′ rejects x.

For each i ∈ [k] let Xi be the indicator variable that equals to 1 if yi = 1 and is 0 if yi = 0.
Let X =

∑k
i=1 Xi. Let δ = |x|−c. Let p = 1/2 + δ and p = 1/2 − δ.

▶ By linearity E [X] ≥ kp if x ∈ L, and E [X] ≤ kp if x /∈ L.

▶ If x ∈ L then Pr
[
X < k

2
]
< Pr [X < (1−δ)kp] ≤ Pr [X < (1−δ)E [X]] < e− δ2

2 kp < 1
2|x|d .

▶ If x /∈ L then Pr
[
X > k

2
]
< Pr [X > (1+δ)kp] ≤ Pr [X > (1+δ)E [X]] < e− δ2

3 kp < 1
2|x|d .

The inequality < is due to Chernoff Bound. Conclude that the error probability of P′ is ≤ 1
2nd .

Computational Complexity, by Fu Yuxi Randomized Computation 47 / 108



Conclusion: In the definition of BPP,
▶ we can replace 2/3 by a constant arbitrarily close to 1/2;
▶ we can even replace 2/3 by 1

2 + 1
nc for any fixed constant c.

Error Reduction Theorem offers a powerful tool to study BPP.
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“Nonuniformity is more powerful than randomness.”

Adleman Theorem. BPP ⊆ P/poly.

1. Leonard Adleman. Two Theorems on Random Polynomial Time. FOCS, 1978.
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Proof of Adleman Theorem

Suppose L ∈ BPP. There exist a polynomial p(x) and a P-time TM M such that

Prr∈R{0,1}p(n) [M(x, r) ̸= L(x)] ≤ 1/2n+1

for every x ∈ {0, 1}n.

Say r ∈ {0, 1}p(n) is bad for x ∈ {0, 1}n if M(x, r) ̸= L(x); otherwise r is good for x.
▶ For each x of size n, the number of r’s bad for x is at most 2p(n)

2n+1 .
▶ The number of r’s bad for some x of size n is at most 2n 2p(n)

2n+1 = 2p(n)/2.
▶ There must be some rn that is good for every x of size n.

We may construct a P-time TM M with advice {rn}n∈N.
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Theorem. BPP ⊆
∑p

2 ∩
∏p

2.

Sipser proved BPP ⊆
∑p

4 ∩
∏p

4. Gács pointed out that BPP ⊆
∑p

2 ∩
∏p

2. This is reported in
Sipser’s paper. Lautemann provided a simplified proof using probabilistic method.

Notice that BPP ⊆
∑p

2 iff BPP ⊆
∏p

2.

1. M. Sipser. A Complexity Theoretic Approach to Randomness. STOC, 1983.

2. C. Lautemann. BPP and the Polynomial Hierarchy. IPL, 1983.
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Lautemann’s Proof

Suppose L ∈ BPP. There is a polynomial p and a P-time TM M such that for all x ∈ {0, 1}n,

Prr∈R{0,1}p(n) [M(x, r) = 1] ≥ 1 − 2−n, whenever x ∈ L,
Prr∈R{0,1}p(n) [M(x, r) = 1] ≤ 2−n, whenever x /∈ L.

Let Sx be the set of r’s such that M(x, r) = 1. Then

|Sx| ≥ (1 − 2−n)2p(n), whenever x ∈ L,
|Sx| ≤ 2−n2p(n), whenever x /∈ L.

For a set S ⊆ {0, 1}p(n) and string u ∈ {0, 1}p(n), let S + u be {r + u | r ∈ S}, where + is the
bitwise exclusive ∨.
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Lautemann’s Proof

Let k = ⌈ p(n)
n ⌉+ 1.

Claim 1. For every set S ⊆ {0, 1}p(n) such that |S| ≤ 2−n2p(n) and every k vectors u1, . . . , uk,
one has

∪k
i=1(S + ui) ̸= {0, 1}p(n).

Claim 2. For every set S ⊆ {0, 1}p(n) such that |S| ≥ (1 − 2−n)2p(n) there exist u1, . . . , uk
rendering true the equality

∪k
i=1(S + ui) = {0, 1}p(n).

Proof.
Let r ∈ {0, 1}p(n). Now Prui∈R{0,1}p(n) [ui ∈ S + r] ≥ 1 − 2−n.

So Pru1,...,uk∈R{0,1}p(n)

[∧k
i=1 ui /∈ S + r

]
≤ 2−kn < 2−p(n).

Notice that ui /∈ S + r if and only if r /∈ S + ui, we get by union bound that

Pru1,...,uk∈R{0,1}p(n)

[
∃r ∈ {0, 1}p(n).r /∈

∪k
i=1(S + ui)

]
< 1.
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Lautemann’s Proof

Now Claim 1 and Claim 2 imply that x ∈ L if and only if

∃u1, . . . , uk ∈ {0, 1}p(n).∀r ∈ {0, 1}p(n).r ∈
k∪

i=1
(Sx + ui),

or equivalently

∃u1, . . . , uk ∈ {0, 1}p(n).∀r ∈ {0, 1}p(n).
k∨

i=1
M(x, r + ui) = 1.

Since k is polynomial in n, we may conclude that L ∈
∑p

2.
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BPP is Low for Itslef

Lemma. BPPBPP = BPP.
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Complete Problem for BPP?

PP is a syntactical class in the sense that every P-time PTM decides a language in PP.

BPP is a semantic class. It is undecidable to check if a PTM both accepts and rejects
with probability 2/3.

1. We are unable to prove that PTMSAT is BPP-complete.
2. We are unable to construct universal machines. Consequently we are unable to

prove any hierarchy theorem.

But if BPP = P, there should exist complete problems for BPP.
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ZPP
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If P-time probabilistic decidable problems are defined using average complexity measure
with bound on error probability, we get a complexity class that is even closer to P.
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PTM with Zero Sided Error

Suppose T : N → N and L ⊆ {0, 1}∗.
A PTM P with zero-sided error decides L in time T(n) if for every x ∈ {0, 1}∗, the
expected running time of P(x) is at most T(|x|), and it outputs L(x) if P(x) halts.

L ∈ ZTIME(T(n)) if there is some c such that L is decided by some zero-sided error
PTM in cT(n) average time.
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ZPP =
∪
c∈N

ZTIME(nc).
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Lemma. L ∈ ZPP if and only if there exists a P-time PTM P with outputs in {0, 1, ?}
such that, for every x ∈ {0, 1}∗ and for all choices, P(x) outputs either L(x) or ?, and
Pr[P(x) =?] ≤ 1/3.

If a PTM P answers in O(nc) time ‘dont-know’ with probability at most 1/3, then we can
design a zero sided error PTM that simply runs P repetitively until it gets a proper answer.
The expected running time of the new PTM is also O(nc).
Given a zero sided error PTM P with expected running time T(n), we can design a PTM that
answers ‘?’ if a sequence of 3T(n) choices have not led to a proper answer.
By Markov’s inequality, this machines answers ‘?’ with a probability no more than 1/3.
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PTM with One Sided Error

Suppose T : N → N and L ⊆ {0, 1}∗.
A PTM P with one-sided error decides L in time T(n) if for every x ∈ {0, 1}∗, P halts
in T(|x|) steps, and

Pr[P(x) = 1] ≥ 2/3, if x ∈ L,
Pr[P(x) = 1] = 0, if x /∈ L.

L ∈ RTIME(T(n)) if there is some c such that L is decided in cT(n) time by some
PTM with one-sided error.
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RP =
∪
c∈N

RTIME(nc).
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Theorem. ZPP = RP ∩ coRP.

A ‘?’ answer can be replaced by a yes/no answer consistently.
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Error Reduction for ZPP

Theorem. ZPP(1 − 1/nc) = ZPP(2−nd
) for all c, d > 1.

Suppose L ∈ ZPP(1 − 1/nc) is decided by a PTM P in T(n) time with a “don’t know”
probability 1 − 1/nc.
Let P′ be the PTM that on input x of size n, repeat P a total of ln(2)nc+d times. The “don’t
know” probability of P′ is

(1 − 1/nc)ln(2)n
c+d
< e− ln(2)nd

= 2−nd
.

The running time of P′ on x is bounded by ln(2)nc+dT(n).
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Error Reduction for RP

Theorem. RP(1 − 1/nc) = RP(2−nd
) for all c, d > 1.
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Random Walk and RL
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Randomized Logspace Complexity

L ∈ BPL if there is a logspace PTM P such that Pr[P(x) = L(x)] ≥ 2
3 .

Fact. BPL ⊆ P.
Proof.
Upon receiving an input the algorithm produces the adjacent matrix A of the configuration
graph, in which aij ∈

{
0, 1

2 , 1
}

indicates the probability Ci reaches Cj in one step.
It then computes An−1.
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Randomized Logspace Complexity

L ∈ RL if x ∈ L implies Pr[P(x)=1] ≥ 2
3 and x /∈ L implies Pr[P(x)=1] = 0 for some

logspace PTM P.

Fact. RL ⊆ NL.
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Undirected Path Problem

Let UPATH be the reachability problem of undirected graph. Is UPATH in L?
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Theorem. UPATH ∈ RL.

To prove the theorem we need preliminary properties about Markov chains.

1. R. Aleliunas, R. Karp, R. Lipton, L. Lovász and C. Rackoff. Random Walks, Universal Traversal Sequences, and the Complexity of Maze
Problems. FOCS, 1979.
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Markov chains were introduced by Andreĭ Andreevich Markov (1856-1922).
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Stochastic Process

A stochastic process X = {Xt | t ∈ T} is a set of random variables taking values in a
single state space Ω.
▶ If T is countably infinite, X is a discrete time process.
▶ If Ω is countably infinite, X is a discrete space process.
▶ If Ω is finite, X is a finite process.

A discrete space is often identified to {0, 1, 2, . . .} and a finite space to {0, 1, 2, . . . , n}.
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In the discrete time case a stochastic process starts with a state distribution X0.
It becomes another distribution X1 on the states in the next step, and so on.
In the t-th step Xt may depend on all the histories X0, . . . ,Xt−1.
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Markov Chain

A discrete time, discrete space stochastic process X0,X1,X2, . . . , is a Markov chain if

Pr[Xt = at | Xt−1 = at−1] = Pr[Xt = at | Xt−1 = at−1, . . . ,X0 = a0].

The dependency on the past is captured by the value of Xt−1. This is the Markov property.

A Markov chain is time homogeneous if for all t ≥ 1,

Pr[Xt+1 = j | Xt = i] = Pr[Xt = j | Xt−1 = i].

These are the Markov chains we are interested in. We write Mj,i for Pr[Xt+1 = j | Xt = i].
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Transition Matrix

The transition matrix M is (Mj,i)j,i such that
∑

j Mj,i = 1 for all i. For example

M =


0 1/2 1/2 0 . . .

1/4 0 1/3 1/2 . . .
0 1/3 1/9 1/4 . . .

1/2 1/6 0 1/8 . . .
...

...
...

...
...
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Transition Graph

1/21 1/6
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1/3

1/2 1/3
1/2

1/3

1/3

1/3

5/6

1/6

1

1
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Finite Step Transition

Let mt denote a probability distribution on the state space at time t. Then

mt+1 = M · mt.

The t step transition matrix is clearly given by

Mt.
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Irreducibility

A state j is accessible from state i if (Mn)j,i > 0 for some n ≥ 0. If i and j are
accessible from each other, they communicate.

A Markov chain is irreducible if all states belong to one communication class.
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Aperiodicity

A period of a state i is the greatest common divisor of Ti = {t ≥ 1 | (Mt)i,i > 0}.
A state i is aperiodic if gcd Ti = 1.

Lemma. If M is irreducible, then gcd Ti = gcd Tj for all states i, j.
Proof.
By irreducibility (Ms)j,i > 0 and (Mt)i,j > 0 for some s, t > 0. Clearly Ti + (s + t) ⊆ Tj. It
follows that gcd Ti ≥ gcd Tj. Symmetrically gcd Tj ≥ gcd Ti.

The period of an irreducible Markov chain is the period of the states.
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Classification of State

Let rt
j,i denote the probability that, starting at i, the first transition to j occurs at time t; that is

rt
j,i = Pr[Xt = j ∧ ∀s∈[t−1].Xs ̸= j | X0 = i].

A state i is recurrent if ∑
t≥1

rt
i,i = 1.

A state i is transient if ∑
t≥1

rt
i,i < 1.

A recurrent state i is absorbing if
Mi,i = 1.
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1

If one state in an irreducible Markov chain is recurrent, respectively transient, all states
in the chain are recurrent, respectively transient.
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Ergodic State

The expected hitting time to j from i is

hj,i =
∑
t≥1

t · rt
j,i.

A recurrent state i is positive recurrent if the expected first return time hi,i <∞.
A recurrent state i is null recurrent if hi,i = ∞.

An aperiodic, positive recurrent state is ergodic.
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1/2
2/31/2

1/3

3/4

1/4
1/5

1/6

. . .
4/5 5/6

For the presence of null recursive state, the number of states must be infinite.
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A Markov chain M is recurrent if every state in M is recurrent.
A Markov chain M is aperiodic if the period of M is 1.
A Markov chain M is ergodic if all states in M are ergodic.
A Markov chain M is regular if ∃r> 0.∀i, j.Mr

j,i > 0.
A Markov chain M is absorbing if there is at least one absorbing state and from every
state it is possible to go to an absorbing state.
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The Gambler’s Ruin

A fair gambling game between Player I and Player II.
▶ In each round a player wins/loses with probability 1/2.
▶ The state at time t is the number of dollars won by Player I. Initially the state is 0.
▶ Player I can afford to lose ℓ1 dollars, Player II ℓ2 dollars.
▶ The states −ℓ1 and ℓ2 are absorbing. The state i is transient if −ℓ1 < i < ℓ2.
▶ Let Mt

i be the probability that the chain is in state i after t steps.
▶ Clearly limt→∞ Mt

i = 0 if −ℓ1 < i < ℓ2.
▶ Let q be the probability the game ends in state ℓ2. By definition limt→∞ Mt

ℓ2
= q.

▶ Let Wt be the gain of Player I at step t. Then E[Wt] = 0 since the game is fair.
Now E[Wt] =

∑ℓ2
i=−ℓ1

iMt
i = 0 and limt→∞ E[Wt] = ℓ2q − ℓ1(1 − q) = 0.

Conclude that q = ℓ1
ℓ1+ℓ2

.
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In the rest of the lecture we confine our attention to finite Markov chains.
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Lemma. In a finite Markov chain, at least one state is recurrent; and all recurrent
states are positive recurrent.

In a finite Markov chain M there must be a communication class without any outgoing edges.
Starting from any state k in the class the probability that the chain will return to k in d steps is
at least p for some p > 0, where d is the diameter of the class. The probability that the chain
never returns to k is limt→∞(1 − p)dt = 0. Hence

∑
t≥1 Mt

k,k = 1.

Starting from a recurrent state i, the probability that the chain returns to i in dt steps is at
most q for some q ∈ (0, 1). Thus

∑
t≥1 trt

i,i is bounded by
∑

t≥1 dtqdt <∞.

Corollary. In a finite irreducible Markov chain, all states are positive recurrent.
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Proposition. Suppose M is a finite irreducible Markov chain. The following are equivalent:
(i) M is aperiodic. (ii) M is ergodic. (iii) M is regular.

(i⇔ii) This is a consequence of the previous corollary.
(i⇒iii) Assume ∀i. gcd Ti = 1. Since Ti is closed under addition, Fact implies that some ti
exists such that t ∈ Ti whenever t ≥ ti. By irreducibility for every j, (Mtj,i)j,i > 0 for some tj,i.

Set t =
∏

i ti·
∏

i ̸=j tj,i. Then (Mt)i,j > 0 for all i, j.

(iii⇒i) If M has period t > 1, for any k > 1 some entries in the diagonal of Mkt−1 are 0.

Fact. If a set of natural number is closed under addition and has greatest common
divisor 1, then it contains all but finitely many natural numbers.
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The graph of a finite Markov chain contains two types of maximal strongly connected
components (MSCC).
▶ Recurrent MSCC’s that have no outgoing edges. There is at least one such MSCC.
▶ Transient MSCC’s that have at least one outgoing edge.

If we think of an MSCC as a big node, the graph is a dag.

How fast does the chain leave the transient states? What is the limit behaviour of the
chain on the recurrent states?
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Canonical Form of Finite Markov Chain

Let Q be the matrix for the transient states, E for the recurrent states, assuming that
the graph has only one recurrent MSCC. We shall assume that E is ergodic.(

Q 0
L E

)
It is clear that (

Q 0
L E

)n
=

(
Qn 0
L′ En

)
.

Limit Theorem for Transient Chain. limn→∞ Qn = 0.
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Fundamental Matrix of Transient States

Theorem. N =
∑

n≥0 Qn is the inverse of I − Q. The entry Nj,i is the expected
number of visits to j starting from i.

I−Q is nonsingular because x(I−Q) = 0 implies x = 0. Then N(I−Qn+1) =
∑n

i=0 Qi follows
from N(I − Q) = I. Thus N =

∑∞
i=0 Qn.

Let Xk be the Poisson trial with Pr[Xk = 1] = (Qk)j,i, the probability that starting from i the
chain visits j at the k-th step. Let X =

∑∞
k=1 Xk. Clearly E[X] = Nj,i. Notice that Ni,i counts

the visit at the 0-th step.
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Fundamental Matrix of Transient States

Theorem.
∑

j Nj,i is the expected number of steps to stay in transient states after
starting from i.
∑

j Nj,i is the expected number of visits to any transient states after starting from i. This is
precisely the expected number of steps.
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Stationary Distribution

A stationary distribution of a Markov chain M is a distribution π such that

π = Mπ.

If the Markov chain is finite, then π =


π0
π1
...
πn

 satisfies
∑n

j=0 Mi,jπj = πi =
∑n

j=0 Mj,iπi. [probability

entering i = probability leaving i]
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Limit Theorem for Ergodic Chains

Theorem. The power En approaches to a limit as n → ∞. Suppose W = limn→∞ En.
Then W = (π, π, . . . , π) for some positive π. Moreover π is a stationary distribution of E.

We may assume that E > 0. Let r be a row of E, and let ∆(r) = max r −min r.
▶ It is easily seen that ∆(rE) < (1 − 2p)∆(r), where p is the minimal entry in E.
▶ It follows that limn→∞ En = W = (π, π, . . . , π) for some distribution π.
▶ π is positive since rE is already positive.

Moreover W = limn→∞ En = E limn→∞ En = EW. That is π = Eπ.
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Limit Theorem for Ergodic Chains

Lemma. E has a unique stationary distribution. [π can be calculated by solving linear equations.]

Suppose π, π′ are stationary distributions. Let

πi/π
′
i = min

0≤k≤n
{πk/π

′
k}.

It follows from the regularity property that πi/π′i = πj/π′j for all j ∈ {0, . . . , n}.
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Limit Theorem for Ergodic Chains

Theorem. π = limn→∞ Env for every distribution v.

Suppose E = (m0, . . . ,mk). Then En+1 = (Enm0, . . . ,Enmk). It follows from(
lim

n→∞
Enm0, . . . , lim

n→∞
Enmk

)
= lim

n→∞
En+1 = (π, . . . , π)

that limn→∞ Enm0 = . . . = limn→∞ Enmk = π. Now

lim
n→∞

Env = lim
n→∞

En(v0m0 + . . .+ vkmk) = v0π + . . .+ vkπ = π.
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Limit Theorem for Ergodic Chains

H is the hitting time matrix whose entries at (j, i) is hj,i.
D is the diagonal matrix whose entry at (i, i) is hi,i.
J is the matrix whose entries are all 1.

Lemma. H = J + (H − D)E.
Proof.
For i ̸= j, the hitting time is hj,i = Ej,i +

∑
k̸=j Ek,i(hj,k + 1) = 1 +

∑
k ̸=j Ek,ihj,k, and the first

recurrence time is hi,i = Ei,i +
∑

k̸=i Ek,i(hi,k + 1) = 1 +
∑

k̸=i Ek,ihi,k.

Theorem. hi,i = 1/πi for all i. [This equality can be used to calculate hi,i.]

Proof.
1 = Jπ = Hπ − (H − D)Eπ = Hπ − (H − D)π = Dπ.
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Queue

Let Xt be the number of customers in the queue at time t. At each time step exactly
one of the following happens.
▶ If |queue| < n, with probability λ a new customer joins the queue.
▶ If |queue| > 0, with probability µ the head leaves the queue after service.
▶ The queue is unchanged with probability 1 − λ− µ.

The finite Markov chain is ergodic. Therefore it has a unique stationary distribution.


1 − λ µ 0 . . . 0 0 0
λ 1 − λ− µ µ . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . λ 1 − λ− µ µ
0 0 0 . . . 0 λ 1 − µ
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Time Reversibility

A distribution π for a finite Markov chain M is time reversible if Mj,iπi = Mi,jπj.

Lemma. A time reversible distribution is stationary.
Proof.∑

i Mj,iπi =
∑

i Mi,jπj = πj.

Suppose π is a stationary distribution of a finite Markov chain M.
Consider X0, . . . ,Xn, a finite run of the chain. We see the reverse sequence Xn, . . . ,X0
as a Markov chain with transition matrix R defined by Ri,j =

1
πj

Mj,iπi.
▶ If M is time reversible, then R = M, hence the terminology.
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Fundamental Matrix for Ergodic Chains

Using the equality EW = W and Wk = W, one proves limn→∞(E − W)n = 0 using

(E − W)n =
n∑

i=0
(−1)i

(
n
i

)
En−iWi = En +

n∑
i=1

(−1)i
(

n
i

)
W = En − W.

It follows from the above result that x(I−E+W) = 0 implies x = 0. So (I−E+W)−1 exists.

Let Z = (I − E + W)−1. This is the fundamental matrix of E.
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Fundamental Matrix for Ergodic Chains
Lemma. (i) 1Z = 1. (ii) Zπ = π. (iii) (I − E)Z = I − W.
Proof.
(i) is a consequence of 1E = 1 and 1W = 1.
(ii) is a consequence of Eπ = π and Wπ = π.
(iii) (I − W)Z−1 = (I − W)(I − E + W) = I − E + W − W + WE − W2 = I − E.

Theorem. hj,i = (zj,j − zj,i)/πj. [This equality can be used to calculate hj,i.]

Proof.
By Lemma, (H − D)(I − W) = (H − D)(I − E)Z = (J − D)Z = J − DZ. Therefore

H − D = J − DZ + (H − D)W.

For i ̸= j one has hj,i = 1 − zj,ihj,j + ((H − D)π)j. Also 0 = 1 − zj,jhj,j + ((H − D)π)j. Hence
hj,i = (zj,j − zj,i)hj,j = (zj,j − zj,i)/πj.
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Stationary Distribution for Finite Irreducible Markov Chain

Theorem. A finite irreducible Markov chain has a unique stationary distribution.
Proof.
(I + M)/2 is regular because it is aperiodic. If π is a stationary distribution of (I + M)/2, it is
a stationary distribution of M, and vice versa. Hence the uniqueness.

The stationary distribution π is no longer a stable distribution. But πi can still be
interpreted as the frequency of the occurrence of state i.
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Random Walk on Undirected Graph

A random walk on an undirected graph G is the Markov chain whose transition matrix
A is the normalized adjacent matrix of G.

Lemma. A random walk on an undirected connected graph G is aperiodic if and only
if G is not bipartite.
Proof.
(⇒) If G is bipartite, the period of G is 2.
(⇐) If one node has a cycle of odd length, every node has a cycle of length 2k + 1 for all large
k. So the gcd must be 1. [In an undirected graph every node has a cycle of length 2.]

Fact. A graph is bipartite if and only if it has only cycles of even length.
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Random Walk on Undirected Graph

Theorem. A random walk on G = (V,E) converges to the stationary distribution

π =


d0

2|E|
...

dn
2|E|

 .

Proof.
The degree of vertex i is di. Clearly

∑
v

dv
2|E| = 1 and Aπ = π.

Lemma. If (u, v) ∈ E then hu,v < 2|E|.
Proof.
Omitting possible self-loops, 2|E|/du = hu,u ≥

∑
v̸=u(1 + hu,v)/du. Hence hu,v < 2|E|.
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Random Walk on Undirected Graph

The cover time of G = (V,E) is the maximum over all vertices v of the expected time
to visit all nodes in the graph G by a random walk from v.

Lemma. The cover time of G = (V,E) is bounded by 4|V||E|.
Proof.
Fix a spanning tree of the graph. A depth first walk along the edges of the tree is a cycle of
length 2(|V| − 1). The cover time is bounded by

2|V|−2∑
i=1

hvi,vi+1 < (2|V| − 2)(2|E|) < 4|V||E|.
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An RL algorithm for UPATH can now be designed. Let ((V,E), s, t) be the input.
1. Starting from s, walk randomly for 12|V||E| steps;
2. If t has been hit, answer ‘yes’, otherwise answer ‘no’.

Add self loops if G is bipartite.

By Markov inequality the error probability is less than 1
3 .
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BPP ?
= P
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