
Complexity of Counting



NP theory captures the difficulties of finding certificates.
In some applications we are interested in counting certificates.
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Leslie Valiant studied counting complexity in late 70’s.

1. The Complexity of Enumeration and Reliability Problems. SIAM J. Computing 8:410-421, 1979.
2. The Complexity of Computing the Permanent. Theoretical Computer Science, 8:189-201, 1979.
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Counting Problem
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♯CYCLE

♯CYCLE is the problem of computing the number of simple cycle in a digraph G.

Finding a simple cycle can be done in linear time.
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♯SAT

The counting version of SAT:
▶ ♯SAT is the problem of computing, given a boolean formula ϕ, the number of

satisfying assignments of ϕ.

A problem equivalent to ♯SAT is the following:
▶ Given a boolean formula with n variables, what is the fraction of the satisfying

assignments with x1 = 1?
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Network Reliability

Given a digraph on n nodes, where each node/edge can fail with probability 1/2.
Compute the probability that node 1 can reach n.

The problem boils down to computing the number of node/edge induced subgraphs in
which there is a path from 1 to n.
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A counting problem can be difficult even if the corresponding decision problem is easy.
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Counting can be Harder than Decision

Theorem If ♯CYCLE has a polynomial algorithm, then P = NP.

Given a digraph G with n-nodes, we create a digraph G′ by replacing every edge of G
from s to t by a digraph such that there are 2m paths from s to t, where m = n log n.
▶ If G has a Hamiltonian cycle, G′ has at least 2mn = nn2 cycles.
▶ If G has no Hamiltonian cycle, G′ has fewer than nn−12m(n−1) = 1

2 ·2n2 cycles.
We have reduced an NP-complete problem to ♯CYCLE.
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♯P
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Complexity Class ♯P

A function f : {0, 1}∗ → N is in ♯P if there exists a polynomial p : N → N and a
P-time TM M such that for every x ∈ {0, 1}∗ the following holds:

f(x) =
∣∣∣{y ∈ {0, 1}p(|x|) | M(x, y) = 1

}∣∣∣ .
▶ f(x) has polynomial bits.
▶ ♯P can also be defined in terms of P-time NDTM.
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Complexity Class FP

Let FP be the set of functions : {0, 1}∗ → N computable by P-time Turing Machines.

FP ⊆ ♯P.
Proof.
Suppose f ∈ FP. Then “if y < ⌞f(x)⌟ then 1 else 0” witnesses f ∈ ♯P.
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Complexity Class FP

If ♯P = FP then NP = P.

If PSPACE = P then ♯P = FP.
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PP as a Decision Version of ♯P

Recall the definition of PP introduced in Randomized Computation.

A language L is in PP if there exists a polynomial p : N → N and a P-time TM M
such that for every x ∈ {0, 1}∗ the following holds:

x ∈ L iff
∣∣∣{y ∈ {0, 1}p(|x|) | M(x, y) = 1

}∣∣∣ ≥ 1
2 · 2p(|x|).

PP looks at the most significant bit of counting value.
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Theorem. PP = P if and only if ♯P = FP.

Suppose f ∈ ♯P. Let M be a P-time TM and p be a polynomial such that for all x,

f(x) =
∣∣∣{y ∈ {0, 1}p(|x|) | M(x, y) = 1

}∣∣∣ .
Let ℓ ∈ {0, 1}p(|x|). Define a TM L as follows:

L(x, by) = if b = 1 then M(x, y) else if y < ℓ then 1 else 0.

If PP = P, we can decide in P-time if f(x) + ℓ ≥ 2p(|x|). A binary search produces the
ℓ′ rendering true the equality f(x) + ℓ′ = 2p(|x|).
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♯P-Completeness

A function f : {0, 1}∗ → N gives rise to an oracle

Of = {⟨x, i, d⟩ | f(x)i = d ∧ (d = 0 ∨ d = 1)}.

We write FPf for the set of functions computable by P-time TM’s with oracle Of.

f is ♯P-complete if it is in ♯P and every ♯P-problem is in FPf.
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Theorem. ♯SAT is ♯P-complete.

Suppose M is a TM witnessing f ∈ ♯P.
▶ The Cook-Levin reduction gives rise to a P-time algorithm that calculates f using
♯SAT as an oracle.

We are done using the parsimonious property.

The counting version of many NP-complete problems are known to be ♯P-complete.
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Valiant Theorem
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Leslie Valiant provided convincing argument that computing permanent is far more
difficult than calculating determinant.

1. Leslie Valiant. The Complexity of Computing the Permanent. Theoretical Computer Science, 8:189-201, 1979.
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Permanent and Determinant

The permanent of an n×n matrix A is the “sum-of-product”

perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i),

where Sn is the set of all permutations of {1, . . . , n}.

The determinant of an n×n matrix A is

det(A) =
∑
σ∈Sn

(−1)sgn(σ)
n∏

i=1
Ai,σ(i),

where sgn(σ) = 1 if ♯{(j, k) | j < k ∧ σ(j) > σ(k)} is odd, and sgn(σ) = 0 if otherwise.

Using Gauss elimination determinant is computable in O(n3) time.
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Combinatorial Interpretation of Permanent

Combinatorial interpretation of matrix:
▶ The adjacency matrix of a weighted bipartite graph.
▶ The adjacency matrix of a weighted complete digraph admitting self loops.

For a 0-1 matrix the permanent is the number of perfect matching in the former
interpretation and the number of cycle cover in the latter interpretation.
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Theorem (Valiant, 1979). Perm for 0-1 matrix is ♯P-complete.

The proof consists of two reductions:
▶ A reduction from ♯SAT to the permanent problem of matrix.
▶ A reduction from the latter to the permanent problem of 0-1 matrix.
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Valiant’s First Reduction

A basic technique in Valiant’s reduction can be explained using the following digraph.

'G

1
1

1

1

1

1
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Valiant’s First Reduction

Given a 3CNF φ with n variables and m clauses, we construct a digraph by piecing
together variable digraphs and clause digraphs via exclusive-or digraphs.
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Valiant’s First Reduction

For each variable there is a variable digraph containing a true cycle (of true edges) and
a false cycle (of false edges) that shares an additional common edge.

…

…

▶ The true cycle and the false cycle are exclusive.
▶ Both contribute 1 to the overall weight.
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Valiant’s First Reduction

The following is a clause digraph:

▶ A cycle cover may not contain all three literal edges.
▶ There is only one cycle cover that has none, or one specific, or two specific literal

edges; each contributes 1 to the overall weight.
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Valiant’s First Reduction

u

'v v

1

1

1

2

3

'uu

The above diagram is the exclusive-or of u → u′ and v → v′.

1. Precisely one of u → u′, v → v′ appears in a cycle cover.
▶ A cycle cover that passes through the four nodes contribute to weight 4.

2. Neither u → v′ nor v → u′ need be considered.
▶ The total weight a cycle cover over the top and the bottom node [+ the left node]

[+ the right node] cancels out.
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Valiant’s First Reduction

A literal edge of x (¬x) in a clause diagraph is connected to a true (false) edge of the
variable digraph of x via an exclusive-or digraph.

Lemma. The permanent of the digraph is 43m♯φ, where ♯φ is the number of the
assignments that validate φ.
Proof.
The cycle covers of the variable digraphs correspond to the true assignments. Each
edge of a clause digraph contributes to a factor of 4.
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Valiant’s Second Reduction

1. Transforming a matrix to a {−1, 0, 1}-matrix:
▶ An edge with weight 2ak + 2ak−1 + . . .+ 2a1 is replaced by k parallel edges with

weights 2ak , 2ak−1 , . . . , 2a1 respectively.
▶ An edge with weight 2a is replaced by a edges of weight 2.
▶ An edge with weight 2 is decomposed into a ⋄-shape diagraph.

Introduce self-loops to all the new nodes.

2. Turning an n×n {−1, 0, 1}-matrix to a 0-1-matrix:
▶ The absolute value of such a permanent is ≤ n! < 2n2

+ 1. So we replace an edge
with weight −1 by an edge with weight 2n2 .

▶ Repeat the previous transformation.

The permanent of the end matrix is calculated modular 2n2
+ 1.
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Universal Hash Function
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Independent hash functions are costly.
Using k-wise independence one may reduce the amount of randomness.

Uniformity.

h

{0, 1}n

{0, 1}k

Efficiency.

1. Carter and Wegman. Universal Classes of Hash Functions. JCSS, 1979.
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Universal Hash Function

Suppose H ⊆ BA, where BA is the set of functions from A to B.

H is a universal Hash function family if

Prh∈RH[h(x)= h(x′)] ≤ 1
|B|

for all x, x′ ∈ A such that x ̸= x′.

Example: m-wise Independent Hash Function Family
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m-wise Independent Hash Function Family

Suppose Hn,k is a set of functions from {0, 1}n to {0, 1}k.

Hn,k is m-independent if for all pairwise distinct x1, . . . , xm ∈ {0, 1}n and any
y1, . . . , ym ∈ {0, 1}k, the following equality is valid

Prh∈RHn,k

[ m∧
i=1

h(xi)= yi

]
=

1
2mk .

If Hn,k is m-independent, then Hn,k is m′-independent for every m′ ∈ [m − 1].

Pairwise Independent Hash Function Family:
▶ Prh∈RHn,k [h(x) = y] = 1

2k .
▶ Prh∈RHn,k [h(x)=y ∧ h(x′)=y′] = 1

22k .
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Efficient m-wise Independent Hash Function Family

Suppose a0, . . . , am−1 ∈ F2n , the function ha0,...,am−1 : F2n → F2n is defined as follows:

ha0,...,am−1(x) =
∑

j∈{0,...,m−1}
ajxj.

For distinct x1, . . . , xm ∈ F2n and any y1, . . . , ym ∈ F2n , equalities ha0,...,am−1(x1) = y1,
…, ha0,...,am−1(xm) = ym give rise to the following equation system

a0 + a1x1 + . . .+ am−2xm−2
1 + am−1xm−1

1 = y1,
... (1)

a0 + a1xm + . . .+ am−2xm−2
m + am−1xm−1

m = ym.

The coefficient matrix is a Vandermonde matrix, hence a unique solution.
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Efficient m-wise Independent Hash Function Family

If n > k, Hn,k is obtained from Hn,n by composing with projection.

If n < k, Hn,k is obtained from Hk,k by composing with embedding function.
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1. Sipser used these functions to prove BPP ⊆ Σp
4 ∩ Πp

4.
2. Stockmeyer applied them to set lower bound for the first time.
3. Babai exploited them in the study of Arthur-Merlin protocol.

1. Sipser. A Complexity Theoretic Approach to Randomness. STOC 1983.
2. Stockmeyer. The Complexity of Approximate Counting. STOC 1984.
3. Babai. Trading Group Theory for Randomness. STOC 1985.
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Valiant-Vazirani Theorem
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Valiant and Vazirani gave a surprising randomized P-time reduction from SAT to USAT.

1. L. Valiant and V. Vazirani. NP is as Easy as Detecting Unique Solutions. Theoretical Computer Science, 47:85-93, 1986.
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UP

UP is the class of unambiguous P-time decision problems.
▶ L ∈ UP iff L is accepted by a P-time NDTM N such that, for every x, N(x) has at

most one accepting computation path.
▶ Alternatively we can define UP in terms of deterministic TM.

Clearly P ⊆ UP ⊆ NP. The class was introduced by Valiant.

1. L. Valiant. Relative Complexity of Checking and Evaluating. Information Processing Letters, 5:20-23, 1976.
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Let USAT be the set of CNFs that have unique satisfying assignment. Then USAT ∈ UP.
Formally USAT must be understood as a promise problem.
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A promise problem is a generalization of a decision problem where an input is promised
to belong to a subset, called the promise, of the set of all possible inputs.
▶ There is no requirement on the inputs outside the promise set.

Promise problems are introduced in [1]. Many natural problems are actually promise problems.
▶ Given a Hamiltonian graph, has it got a cycle of even length?
▶ Factorization referred to in cryptography is a promise problem.

1. Even, Selman, Yacobi. The Complexity of Promise Problems with Applications to Publica Key Cryptography. Information and Control, 1984.
2. Goldreich. On Promise Problems. Electronic Colloquium on Computational Complexity, 2005.
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Randomized Reduction from NP to USAT

Theorem (Valiant and Vazirani, 1986).
There is a P-time PTM A such that for every n variable formula φ,

φ ∈ SAT ⇒ Pr[A(φ) ∈ USAT] ≥ 1/8n,
φ /∈ SAT ⇒ Pr[A(φ) ∈ SAT] = 0.

Corollary. If USAT ∈ RP then NP = RP.
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To prove Valiant-Vazirani Theorem, we need to construct a P-time PTM A that
reduces an instance in SAT to an instance in USAT in a random manner.

Here is the intuition:
▶ If SAT ∈ P then given φ ∈ SAT we could construct in P-time a true assignment

x1 = c1, . . . , xn = cn to φ and obtain φ ∧ (x1 = c1 ∧ . . . ∧ xn = cn) ∈ USAT.
▶ Since we do not know if SAT ∈ P, the best we could do is to generate randomly

an assignment and conjoin our guess to φ. This is done using hash functions.
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Lemma (Valiant and Vazirani, 1986).
Let Hn,k be a collection of pairwise independent hash function from {0, 1}n to {0, 1}k.
Let S ⊆ {0, 1}n be such that 2k−2 ≤ |S| < 2k−1. Then

Prh∈RHn,k,y∈R{0,1}k [∃!x∈S.h(x)= y] > 1
8 .

▶ h when restricted to S looks injective if |S| ≪ 2k.
▶ y ∈ {0, 1}k is likely to be covered by h(S) if |S| is comparable to 2k.
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Proof of Valiant-Vazirani Lemma
Fix y ∈ {0, 1}k. By assumption p = Prh∈RHn,k [h(x)= y] = 2−k, and for x ̸= x′,

Prh∈RHn,k [h(x)= y ∧ h(x′)= y] = 2−2k = p2.

By inclusion-exclusion principle,

Pr[∃x∈S.h(x)= y] ≥
∑
x∈S

Pr[h(x)= y]−
∑
x<x′

Pr
[

h(x)= y,
h(x′)= y

]
= |S|p −

(
|S|
2

)
p2,

and by union bound,

Pr

∃x, x′∈S.

 x ̸= x′,
h(x)= y,
h(x′)= y

 ≤
∑
x<x′

Pr
[

h(x)= y,
h(x′)= y

]
.

It follows that
Prh∈RHn,k [∃!x∈S.h(x)= y] ≥ |S|p − 2

(
|S|
2

)
p2 >

1
8 .
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Proof of Valiant-Vazirani Theorem

1. A chooses k ∈R {2, . . . , n + 1} and h ∈R Hn,k randomly.
▶ Let S be the set of satisfying assignments of φ.
▶ Then 2k−2 ≤ |S| < 2k−1 holds with probability 1/n.

Consider the formula φ(x1, . . . , xn) ∧ (h(x1, . . . , xn) = 0k).
▶ If φ is unsatisfiable, then the formula is unsatisfiable.
▶ If φ is satisfiable, then with at least probability 1/8 there is a unique satisfying assignment

that validates the equality.

2. A gets τ(x, y) by applying Cook-Levin reduction to h with the requirement
∃!x1, . . . , xn.φ(x1, . . . , xn) ∧ h(x1, . . . , xn) = 0k. Here y are introduced by Cook-Levin reduction.

3. Let A(φ) = φ(x) ∧ τ(x, y). If φ(x) is satisfiable, then Pr[∃!x, y.A(φ)] ≥ 1/8n.
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Valiant-Vazirani Theorem Relativizes

We remark that the construction by A is independent of φ.
▶ The construction does not even take a look at φ.

▶ The formula φ may contain variables other than x1, . . . , xn.
▶ The set S in the proof of Valiant-Vazirani Theorem can take the set of all true

assignments projected at x1, . . . , xn.
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Can we boost the correctness probability of the Valiant-Vazirani Theorem from 1/8n
to over 1/2 ?
▶ We don’t know how to union a set of boolean formulae such that it has a unique

satisfying assignment if and only if at least one of the formulae has a unique
satisfying assignment.

The parity P now comes into the picture.

Computational Complexity, by Fu Yuxi Complexity of Counting 48 / 63



Parity P, Counting in F2

A language L is in complexity class ⊕P, parity P, iff there is a P-time NDTM N such
that x ∈ L if and only if the number of accepting paths of N on input x is odd.
▶ Like PP, we see ⊕P as another decision version of ♯P.
▶ ⊕P looks at the least significant bit of counting value.
▶ Obviously UP ⊆⊕ P.

The complexity class ⊕P was introduced by Papadimitriou and Zachos.

1. Papadimitriou and Zachos. Two Remarks on the Power of Counting. Lecture Notes in Computer Science 145, 260-276, 1983.
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⊕SAT

1. ⊕ is the quantifier defined as follows: ⊕x1,...,xnφ(x1, . . . , xn) is true if and only if the
number of assignments to x1, . . . , xn validating φ(x1, . . . , xn) is odd. Notice that

⊕x1,...,xnφ(x1, . . . , xn) ⇔ ⊕x1 . . .⊕xn φ(x1, . . . , xn).

2. ⊕SAT is the set of all true quantified formulas of the form

⊕x1,...,xnφ(x1, . . . , xn),

where φ(x1, . . . , xn) is quantifier free.

3. ⊕SAT is ⊕P-complete by Cook-Levin reduction.
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Randomized Reduction from NP to ⊕SAT

Corollary.
There is a P-time PTM A such that for every n variable formula φ,

φ ∈ SAT ⇒ Pr[A(φ) ∈ ⊕SAT] ≥ 1/8n,
φ /∈ SAT ⇒ Pr[A(φ) ∈ ⊕SAT] = 0.

The probability 1/8n in the corollary can be boosted significantly, which
▶ leads to a randomized reduction from PH to ⊕SAT.
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Toda Theorem
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Toda proved a remarkable result in his Gödel Award paper (1998) that problems in PH
can be solved efficiently using a ♯P oracle.

1. Toda. PP is as Hard as the Polynomial-Time Hierarchy. SIAM Journal of Computing, 20:865-877, 1991.
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Normalizing Formulas Containing ⊕

Let ♯φ denote the number of satisfying assignments of φ.

It is easy to define φ · ψ and φ+ ψ such that

♯(φ(x) · ψ(y)) = ♯(φ(x))♯(ψ(y)), where x ∩ y = ∅
♯(φ(x) + ψ(y)) = ♯(φ(x)) + ♯(ψ(y)), where x ⊆ y

and the size of φ · ψ and φ+ ψ is polynomial in the size of φ,ψ.

We write φ(x1, . . . , xn) + 1 for z ∧ φ(x1, . . . , xn) ∨ z ∧ x1 ∧ . . . ∧ xn.
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Normalizing Formulas Containing ⊕

The following are obvious:

⊕xφ(x) ∧ ⊕yψ(y) ⇔ ⊕x,y(φ · ψ)(x, y),
⊕xφ(x) ∨ ⊕yψ(y) ⇔ ⊕x,y,z((φ+ 1) · (ψ + 1) + 1)(x, y, z),

¬ ⊕x φ(x) ⇔ ⊕x,z(φ+ 1)(x, z).

Conclusion:
▶ ⊕ can switch position with ∧,∨,¬.
▶ ∀ can be replaced in favour of ∃.
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Normalizing Parity

Lemma. There is a P-time TM T such that, for every formula α, the formula
β = T(α, 1ℓ) satisfies the following:

α ∈ ⊕SAT ⇒ ♯β = −1 (mod 2ℓ+1),

α /∈ ⊕SAT ⇒ ♯β = 0 (mod 2ℓ+1).

It is easy to check that

♯τ = −1 (mod 22i
) ⇒ ♯(4τ3+3τ4) = −1 (mod 22i+1

),

♯τ = 0 (mod 22i
) ⇒ ♯(4τ3+3τ4) = 0 (mod 22i+1

).

Let α0 = α and αi+1 = 4α3
i + 3α4

i . Let β = αlog(ℓ+1).
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Randomized Reduction from PH to ⊕SAT

Lemma. Given m, there exists a poly(n,m) time probabilistic reduction F from iQBF
to ⊕SAT such that

ψ ∈ iQBF ⇒ Pr[F(ψ) ∈ ⊕SAT] ≥ 1 − 2−m,

ψ /∈ iQBF ⇒ Pr[F(ψ) ∈ ⊕SAT] ≤ 2−m.
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Proof
Suppose ∃x.φ(u, x) is true with |φ| = n.
▶ By induction, φ can be converted to a ⊕ formula ⊕zψ(u, x, z) with |z| = poly(n)

and error probability ≤ 2−m−1. [See the remark on Valiant-Vazirani Theorem.]

The P-time PTM F is defined inductively as follows:
1. run the Valiant-Vazirani reduction on ψ for 8n(m + 1) times;
2. let ϕ be the

∨
of all the new ⊕-formulas;

3. turn ϕ into a single ⊕ formula ⊕φ′.
The error probability is bounded by (1 − 1/8n)8n(m+1) ≈ 2−m−1.

Putting things together, one has the following:
▶ If ∃x.φ is true, then ⊕φ′ is true with error probability 2−m.
▶ If ∃x.φ is false, then ⊕φ′ is false.
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Toda’s key observation is that the above randomized algorithm can be derandomized
by counting success rate.
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Toda Theorem

Theorem (Toda, 1991). PH ⊆ P♯P[1].

We prove that PH ⊆ P♯SAT[1].
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Proof of Toda Theorem

1. Let F be a randomized reduction from PH to ⊕SAT and m = 2.
Think of F as a TM with an additional R-bit string input r.
Let T be the reduction in one of the previous lemmas with ℓ = R + 2.

2. Given QBF ψ, consider the following value∑
r∈{0,1}R

(
♯(T(F(ψ, r), 1ℓ)) mod 2ℓ+1

)
. (2)

If ψ is true, (2) is in 2R [−1,−3
4 ]. If ψ is false, (2) is in 2R [−1

4 , 0].

3. By Cook-Levin reduction we get a formula Ψ from T(F(ψ, r), 1ℓ) with ψ hardwired.
Then (2) can be obtained by querying the oracle ♯SAT for ♯Ψ.
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Toda Theorem is often stated as PH ⊆ PPP.

Theorem. PPP = P♯P.
Proof.
It is sufficient to prove that P♮SAT = P♯SAT. See the proof of Theorem.

⟨φ, i⟩ ∈ ♮SAT if more than i assignments make φ true. ♮SAT is PP-complete.
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Toda Theorem implies that a question like
“Is this the smallest circuit with the given functionality?”

can be effectively turned into a question of the form
“How many satisfying assignments does this formula have?”

Problem classification, proof technique, and thought provoking results.
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