
第八讲. 扩张图与去随机



Randomness and Hardness

Many derandomization results are based on the assumption that certain random/hard
objects exist.
Some unconditional derandomization can be achieved using explicit constructions of
pseduorandom objects.
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Synopsis

1. Basic Linear Algebra
2. Random Walk
3. Expander Graph
4. Explicit Construction of Expander Graph
5. Reingold’s Theorem
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Basic Linear Algebra
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Three Views

All boldface lower case letters denote column vectors.

Matrix = Linear transformation : Qn → Qm

1. f(u + v) = f(u) + f(v), f(cu) = cf(u)
2. the matrix Mf corresponding to f has f(ej) as the j-th column

Interpretation of v = Au
1. Dynamic view: u is transformed to v, movement in one basis
2. Static view: u in the column basis is the same as v in the standard basis,

movement of basis

Equation, Geometry (row picture), Algebra (column picture)
▶ Linear equation, hyperplane, linear combination
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Suppose M is a matrix, c1, . . . , cn are column vectors, and r1, . . . , rn are row vectors.

M(c1, . . . , cn) = (Mc1, . . . ,Mcn) (1)

(c1, . . . , cn)


r1
r2
...

rn

 = c1r1 + c2r2 + . . .+ cnrn (2)
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Inner Product, Projection, Orthogonality

1. Inner product u†v measures the degree of colinearity of u and v
▶ u

∥u∥ is the normalization of u
▶ u and v are orthogonal if u†v = 0
▶ u†v

∥u∥
u

∥u∥ is the projection of v onto u, where ∥u∥ =
√

u†u is the length of u
▶ projection matrix P = uu†

u†u = u
∥u∥ ·

u†

∥u∥
▶ suppose u1, . . . , um are linearly independent. the projection of v onto the subspace

spanned by u1, . . . , um is Pv, where the projection matrix P is A(A†A)−1A†.
if u1, . . . , um are orthonormal, P = u1u†

1 + . . .+ umu†
m = Im.

2. Basis, orthonormal basis, orthogonal matrix
3. Q−1 = Q† for every orthogonal matrix Q

▶ Gram-Schmidt orthogonalization, A = QR

Cauchy-Schwartz Inequality. cos θ = u†v
∥u∥∥v∥ ≤ 1.
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Fixpoints for Linear Transformation

We look for fixpoints of a linear transformation A : Rn → Rn.

Av = λv.

If there are n linear independent fixpoints v1, . . . , vn, then every v ∈ Rn is some linear
combination c1v1 + . . .+ cnvn. By linearity,

Av = c1Av1 + . . .+ cnAvn = c1λ1v1 + . . .+ cnλnvn.

If we think of v1, . . . , vn as a basis, the effect of the transform A is to stretch the
coordinates in the directions of the axes.
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Eigenvalue, Eigenvector, Eigenmatrix

If A−λI is singular, an eigenvector x satisfies x ̸= 0, Ax=λx; and λ is the eigenvalue.
1. S = [x1, . . . , xn] is the eigenmatrix. By definition AS = SΛ.
2. If λ1, . . . , λn are different, x1, . . . , xn are linearly independent.
3. If x1, . . . , xn are linearly independent, A = SΛS−1.

Suppose c1x1 + . . .+ cnxn = 0. Then c1λ1x1 + . . .+ cnλnxn = 0. It follows that
c1(λ1 − λn)x1 + . . . + cn−1(λn−1 − λn)xn−1 = 0. By induction we eventually get
c1(λ1 − λ2) . . . (λ1 − λn)x1 = 0. Thus c1 = 0. Similarly c2 = . . . = cn = 0.

▶ We shall write the spectrum λ1, λ2, . . . , λn such that |λ1| ≥ |λ2| ≥ . . . ≥ |λn|.
▶ ρ(A) = |λ1| is called spectral radius.
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Similarity Transformation

Similarity Transformation = Change of Basis
1. A is similar to B if A = MBM−1 for some invertible M.
2. v is an eigenvector of A iff M−1v is an eigenvector of B.

A and B describe the same transformation using different bases.
1. The basis of B consists of the column vectors of M.
2. A vector x in the basis of A is transformed into the vector M−1x in the basis of B,

that is x = M(M−1x).
3. B then transforms M−1x into some y in the basis of B.
4. In the basis of A the vector Ax is My.

Fact. Similar matrices have the same eigenvalues.
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Triangularization

Diagonalization transformation is a special case of similarity transformation. In
diagonalization Q provides an orthogonal basis.
Question. Is every matrix similar to a diagonal matrix?

Schur’s Lemma. For each matrix A there is a unitary matrix U such that T = U−1AU
is triangular. The eigenvalues of A appear in the diagonal of T.
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Diagonalization

What are the matrices that are similar to diagonal matrices?

A matrix N is normal if NN† = N†N.

Theorem. A matrix N is normal iff T = U−1NU is diagonal iff N has a complete set of
orthonormal eigenvectors.
Proof.
If N is normal, T is normal. It follows from T† = T that T is diagonal. If T is diagonal,
it is the eigenvalue matrix of N, and NU = UT says that the column vectors of U are
precisely the eigenvectors.
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Hermitian Matrix and Symmetric Matrix

real matrix complex matrix
length ∥x∥ =

√∑
i∈[n] x2i ∥x∥ =

√∑
i∈[n] |xi|2

conjugate transpose A† A†

inner product x†y =
∑

i∈[n] xiyi x†y =
∑

i∈[n] xiyi
orthogonality x†y = 0 x†y = 0

symmetric/Hermitian A† = A A† = A
diagonalization A = QΛQ† A = UΛU†

orthogonal/unitary Q†Q = I U†U = I

Fact. If A† = A, then x†Ax = (x†Ax)† is real for all complex x.
Fact. If A† = A, the eigenvalues are real since v†Av = λv†v = λ∥v∥2.
Fact. If A† = A, the eigenvectors of different eigenvalues are orthogonal.
Fact. ∥Ux∥2 = ∥x∥2 and ∥Qx∥2 = ∥x∥2.
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Spectral Theorem
Theorem. Every Hermitian matrix A can be diagonalized by a unitary matrix U. Every
symmetric matrix A can be diagonalized by an orthogonal matrix Q.

U†AU = Λ,

Q†AQ = Λ.

The eigenvalues are in Λ; the orthonormal eigenvectors are in Q respectively U.

Corollary. Every Hermitian matrix A has a spectral decomposition.

A = UΛU† (1)(2)
=

∑
i∈[n]

λiuiu†
i .

Notice that I = UU† (2)
=
∑

i∈[n] uiu†
i .
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Positive Definite Matrix

Symmetric matrixes with positive eigenvalues are at the center of many applications.

A symmetric matrix A is positive definite if x†Ax > 0 for all x ̸= 0.

Theorem. Suppose A is symmetric. The following are equivalent.
1. x†Ax > 0 for all x ̸= 0.
2. λi > 0 for all the eigenvalues λi.
3. A = R†R for some matrix R with independent columns.

If we replace > by ≥, we get positive semidefinite matrices.
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Singular Value Decomposition

Consider an m×n matrix A. Both AA† and A†A are symmetric.

1. AA† is positive semidefinite since x†AA†x = ∥A†x∥2 ≥ 0.
2. AA† = UΣ′U†, where U consists of the orthonormal eigenvectors u1, . . . , um and

Σ′ is the diagonal matrix made up from the eigenvalues σ2
1 ≥ . . . ≥ σ2

r .
3. A†A = VΣ′′V†.
4. AA†ui = σ2

i ui implies that (σ2
i ,A†ui) is an eigenpair for A†A. So vi =

A†ui
∥A†ui∥

.

5. u†
i AA†ui = u†

i σ
2
i ui = σ2

i . So ∥A†ui∥ = σi.
6. Avi = A A†ui

∥A†ui∥
=

σ2
i ui
σi

= σiui.

Hence AV = UΣ, or A = UΣV†. Notice that Σ an m×n matrix.
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Singular Value Decomposition

We call
1. σ1, . . . , σr the singular values of A, and
2. UΣV† the singular value decomposition, or SVD, of A.

Lemma. If A is normal, then σi = |λi| for all i ∈ [n].
Proof.
Since A is normal, A = UΛU† by diagonalization. Now A†A = AA† = UΛ2U†. So the
spectrum of A†A/AA† is λ2

1, . . . , λ
2
n.
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Rayleigh Quotient

Suppose A is an n×n Hermitian matrix, (λ1, v1), …, (λn, vn) are the eigenpairs.

The Rayleigh quotient of A and nonzero x is defined as follows:

R(A, x) = x†Ax
x†x =

∑
i∈[n] λi∥v†

i x∥2∑
i∈[n] ∥v†

i x∥2
. (3)

It is clear from (3) that
▶ if λ1 ≥ . . . ≥ λn, then λi = maxx⊥v1,...,x⊥vi−1 R(A, x), and
▶ if |λ1| ≥ . . . ≥ |λn|, then |λi| = maxx⊥v1,...,x⊥vi−1 |R(A, x)|.

One can use Rayleigh quotient to derive lower bound for λi.
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Vector Norm

The norm of a vector is a measure of its magnitude/size/length.

A norm on Fn is a function ∥_∥ : Fn → R≥0 satisfying the following:
1. ∥v∥ = 0 iff v = 0.
2. ∥av∥ = |a|·∥v∥.
3. ∥v + w∥ ≤ ∥v∥+ ∥w∥.

A vector space with a norm is called a normed vector space.

1. L1-norm. ∥v∥1 = |v1| + . . . + |vn|.
2. L2-norm. ∥v∥2 =

√
|v1|2 + . . . + |vn|2 =

√
v†v.

3. Lp-norm. ∥v∥p = p
√
|v1|p + . . . + |vn|p.

4. L∞-norm. ∥v∥∞ = max{|v1|, . . . , |vn|}.
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Matrix Norm

We define matrix norm in compatible with vector norm. Suppose Fn is a normed
vector space over field F.

An induced matrix norm is a function ∥_∥ : Fn×n → R≥0 satisfying the following
properties.

1. ∥A∥ = 0 iff A = 0.
2. ∥aA∥ = |a|·∥A∥.
3. ∥A + B∥ ≤ ∥A∥+ ∥B∥.
4. ∥AB∥ ≤ ∥A∥·∥B∥.

《计算复杂性理论》，傅育熙，清华大学出版社 Expander and Derandomization 19 / 98



Matrix Norm
A matrix norm measures the amplifying power of a matrix. Define

∥A∥ = max
v̸=0

∥Av∥
∥v∥ .

It satisfies (1-4). Additionally ∥Ax∥ ≤ ∥A∥·∥x∥ for all x.

∥A∥1 = max
1≤j≤n

n∑
i=1

|Ai,j|,

∥A∥∞ = max
1≤i≤n

n∑
j=1

|Ai,j|.

Lemma. ρ(A) ≤ ∥A∥.
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Spectral Norm
∥A∥2 is called the spectral norm of A.

1√
n∥A∥1 ≤ ∥A∥2 ≤

√
n∥A∥1.

Lemma. ∥A∥2 = σ1.
Corollary. If A is a normal matrix, then ∥A∥2 = |λ1|.

Let A†A = VΣV†, let V = (v1, . . . , vn), and let x = a1v1 + . . .+ anvn. Then

∥Ax∥22 = x†(A†Ax) = x†(
∑
i∈[n]

σ2
i aivi) ≤ σ2

1∥x∥22.

The equality holds when x = v1. Therefore ∥A∥2 = σ1.

《计算复杂性理论》，傅育熙，清华大学出版社 Expander and Derandomization 21 / 98



MIT Open Course
https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/
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Random Walk
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Graphs are the prime objects of study in combinatorics.
The matrix representation of graphs lends itself to an algebraic treatment to these
combinatorial objects. It is especially effective in the treatment of regular graph.
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Our digraph admit both self-loops and parallel edges. An undirected edge is seen as
two directed edges in opposite directions.
In this lecture whenever we say graph, we mean undirected graph.
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Random Walk Matrix

The reachability matrix M of a digraph G is defined by Mj,i = 1 if there is an edge from
vertex i to vertex j; Mj,i = 0 otherwise.
The random walk matrix A of a d-regular digraph G is 1

dM.

If G is a graph, we will also write G for its random walk matrix!
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Stationary Distribution

Let p be a probability distribution over the vertices of G and A is the random walk
matrix of G. Then Akp is the distribution after k-step random walk.

limk→∞ Akp.
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Bipartite Graph

Consider the following periodic digraph G.
▶ The vertices are arranged in n layers.
▶ Edges are from the i-th layer to the j-th layer, where j = i + 1 mod n.

Does Gkp converge to a stationary state? What if the edges are undirected?

When n = 2, it’s the undirected bipartite graph.
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Spectral Graph Theory

In spectral graph theory graph properties are characterized by graph spectrums.

Suppose G is a d-regular graph.
1. 1 is an eigenvalue of G and its associated eigenvector 1 = ( 1n , . . . ,

1
n)

† is the
stationary distribution vector. In other words G1 = 1.

2. All eigenvalues have absolute values ≤ 1.
3. G is disconnected if and only if 1 is an eigenvalue of multiplicity at least 2.
4. If G is connected, G is bipartite if and only if −1 is an eigenvalue of G.

In 2 and 3(⇐) and 4(⇐), consider the entry with the largest absolute value.
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Rate of Convergence

For a regular graph G, we define

λG
def
= max

p
∥Gp − 1∥2
∥p − 1∥2

= max
v⊥1

∥Gv∥2
∥v∥2

= max
v⊥1,∥v∥2=1

∥Gv∥2,

where p is over all probability distribution vectors.

The two definitions are equivalent.
1. (p − 1)⊥1 and Gp − 1 = G(p − 1).
2. For each v⊥1, p = ϵv + 1 is a probability distribution for a sufficiently small ϵ.

By definition ∥Gv∥2 ≤ λG∥v∥2 for all v such that v⊥1.
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Lemma. λG = |λ2|.

Let v2, . . . , vn be the eigenvectors corresponding to λ2, . . . , λn.
Given x⊥1, let x = c2v2 + . . .+ cnvn. Then

∥Gx∥2 = ∥λ2c2v2 + . . .+ λncnvn∥2

= λ2
2c22∥v2∥2 + . . .+ λ2

nc2n∥vn∥2

≤ λ2
2(c22∥v2∥2 + . . .+ c2n∥vn∥2)

= λ2
2∥x∥2.

So λ2
G ≤ λ2

2. The equality holds since ∥Gv2∥2 = λ2
2∥v2∥2.

《计算复杂性理论》，傅育熙，清华大学出版社 Expander and Derandomization 31 / 98



Claim. If C is symmetric and ∥C∥2 ≤ 1 then λC ≤ 1.
Proof.
λC = maxv⊥1

∥Cv∥2
∥v∥2 ≤ maxv⊥1

∥C∥2∥v∥2
∥v∥2 ≤ ∥C∥2 ≤ 1.

Claim. λA+B ≤ λA + λB for symmetric matrices A,B.
Proof.
λA+B = maxv⊥1

∥(A+B)v∥2
∥v∥2 ≤ maxv⊥1

∥Av∥2+∥Bv∥2
∥v∥2 ≤ λA + λB.
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The spectral gap γG of a graph G is defined by

γG = 1− λG.

A graph G has spectral expansion γ, where γ ∈ (0, 1), if γG ≥ γ.

In an expander the spectral expansion provides a bound on the expansion ratio.
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Lemma. Let G be an n-vertex regular graph and p a probability distribution over the
vertices of G. Then

∥Gℓp − 1∥2 ≤ λℓ
G∥p − 1∥2 < λℓ

G.

The first inequality holds because

∥Gℓp − 1∥2
∥p − 1∥2

=
∥Gℓp − 1∥2

∥Gℓ−1p − 1∥2
· ∥Gℓ−1p − 1∥2
∥Gℓ−2p − 1∥2

· . . . · ∥Gp − 1∥2
∥p − 1∥2

≤ λℓ
G.

The second inequality holds because

∥p − 1∥22 = ∥p∥22 + ∥1∥22 − 2⟨p, 1⟩ ≤ 1 + 1

n − 2
1

n < 1.

In terms of random walk, λG bounds the speed of mixing time. [if G is bipartite, λG = 1.]
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Lemma. If G is an n-vertex d-regular graph with self-loop at each vertex, γG ≥ 1
6dn2 .

Let u be the unit vector such that u⊥1 and λG = ∥Gu∥2, and let v = Gu.
▶ If we can prove 1− ∥v∥22 ≥ 1

3dn2 , we will get λG = ∥v∥2 ≤ 1− 1
6dn2 , hence the lemma.

▶ It’s easy to show 1− ∥v∥22 = ∥u∥22 − ∥v∥22 = ∥u∥22 − 2⟨Gu, v⟩ + ∥v∥22 =
∑

i,j Gi,j(ui − vj)2.

Now ui − uj ≥ 1√n for some i, j ∈ [n]. Let i → i1 → . . . → ik → j be minimal from i to j. Then

1/
√

n ≤ ui − uj ≤ |ui − vi| + |vi − ui1 | + |ui1 − vi1 | + . . . + |vik − uj| (4)

≤
√
(ui − vi)2 + (vi − ui1)

2 + . . . + (vik − uj)2 ·
√
2D, (5)

where D is the diameter of G. Notice that there are k + 1 edges and k self-loops in (4). Thus

1− ∥v∥22 =
∑

i,j
Gi,j(ui − vj)

2 ≥ 1

d ·
∑

i,j
(ui − vj)

2 ≥ 1

d ·red ≥ 1

d ·
1

n·(2D)
≥ 1

3dn2

using the inequality 2D ≤ 3n.
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Randomized Algorithm for Undirected Connectivity

Corollary. Let G be an n-vertex graph with self-loop on every vertex. Let s, t be
connected. Let ℓ > 12dn2 log(n) and let Xℓ denote the vertex distribution after ℓ step
random walk from s. Then Pr[Xℓ = t] > 1

2n .

Graphs with self-loops are not bipartite. According to the Lemmas,

∥Gℓes − 1∥2 <
(
1− 1

6dn2
)6dn2 log(n2)

<
1

n2 .

It follows that
(
Gℓes

)
(i)− 1

n > − 1
n2 .

If the walk is repeated for 2n2 times, the error probability is reduced to below 1
2n .
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Randomized Algorithm for Undirected Connectivity

Theorem. UPATH (Undirected Connectivity) is in RL.

Every graph can be turned into a non-bipartite regular graph by introducing self-loops.
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Can the random algorithm for UPATH be derandomized? Recall that

L ⊆ RL ⊆ NL.
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Expander Graph
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Expander graphs, defined by Pinsker in 1973, are sparse and well connected. They
behave approximately like complete graphs.
▶ Sparsity should be understood in an asymptotic sense.

1. Fan Chung. Spectral Graph Theory. American Mathematical Society, 1997.
2. Hoory, Linial, and Wigderson. Expander Graphs and their Applications. Bulletin of the AMS, 43, 439-561, 2006.

《计算复杂性理论》，傅育熙，清华大学出版社 Expander and Derandomization 40 / 98



Well-connectedness can be characterized in a number of manners.
1. Algebraically, expanders are graphs whose second largest eigenvalue is bounded

away from 1 by a constant.
2. Combinatorially, expanders are highly connected. Every set of vertices of an

expander has a large boundary geometrically.
3. Probabilistically, expanders are graphs in which a random walk converges to the

stationary distribution quickly.
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Algebraic Property

Intuitively the faster random walk converges, the better the graph is connected.
According to Lemma, the smaller λG is, the faster random walk converges to 1.

Suppose d ∈ N and λ ∈ (0, 1) are constants.

A d-regular graph G with n vertices is an (n, d, λ)-graph if λG ≤λ.

It follows from a result on page 29 that an (n, d, λ)-graph is connected.

{Gn}n∈N is a (d, λ)-expander graph family if Gn is an (n, d, λ)-graph for all n ∈ N.
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Probabilistic Property

In an expander random walk converges to the uniform distribution in logarithmic steps.

∥Glog 1
λ
(n)p − 1∥2 < λ

log 1
λ
(n) = 1

n . (6)

In other words, the mixing time of an expander is logarithmic.

It follows from the inequality in (6) that for every i ∈ [n],(
Glog 1

λ
(n)p

)
(i) > 0.

Fact. The diameter of an n-vertex expander graph is Θ(log n).
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Combinatorial Property

Suppose G = (V,E) is an n-vertex d-regular graph.
▶ Let S stand for V \ S for S ⊆ V.
▶ Let E(S,T) be the set of edges i → j with i ∈ S and j ∈ T.
▶ Let ∂S = E(S, S) for |S| ≤ n

2 .

The expansion constant hG of G is defined as follows:

hG = min
0<|S|≤ n

2

|∂S|
|S| .

Suppose ρ is a constant in (0, 1). There are d|S| edges emitting from the nodes of S.

An n-vertex d-regular graph G is an (n, d, ρ)-edge expander if hG
d ≥ ρ.
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Existence of Expander

Theorem. Let ϵ > 0. There exists d = d(ϵ) and N ∈ N such that for every n > N
there exists an (n, d, 12 − ϵ) edge expander.
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Cheeger Inequality

Theorem. Let G = (V,E) be a finite, connected, d-regular graph. Then

γG
2

≤ hG
d ≤

√
2γG.

1. J. Dodziuk. Difference Equations, Isoperimetric Inequality and Transience of Certain Random Walks. Trans. AMS, 1984.
2. N. Alon and V. Milman. λ1, Isoperimetric Inequalities for Graphs, and Superconcentrators. J. Comb. Theory, 1985.
3. N. Alon. Eigenvalues and Expanders. Combinatorica, 1986.

《计算复杂性理论》，傅育熙，清华大学出版社 Expander and Derandomization 46 / 98



γG
2 ≤ hG

d
Let S be such that |S| ≤ n

2 and |∂(S)|
|S| = hG. Define x⊥1 by xi =

{
|S|, i ∈ S,
−|S|, i ∈ S.

∥x∥22 = n|S||S|,
x†G x = (|S|1S − |S|1S)

†G (|S|1S − |S|1S)

=
1

d
(
|S|2|E(S, S)| + |S|2|E(S, S)| − 2|S||S||E(S, S)|

)
=

1

d
(
dn|S||S| − n2|E(S, S)|

)
,

where = is due to d|S| = |E(S, S)| + |E(S, S)| and d|S| = |E(S, S)| + |E(S, S)|.

The Rayleigh quotient R(G, x) provides a lower bound for λG, notice that |S| ≥ n
2 .

λG ≥ x†Gx
∥x∥22

=
1

d
dn|S||S| − n2|E(S, S)|

n|S||S|
= 1− 1

d ·
n
|S|

· |∂(S)|
|S| ≥ 1− 2hG

d .
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hG
d ≤

√
2γG

Let u⊥1 be such that Gu = λ2u. Write u = v + w, where v respectively w is defined
from u by replacing the negative respectively positive components by 0.
Wlog, assume that the number of positive components of v is ≤ n

2 .

Wlog, assume that the coordinates of v satisfy v1 ≥ v2 ≥ . . . ≥ vn. Then

∑
i,j

Gi,j|v2
i − v2

j | = 2
∑
i<j

Gi,j

j−1∑
k=i

(v2
k − v2

k+1) = 2

n/2∑
i=1

n/2∑
j=i+1

Gi,j

j−1∑
k=i

(v2
k − v2

k+1) (7)

=
2

d

n/2∑
k=1

|∂[k]|(v2
k − v2

k+1) ≥ 2

d

n/2∑
k=1

hGk(v2
k − v2

k+1) = 2hG
d ∥v∥22.

The equality = is valid because vk = 0 for all k > n/2.
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hG
d ≤

√
2γG

⟨Gv, v⟩≥ ⟨Gv, v⟩+ ⟨Gw, v⟩ = λ2∥v∥22 because Gu = λ2u, ⟨w, v⟩ = 0 and ⟨Gw, v⟩ ≤ 0.

1− λG ≥ 1− ⟨Gv, v⟩
∥v∥22

= ∥v∥22 − ⟨Gv, v⟩
∥v∥22

=
∑

i,j Gi,j(vi − vj)2

2∥v∥22
. (8)

See page 34 for the second equality in (8). Using Cauchy-Schwartz Inequality,

∑
i,j

Gi,j(vi − vj)
2 ·
∑

i,j
Gi,j(vi + vj)

2 ≥

∑
i,j

Gi,j|v2
i − v2

j |

2

. (9)

Now ⟨Gv, v⟩ ≤ λ1∥v∥22 = ∥v∥22. Therefore

2∥v∥22 ·
∑

i,j
Gi,j(vi + vj)

2 ≤ 2∥v∥22 · (2∥v∥22 + 2⟨Gv, v⟩) ≤ 8∥v∥42. (10)

(7)+(8)+(9)+(10) implies
√
2(1− λG) ≥ hG

d .
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Combinatorial definition and algebraic definition are equivalent.

1. The inequality 1−λG
2 ≤ hG

d implies that if G is an (n, d, λ)-expander graph, then it
is an (n, d, 1−λ

2 ) edge expander.
2. The inequality hG

d ≤
√
2(1−λG) implies that if G is an (n, d, ρ) edge expander,

then it is an (n, d, 1−ρ2

2 )-expander graph.
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Vertex Expander

Let N(S) be the set of neighbors of the vertex set S. Let α ∈ (0, 1).

An n-vertex d-degree regular graph G is an (n, α, d,A)-vertex expander iff N(S) ≥ A·|S|
for all S satisfying |S| ≤ αn, where 0 < α < 1.

If the inequality is “N(S) ≥ A·|N(S) \ S|”, one gets (n, α, d,A)-boundary expander.
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Theorem. If G is a (n, d, λ)-expander, G is a (n, α, d, 1
(1−α)λ2+α )-vertex expander for all α < 1.

For |S| ≤ αn let πS be the uniform distribution on S. By definition ∥πS∥ = 1√
|S|

.

By Cauchy-Schwartz inequality,

1 =
∑
i∈[n]

(GπS)(i) ≤
√
|N(S)|·

√∑
i∈[n]

((GπS)(i))2 =
√

|N(S)|·∥GπS∥.

Observe that (πS − 1)⊥1, and consequently (GπS − 1)⊥1. It follows from 勾股定理 that

1

|N(S)| −
1

n ≤ ∥GπS∥2 − ∥1∥2 = ∥G(πS − 1)∥2 ≤ λ2·
(
∥πS∥2 − ∥1∥2

)
= λ2·

(
1

|S| −
1

n

)
.

Therefore |S|
|N(S)| ≤ λ2 + (1− λ2) |S|n ≤ λ2 + (1− λ2)α = (1− α)λ2 + α.

1. M. Tanner. Explicit concentrators from generalized N-gons. SIAM Journal on Algebraic Discrete Methods, 5(3):287–293, 1984.
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Convergence in Entropy
Rényi 2-Entropy:

H2(p) = log
(

1

∥p∥22

)
.

Fact. If G is an (n, d, λ)-expander, then H2(Gp) ≥ H2(p). The equality holds if and
only if p is uniform.
Proof.
Let p = 1 + w. Then w⊥1 and ⟨Gw,G1⟩ = ⟨Gw, 1⟩ = w†G†1 = w†1 = 0. Therefore

∥Gp∥22 = ∥1∥22 + ∥Gw∥22 ≤ ∥p∥22 − ∥w∥22 + λ2∥w∥22 =
(
1− ∥w∥22

∥p∥22
+ λ2 ∥w∥22

∥p∥22

)
·∥p∥22.

The inequality H2(Gp) ≥ H2(p) then follows. The equality holds when p = 1.

Random walks increase randomness.
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The smaller the spectral gap, or the larger the spectral expansion, the more expander
graphs behave like random graphs. This is what the next lemma says.
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Expander Mixing Lemma

Lemma. Let G = (V,E) be an (n, d, λ)-expander graph. Let S,T ⊆ V. Then∣∣∣∣|E(S,T)| − d
n |S||T|

∣∣∣∣ ≤ λd
√
|S||T|. (11)

Notice that (11) implies ∣∣∣∣ |E(S,T)|dn − |S|
n · |T|n

∣∣∣∣ ≤ λ. (12)

The edge density ≈ the product of the vertex densities. This property is called mixing.

1. N. Alon and F. Chung. Explicit Construction of Linear Sized Tolerant Networks. Discrete Mathematics, 1988.
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Proof of Expander Mixing Lemma

Let [v1, . . . , vn] be the (orthonormal) eigenmatrix of G. So v1 = ( 1√n , . . . ,
1√n)

†.
Let 1S =

∑
i αivi and 1T =

∑
j βjvj be the characteristic vectors of S,T respectively.

|E(S,T)| = (1S)
†(dG)1T =

(∑
i
αivi

)†

(dG)

∑
j
βjvj

 =
∑

i
dλiαiβi.

Since α1 = (1S)
†v1 =

|S|√n and β1 = (1T)†v1 =
|T|√n , by Cauchy-Schwartz Inequality,

∣∣∣∣|E(S,T)| − d
n |S||T|

∣∣∣∣ =
∣∣∣∣∣

n∑
i=2

dλiαiβi

∣∣∣∣∣ ≤ dλ
n∑

i=2

|αiβi| ≤ dλ∥α∥2∥β∥2.

Finally observe that ∥α∥2 = ∥1S∥2 =
√

|S| and ∥β∥2 = ∥1T∥2 =
√
|T|.
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Error Reduction for Random Algorithm

Suppose A(x, r) is a random algorithm with error probability 1/3. The algorithm uses
r(n) random bits on input x with |x| = n.

1. Reduce the error probability exponentially by repeating the algorithm t(n) times.
2. Altogether r(n)t(n) random bits are used.

The goal is to achieve the same error reduction rate using far fewer random bits, in
fact r(n) + O(t(n)) random bits.

The key observation is that a t-step random walk in an expander graph looks like t
vertices sampled uniformly and independently.
▶ Confer the inequality (12).
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Kn is perfect from the viewpoint of random walk.
▶ No matter what distribution it starts with, random walk reaches the uniform

distribution in one step.
Let Jn = [1, . . . , 1] be the random walk matrix of Kn with self-loop.
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Decomposition for Random Walk on Expander

Lemma. Suppose G is an (n, d, λ)-expander. Then G = (1− λ)Jn + λE for some E
such that ∥E∥ ≤ 1.

We may think of a random walk on an expander as a convex combination of two
random walks of different type:
▶ with probability 1− λ it walks randomly on a complete graph, and
▶ with probability λ it walks randomly according to an error matrix that does not

amplify the distance to the uniform distribution.
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Decomposition for Random Walk on Expander

We need to prove that ∥Ev∥2 ≤ ∥v∥2 for all v, where E is defined by

E =
1

λ
(G − (1− λ)Jn).

The following proof methodology should now be familiar.
▶ Let α =

∑
i∈[n] vi. Then v = α1 + w with w⊥1.

▶ G1 = 1 and Jn1 = 1. Consequently E(α1) = α1.
▶ Jnw = 0, hence Ew = 1

λGw. Also Gw⊥α1.
▶ ∥Gw∥2 ≤ λ∥w∥2.

Thus ∥Ev∥22 = ∥α1 + 1
λGw∥22 = ∥α1∥22 + ∥ 1

λGw∥22 ≤ ∥α1∥22 + ∥w∥22 = ∥v∥22.
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Expander Random Walk Theorem

Theorem. Let G be an (n, d, λ) expander graph, and let B ⊆ [n] satisfy |B| ≤ βn for
some β ∈ (0, 1). Let X1 be a random variable denoting the uniform distribution on [n]
and let Xk be a random variable denoting a k − 1 step random walk from X1. Then

Pr

∧
i∈[k]

Xi ∈B

 ≤
(
(1− λ)

√
β + λ

)k−1
.
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Expander Random Walk Theorem
Let Bi stand for Xi ∈ B. We need to bound

Pr

∧
i∈[k]

Xi ∈B

 = Pr[B1 . . .Bk] = Pr[B1]·Pr[B2|B1] . . .Pr[Bk|B1 . . .Bk−1]. (13)

By seeing B as a diagonal matrix, we define the distribution vector pi by

pi =
BG

Pr[Bi|B1 . . .Bi−1]
· . . . · BG

Pr[B2|B1]
· B1

Pr[B1]
,

where BG
Pr[B2|B1]

· B1
Pr[B1]

for example is the normalization of BG· B1
Pr[B1]

. So the probability
in (13) is bounded by ∥(BG)k−1B1∥1. We will prove

∥(BG)k−1B1∥2 ≤
1√
n
(
(1− λ)

√
β + λ

)k−1
.
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Expander Random Walk Theorem

Using Lemma,

∥BG∥ = ∥B((1− λ)Jn + λE)∥ ≤ (1− λ)∥BJn∥ + λ∥BE∥ = (1− λ)
√

β + λ∥BE∥
≤ (1− λ)

√
β + λ∥B∥·∥E∥ ≤ (1− λ)

√
β + λ.

Therefore

∥(BG)k−1B1∥2 ≤ ∥BG∥k−1
2 ·∥B1∥2 ≤

√
β√
n
(
(1− λ)

√
β + λ

)k−1

≤ 1√
n
(
(1− λ)

√
β + λ

)k−1

.

Suppose ∥v∥2 = 1 and α =
∑

i∈[n] vi. Then v = α1 + w and w⊥1 and α ≤
√

n. Now
▶ ∥BJnv∥2 = ∥BJnα1∥2 = α∥B1∥2 ≤

√
n∥B1∥2 =

√
n·

√
β√n =

√
β, and consequently

▶ ∥BJn∥ = max{∥BJnv∥2 | ∥v∥2 = 1} =
√
β. The equality holds when v =

(
1√n , . . . ,

1√n

)†
.
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Error Reduction for RP

Suppose A(x, r) is a random algorithm with error probability β.
Let B be the set of r’s for which A errs on x.
Choose an explicit (2|r(|x|)|, d, λ)-graph G = (V,E) with V = {0, 1}|r(|x|)|.

Algorithm B1.
1. Pick v0 ∈R V.
2. Generate a random walk v0, . . . , vt.
3. Output

∨t
i=0A(x, vi).

By the Theorem, the error probability of B1 is no more than
(
(1− λ)

√
β + λ

)t−1.
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Error Reduction for BPP
Algorithm B2.

1. Pick v0 ∈R V.
2. Generate a random walk v0, . . . , vt.
3. Output Maj{A(x, vi)}i∈[t].

Fix a set of indices K ⊆ {0, 1, . . . , t} such that |K| ≥ t+1
2 .

Pr[∀i∈K.vi ∈B] ≤
(
(1− λ)

√
β + λ

)|K|−1

≤
(
(1− λ)

√
β + λ

) t−1
2 ≤

(
1

4

)t−1

,

assuming (1− λ)
√
β + λ ≤ 1/16. Applying union bound on the choices of K,

Pr[B2 fails] ≤ 2t
(
1

4

)t−1

= O(2−t).
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Explicit Construction of Expander Graph
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Explicit Construction

If random strings are of log size, explicit expander family is good enough.
▶ An expander family {Gn}n∈N is explicit if there is a P-time algorithm that outputs

the random walk matrix of Gn whenever the input is 1n. [poly(n).]

If random strings are of polynomial size, strongly explicit expander family is necessary.
▶ An expander family {Gn}n∈N is strongly explicit if there is a P-time algorithm that

on input ⟨n, v, i⟩ outputs the index of the i-th neighbor of v in Gn. [polylog(n).]
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We will look at several graph product operations. We then show how to use these
operations to construct explicit expander graphs.

1. O. Reingold, S. Vadhan, and A. Wigderson. Entropy Waves, the Zig-Zag Graph Product, and New Constant-Degree Expanders and
Extractors. FOCS, 2000.
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Path Product

Suppose G,G′ are n-vertex graphs (sharing the same set of vertexes) with degree d
respectively d′. The path product G′G is defined by the random walk matrix G′G.
▶ G′G is n-vertex dd′-degree.

Lemma. λG′G ≤ λG′λG.
Proof.
λG′G = maxv⊥1

∥G′Gv∥2
∥v∥2 = maxv⊥1

∥G′Gv∥2
∥Gv∥2 ·∥Gv∥2

∥v∥2 ≤ maxv⊥1
∥G′Gv∥2
∥Gv∥2 ·maxv⊥1

∥Gv∥2
∥v∥2 ≤

λG′λG using the fact that Gv⊥1 whenever v⊥1.

Lemma. λGk = (λG)k.
Proof.
(λG)k is the second largest eigenvalue of Gk.
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Tensor Product

Suppose G is an n-vertex d-degree graph and G′ is an n′-vertex d′-degree graph.
The random walk matrix of the tensor product G⊗G′ is nn′-vertex dd′-degree.

G⊗G′ =


a11G′ a12G′ · · · a1nG′

a21G′ a22G′ · · · a2nG′

... ... · · ·
...

an1G′ an2G′ · · · annG′

 .

(u, u′) → (v, v′) in G⊗G′ iff u → v in G and u′ → v′ in G′.
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Tensor Product

Lemma. λG⊗G′ = max{λG, λG′}.

If (λ, v) is an eigenvpair of G and (λ′, v′) is an eigenpair of G′, then (λλ′, v⊗v′) is an
eigenpair of G⊗G′.
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Rotation Matrix

Let G be the random walk matrix of an n-vertex regular graph G of degree D.
The rotation matrix Ĝ is an (nD)×(nD) adjacent matrix such that Ĝ(v,j),(u,i) = 1 if
▶ v is the i-th neighbor of u, and u is the j-th neighbor of v.
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Replacement Product

The replacement product G®H is the 2d-degree graph defined by 1
2 Ĝ + 1

2(In ⊗ H).
▶ G is an n-vertex regular graph of degree D, and H is a D-vertex regular graph of degree d.

2

4

1 2

34 3

1

Hu Hv

If Ĝ(u, l) = (v,m), place d parallel edges from the l-th vertex of Hu to the m-th vertex of Hv.
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Lemma. λG®H ≤ 1− (1−λG)(1−λH)2

24 and γG®H ≥ 1
24γGγ2H.

(G®H)3 =

(
1

2
Ĝ +

1

2
(In ⊗ H)

)3

=

(
1

2
Ĝ +

1

2
(In ⊗ (λHE + γHJD))

)3

=
1

8

(
Ĝ + λH(In⊗E) + γH(In⊗JD)

)3
=

1

8

(
Ĝ3 + . . .+ γ2

H(In⊗JD)Ĝ(In⊗JD)
)

=
1

8

(
Ĝ3 + . . .+ γ2

H(G⊗JD)
)
,

where the last equality is due to Lemma (next slide). Gpplying Lemma and the Claims, we get

(λG®H)
3 = λ(G®H)3 ≤ 1− γ2

H
8

+ γ2
H
8
λG⊗JD ≤ 1− γ2

H
8

+ γ2
H
8
λG = 1− γ2

H
8
γG.

We have proved that (λG®H)3 ≤ 1− γGγ
2
H

8 ≤
(
1− γGγ

2
H

24

)3
. Hence γG®H ≥ 1

24γGγ2
H.
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Lemma. (In⊗JD)Ĝ(In⊗JD) = G⊗JD.(
(In⊗JD)Ĝ(In⊗JD)

)
(v,m),(u,l)

= 1
D ·1·

1
D = 1

D ·
1
D = (G⊗JD)(v,m),(u,l).
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Zig-Zag Product

The zig-zag product G⃝z H is the nD-vertex d2-degree graph (In⊗H)Ĝ(In⊗H).
▶ G is an n-vertex regular graph of degree D, and H is a D-vertex regular graph of degree d.

(u, l) (u, l′)

(v,m′) (v,m)

l l′

m′ m

u

v

G

H

H

Clouds

(v,m) is the (i, j)-th neighbor of (u, l): l′ is the i-th neighbor of l in H; v is the l′-th neighbor of
u and u is the m′-th neighbor of v; m is the j-th neighbor of m′ in H.
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Zig-Zag Product

Lemma. λG⃝z H ≤ λG + 2λH and γG⃝z H ≥ γGγ2H.

Ĝ is the (nD)×(nD) rotation matrix of G.
H = (1− λH)JD + λHE for some E with ∥E∥2 ≤ 1, which is the Lemma. Now

G⃝z H = (In⊗H)Ĝ(In⊗H) = ((1− λH)In⊗JD + λHIn⊗E) Ĝ ((1− λH)In⊗JD + λHIn⊗E)
= (1− λH)

2(In⊗JD)Ĝ(In⊗JD) + . . . = (1− λH)
2(G⊗JD) + . . .,

where = is due to Lemma. Using Lemma and the Claims, one gets

λG⃝z H ≤ (1− λH)
2λG⊗JD + 1− (1− λH)

2 ≤ max{λG, λJD}+ 2λH = λG + 2λH.

For the inequality γG⃝z H ≥ γGγ2
H, consider 1−≤.
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Comment on Zig-Zag Product

1. Typically d ≪ D.
2. A t-step random walk uses O(t log d) rather than O(t log D) random bits.
3. The last lemma is useful when both λG and λH are small. If not, a different upper

bound can be derived. Both upper bounds are discussed in the following paper.

1. O. Reingold, S. Vadhan, and A. Wigderson. Entropy Waves, the Zig-Zag Graph Product, and New Constant Degree Expanders and
Extractors. FOCS, 2000.
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We can build up an expander family inductively using the product operations.

Size Degree Expansion
Path Product − ↑ ⇑

Tensor Product ↑ ↑ ↓
Zigzag Product ↑ ⇓ ↓

▶ Use path product and zig-zag product to produce expander family.
▶ Use constant graph to build constant degree graph family.
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To start with we need an expander that can be constructed algorithmically.
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Explicit Expander

Suppose F is a finite field with F elements, where F is a prime power. The F-degree
regular graph GF is defined as follows:

1. The vertex set is F×F.
2. There is an edge between (a, b) and (c, d) iff ac = b + d.

Consider the path product G2
F. The number of edges between (a1, b1), (a2, b2) is the

number of vertexes shared by the line segments y = a1x − b1 and 段 y = a2x − b2.
1. If a1 = a2 and b1 ̸= b2, there is no shared vertex.
2. If a1 = a2 and b1 = b2, there are F shared vertexes.
3. If a1 ̸= a2, there is one shared vertex.
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Explicit Expander
Let IF be the (F×F)-diagonal matrix, and JF the (F×F)-matrix whose entries are all 1.

random walk matrix AF of G2
F =

1

F2


FIF JF . . . JF JF
JF FIF . . . JF JF
...

...
...

...
...

JF JF . . . JF FIF

 =
IF ⊗ FIF + (JF − IF)⊗ JF

F2
.

▶ The eigenvalue of JF are F and 0 (with multiplicity F − 1);
▶ The eigenvalue of JF − IF are F − 1 and −1 (with multiplicity F − 1).
▶ The eigenvalues of (JF − IF)⊗ JF are (F − 1)F (multiplicity 1), −F, 0.
▶ The role of IF ⊗ FIF is to add F to (F − 1)F, −F, 0.
▶ Conclusion: G2

F is an
(
F2,F2, 1

F
)
-expander.
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Explicit Expander

Theorem. GF is an
(

F2,F, 1√
F

)
-expander.

Proof.
In GF the i-th neighbor of (a, b) is defined as follows: If a ̸= 0 and i ̸= 0, the i-th
neighbor is (i/a, i − b); otherwise the i-th neighbor is (0,−b).
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Explicit Expander

1. Construct a (D6,D, 1/4)-expander from GF.
2. Construct a

(
D4k,D, 12

)
-expander family from GF.
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Expander Construction I

Let H be a (D6,D, 1/4)-graph constructed from GF. Define

G0 = H6,

Gk+1 = (Gk⃝z H)3.

Fact. Gk is a (D6(k+1),D6, 1/4)-graph.
Proof.
The base case is clear from Lemma, and the induction step is taken care of by the
previous lemma.
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Expander Construction I

The time to access to a neighbor of a node is given by the following inductive equation

time(Gk) = 3·(time(Gk−1) + 2·time(H))

= 3k·time(H2) + (3k−1 + . . .+ 3 + 1)·2·time(H)

= 2O(k)

= poly(|Gk|).

The time to compute a neighbor is a polynomial of the graph size. We conclude that
the expander family is explicit, but not strongly explicit.

The analysis suggests how to reduce time(Gk).
▶ Define time(Gk) not in terms of time(Gk−1) but in terms of time(Gk/2).
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Expander Construction II

Let H be a (D12,D, 1/16)-graph constructed from GF. Define

G1 = H2,

Gk = (G⌈k/2⌉⊗G⌊k/2⌋)
3⃝z H.

Fact. Gk is a (D12·(2k−1),D2, 7/8)-graph.
Proof.
The base case is clear from Lemma, and the induction step is taken care of by the
previous lemma.
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Expander Construction II

Fact. Gk is a strongly explicit.

There is a poly(k)-time algorithm that upon receiving a label v of a vertex in Gk and
an index j in [2d] finds the j-th neighbor of v. [|⟨n, v, i⟩| = polylog(n).]

time(Gk) = 3·time(G⌈k/2⌉) + 3·time(G⌊k/2⌋) + 2·time(H)

= 2O(log k)·time(H2) +

log k∑
i=1

2O(i) + O(1)

 ·2·time(H)

= poly(k)
= polylog(|Gk|)。

The time to compute a neighbor is poly(n). The expander family is strongly explicit.
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Expander Construction II

Suppose D12·(2k+1) < h < D12·(2(k+1)+1) 的 h. We will define an expander with h
vertices.
Let D12·(2(k+1)+1) = xh + r. Define Fh as follows:

1. Classify D12·(2(k+1)+1) nodes into h groups, with r groups having x + 1 nodes and
h − r groups having x nodes.

2. Think of every group as a single node. Since D12·(2(k+1)+1)/D12·(2k+1) = D24,
each node has no more than D2(x + 1) ≤ D26 edges. Add enough self-loops so
that the graph is of D26-degree.

Theorem. {Fh}h∈ω is a strongly explicit
(
D26, 1

16D50

)
-edge expander family.
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Reingold’s Theorem
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Theorem. UPATH ∈ L.

1. O. Reingold. Undirected ST-Connectivity in Log-Space. STOC 2005.
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The Idea

Connectivity Algorithm for d-degree expander graph is easy.
▶ The diameter of an expander graph is of length O(log(n)).
▶ An exhaustive search can be carried out in O(log2(n)) space.

Reingold’s idea draws inspiration from the construction that simulates a random string
of length log2(n) by a random walk of length O(log(n)) in an expander.

1. Transforming conceptually the input graph G to a graph Gm so that a connected
component in G turns to an expander in Gm and unconnected vertices in G remain
unconnected in Gm.

2. A neighbor of a vertex in the imaginary Gm can be guessed in constant space.
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The Algorithm

Fix the (D6,D, 1/4)-graph H constructed previously. Let (G, s, t) be the input.
1. Convert the input graph G to a D6-degree graph G0 on the fly.

1.1 Replace a large degree vertex by a cycle to decrease degree to no more than 3.
1.2 Add self-loops to make it degree D6.

Let s0 be a copy of s and t0 be a copy of t.
2. Repeat the construction Gk = (Gk−1⃝z H)3 on the fly for m = O(log |G|) times.

Let sk be a node in the “cloud” over sk−1 and tk be in the “cloud” over tk−1.
3. Enumerate walks in Gm of length ℓ = O(log |G|), and check if there are some sm

over s0 and some tm over t0 such that sm connects to tm.

Correctness.
▶ sk and tk are connected if and only if sk−1 and tk−1 are connected, inductively.
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The Expansion Ratio

Fact. {Gk}k is a (D6, λ)-expander family for some constant λ ∈ (0, 1).

1. λGk <
(
7
9

)2. Then λGk⃝z H ≤ 1− γ2
HγGk ≤ 1− 9

16γGk <
7
9 . So λGk+1

= (λGk⃝z H)3 <
(
7
9

)2.

2. λGk ≥
(
7
9

)2. It is easy to derive that
(
1− 9

16γGk

)2 ≤ 1− γGk = λGk . Consequently

λGk+1
=

(
1− 9

16
γGk

)3

< λ
3/2
Gk

.

Conclusion: either λGm <
(
7
9

)2, or λGm < (λG0
)
(3/2)m

= (λG0
)
poly(|G|). The latter implies that

λGm <

(
1− 1

12|G|2
)poly(|G|)

≤ λ

for some λ < 1.
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The Data Structure
The algorithm imagines a tree structure for Gm, and exhausts all paths starting from s by
carrying out depth first traversal of the imaginary tree repeatedly.

V0 (i1, j1)(i2, j2)(i3, j3) ?

V ′0 (i11, j
1
1)(i

1
2, j

1
2)(i

1
3, j

1
3) ?

•

(u′, i′)− (v′, j′)

•

If r is the (i, j)-th neighbor of s and t is the (i′, j′)-th neighbor of r, then (i, j)(i′, j′) is stored in
the record for s Gm t. The algorithm only stores the current vertex for backtracking.
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The Complexity

The space complexity is about accessing a neighbor of a vertex in Gm.
1. G0 can be constructed in logspace.
2. To visit a neighbor of a node in Gm makes use of the rotation matrix of Gm−1

three times. The key point is the following.

space
(
(Gm−1®H)3

)
= space(Gm−1) + O(1).

The size of the additional space depends only on D, which is a constant.
3. The depth first tree traversal keeps a stack of depth bounded by O(log n).
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Lewis and Papadimitriou introduced SL as the class of problems solvable in logspace
by an NTM that satisfies the following.

1. If the answer is ’yes,’ one or more computation paths accept.
2. If the answer is ’no,’ all paths reject.
3. If the machine can make a transition from configuration C to configuration D,

then it can also goes from D to C.

Theorem. UPATH is SL-complete.

Corollary. UPATH is L-complete.
Proof.
Reingold Theorem implies that L = SL.
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The problem “RL = L” is open. The best we know is RL ⊆ L3/2.
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