
交互证明系统



We have seen interactive proofs, in various disguised forms, in the definitions of NP,
OTM, Cook reduction and PH.

We will see that interactive proofs have fundamental connections to cryptography and
approximate algorithms.
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It was not until 1985 that the idea of computation through interaction was formally
studied by two groups.

1. L. Babai, with a complexity theoretical motivation;
2. S. Goldwasser, S. Micali and C. Rackoff, with a cryptographic motivation.
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An interactive proof system consists of a Prover and a Verifier.
1. Prover’s goal is to convince Verifier of the validity of an assertion through dialogue.
2. Verifier’s objective is to accept/reject the assertion based on the information it gathers

from the dialogue.

Prover’s answers are adaptive. Adaptivity is the difference between a prover and an oracle.
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Introduction
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Basic Principle

A verifier’s job must be easy (polynomial time on input length), otherwise there is no
need for any dialogue.

A prover can be as powerful as it takes, as long as the answers it produces are short
(polynomial size on input length).

A verifier is not supposed to ask too many questions. Its best bet is ask random questions.
A prover is supposed to provide an answer no matter what.
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Deterministic Verifier
A k-round interaction of f and g on input x ∈ {0, 1}∗, denoted by 〈f, g〉(x), is the
sequence a1, . . . , ak ∈ {0, 1}∗ defined as follows:

a1 = f(x),
a2 = g(x, a1),

...
a2i+1 = f(x, a1, . . . , a2i), for 2i < k
a2i+2 = g(x, a1, . . . , a2i+1), for 2i + 1 < k

...

The output of f at the end, noted outf〈f, g〉(x), is f(x, a1, . . . , ak) ∈ {0, 1}.

f, g : {0, 1}∗ → {0, 1}∗ are TM’s, and k(n) is a polynomial.
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Deterministic Proof Systems
We say that a language L has a k-round deterministic proof system if there is a TM V
that runs in poly(|x|) time, and can have a k(|x|)-round interaction with any TM P
such that the following statements are valid:

Completeness. x ∈ L ⇒ ∃P : {0, 1}∗ → {0, 1}∗.outV(V,P) = 1,

Soundness. x /∈ L ⇒ ∀P : {0, 1}∗ → {0, 1}∗.outV(V,P) = 0.

Every NP language has a one-round deterministic proof system.
Suppose L has a k-round deterministic proof system. There is a P-time TM V such that

x ∈ L iff ∃P : {0, 1}∗ → {0, 1}∗.outV(V,P) = 1 iff

∃a1, a2, . . . , ak.V(x) = a1 ∧ V(x, a1, a2) = a3 ∧ . . . ∧ V(x, a1, . . . , ak) = 1.

The verification time is polynomial.
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Interaction + Randomness + Small Error

We shall only be interested in verifiers who ask clever questions.

“…in the context of interactive proof systems, asking random questions is as powerful
as asking clever questions.”

Goldreich
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The Power of Randomness

B has one red sock and one green sock.
How can he convince A, who is color blind, that the socks are of different color?
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Interactive Proof with Private Coins
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S. Goldwasser, S. Micali, C. Rackoff. The Knowledge Complexity of Interactive Proofs. 1985.
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Private Coins Model

The verifier generates an l-bits r by tossing coins:

r ∈R {0, 1}l.

The verifier of course knows r:

a1 = f(x, r), a3 = f(x, r, a1, a2), . . . .

The prover cannot see r:

a2 = g(x, a1), a4 = g(x, a1, a2, a3), . . . .

Both the interaction 〈f, g〉(x) and the output outf〈f, g〉(x) are random variables over
r ∈R {0, 1}l.
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IP, Interactive Proofs with Private Coins

Suppose k is a polynomial. A language L is in IP[k(n)] if there’s a P-time PTM V that
can have a k(|x|)-round interaction with any TM P and renders valid the following.
Completeness.

x ∈ L ⇒ ∃P : {0, 1}∗ → {0, 1}∗.Pr[outV(V,P) = 1] ≥ 2/3.

Soundness.

x /∈ L ⇒ ∀P : {0, 1}∗ → {0, 1}∗.Pr[outV(V,P) = 1] ≤ 1/3.

The class IP is defined by
⋃

c≥1 IP[cnc].
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BPP Verifier, PSPACE Prover

1. A verifier is a BPP machine.
2. We may assume that a prover is a PSPACE machine.
▶ There is an optimal prover.
▶ A single PSPACE prover suffices for all x ∈ L.

An almighty prover knows Verifier’s algorithm.
▶ Prover enumerates all answers a2, a4, . . ., and uses Verifier’s algorithm to calculate

the percentage of the random strings that make verifier to accept.
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IP, Interactive Proofs with Private Coins

L ∈ IP ⇔ there is an interactive proof system of a verifier V ∈ BPP and a prover
P ∈ PSPACE that interact for a polynomial round and renders valid the following.
Completeness.

x ∈ L ⇒ Pr[outV(V,P) = 1] ≥ 2/3.

Soundness.
x /∈ L ⇒ Pr[outV(V,P) = 1] ≤ 1/3.

《计算复杂性理论》，傅育熙，清华大学出版社 Interactive Proof System 16 / 155



IP ⊆ PSPACE

Proposition. IP ⊆ PSPACE.

Both a PSPACE machine and a BPP machine can be simulated in polynomial space.
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Robustness of IP

Fact. IP remains unchanged if we replace the completeness parameter 2/3 by 1− 2−ns

and soundness parameter 1/3 by 2−ns .
Proof.
Repeat the protocol O(ns) times. Majority rule. Chernoff bound.

Since there is an optimal prover, it doesn’t matter if a protocol is repeated sequentially
or in parallel.
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Robustness of IP

Fact. Allowing prover to use a private coin does not change IP.

By average principle we can construct from a probabilistic prover a deterministic prover
that is as good as the former.
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Perfect Completeness

An interactive proof system has perfect completeness if its completeness parameter is 1.
An interactive proof system has perfect soundness if its soundness parameter is 0.
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Perfect Soundness is Very Strong

1. IP with Perfect Completeness = IP.
2. IP with Perfect Soundness = NP.

1. IP ⊆ PSPACE. A problem in IP is Karp reducible to TQBF. TQBF has an
interactive proof system with perfect completeness (using the Sumcheck protocol).
2. If x ∈ L, there exists a ‘yes’ certificate. If x /∈ L, the verifier always says ‘no’.
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Graph Non-Isomorphism

Let GI be the Graph Isomorphism problem; it is not known to be in P.
Let GNI = GI, it is not known to be in NP.

The nodes of a graph are represented by the numbers 1, 2, . . . , n.
The isomorphism of G0 to G1 is indicated by π(G0) = G1, where π is a permutation of
the nodes of G0.
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Graph Non-Isomorphism Protocol

Protocol: Graph Non-Isomorphism

V: Pick i ∈R {0, 1}. Generate a random permutation graph H of Gi. Send H to P.
P: Identify which of G0,G1 was used to produce H and send the index j ∈ {0, 1} to V.
V: Accept if i = j; reject otherwise.
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Graph Non-Isomorphism

Theorem. GNI ∈ IP.
Proof.
If G0 ' G1, the prover’s guess is as good as anyone’s guess.
If G0 6' G1, the prover can force the verifier to accept.

1. O. Goldreich, S. Micali, A. Wigderson. Proofs that Yield Nothing but Their Validity and a Methodology of Cryptographic Protocol Design.
FOCS 1986.
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Quadratic Non-Residuosity

A number a is a quadratic residue modulo p if there is some number b such that
a ≡ b2 (mod p).
▶ QR = {(a, p) | p is prime and ∃b.a ≡ b2 (mod p)} is in NP.

Let QNR = QR. The problem QNR is not known to be in NP.
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Quadratic Non-Residuosity Protocol

Input.
1. An odd prime number p and a non-zero number a.

Goal.
1. The prover tries to convince the verifier that a ∈ QNR.
2. The verifier should reject with good probability if a /∈ QNR.

V: Pick r < p and i ∈ {0, 1} randomly. If i = 0 then send r2 mod p to P; otherwise
send ar2 mod p to P.
P: Identify which case it is and send a number j ∈ {0, 1} to V accordingly.
V: Accept if j = i; reject otherwise.
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Quadratic Non-Residuosity

Theorem. QNR ∈ IP.

If a is a quadratic residue, then ar2, like r2, is a random quadratic residue modulo p. In
this case prover can only guess.
If a is not a quadratic residue, then ar2, unlike r2, is a random non-quadratic residue
modulo p. In this case prover can force verifier to accept.
The argument is with the multiplicative field ([p− 1], ·).

1. S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive Proofs. STOC 1985.
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Interactive Proof for Permanent

Suppose A = (aj,k)1≤j,k≤n is an n × n matrix. According to the expansion in cofactors,

perm(A) =
n∑

i=1

a1i · perm(A1,i).

Computing the permanent of an n×n matrix reduces to computing the permanents of
n matrices of dimension (n−1)×(n−1).

We design an interactive proof system for perm(A) using arithmetic method.
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Interactive Proof for Permanent

We look for an (n−1)×(n−1)-matrix DA(x) such that DA(i) = A1,i.
▶ (DA(x))j,k is a univariate polynomial of degree n − 1, and
▶ perm(DA(x)) is a univariate polynomial of degree (n − 1)2.

Vandermonde matrix is nonsingular. Verifier can calculate (DA(x))j,k by solving the following.

1 1 . . . 1 1
...

...
...

...
...

1 k . . . kn−2 kn−1

1 k + 1 . . . (k + 1)n−2 (k + 1)n−1

...
...

...
...

...

1 n
... nn−2 nn−1





b0

...
bk

bk+1

...
bn−1


=



a(j+1)(k+1)
...

a(j+1)(k+1)

a(j+1)k
...

a(j+1)k


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Interactive Proof for Permanent

Protocol: Permanent

Condition: Both parties know a number k and a matrix A.
Prover’s goal is to show that k = perm(A).
Verifier should reject with good probability if k 6= perm(A).

P: Send to V a polynomial g(x) of degree (n − 1)2, which is supposedly perm(DA(x)).

V: Check if k =
∑n

i=1 a1i · g(i). If not, reject; otherwise pick up b ∈R GF(p) and ask P
to prove g(b) = perm(DA(b)).

One has to deal with an exponential number of monomials to calculate g(x). However
verifier can calculate the matrix DA(x).
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Interactive Proof for Permanent

Let Lperm be the language{
〈A, p, k〉 | p > n4, k = perm(A), A is an n × n matrix over GF(p)

}
.

Theorem. Lperm ∈ IP.
Proof.
If n ≤ 3, use brutal force; otherwise use the permanent protocol.
Verifier accepts with probability 1 if k = perm(A).
The error rate is bounded by 1

3 . [see next slide.]

《计算复杂性理论》，傅育熙，清华大学出版社 Interactive Proof System 31 / 155



Interactive Proof for Permanent

Suppose k 6= perm(A) and the prover sends a fake g(x).
▶ g(x)− perm(DA(x)) has at most (n − 1)2 roots.

▶ The probability of choosing a b such that g(b) = perm(DA(b)) is ≤ (n−1)2

p .
▶ If g(b) 6= perm(DA(b)) and Prover’s foul play has not been caught, he is left with the task

to prove g(b) = perm(DA(b)).
If Prover manages to get away with all his previous foul plays, he gets caught in the end.

The probability of the verifier reaching a wrong answer is less than

(n − 1)2

p +
(n − 2)2

p + . . .+
42

p <
n3

p <
1

n <
1

3
.
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Interactive Proof with Public Coins
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“We can formulate a decision problem under uncertainty as a new sort of game, in
which one opponent is ‘disinterested’ and plays at random, while the other tries to pick
a strategy which maximizes the probability of winning – a ‘game against Nature’.”

1. Christos Papadimitriou. Games Against Nature. FOCS 1983.
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László Babai. Trading Group Theory for Randomness. STOC 1985.
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Interactive Proofs with Public Coins

In a public coins system, the verifier’s message is identical to the outcome of the coins
tossed at the current round.

▶ Whatever verifier computes, prover can do the same.
▶ Verifier’s actions except for its final decision are oblivious of prover’s messages.
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Arthur-Merlin Game

Arthur-Merlin Game = Interactive Proof with Public Coins
▶ Arthur/Nature is the verifier who tosses public coins, and
▶ Merlin is the prover.

Suppose k : N → N is a polynomial. Obviously

AM[k(n)], MA[k(n)] ⊆ IP[k(n)].
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Notational Convention

MA, AM, AMA, MAMAMA, . . .
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Switching Lemma. MA ⊆ AM.

Suppose L ∈ MA. The completeness is not affected since

x ∈ L ⇒ ∃a.Prr[V(x, a, r) = 1] ≥ 1− ϵ ⇒ Prr[∃a.V(x, a, r) = 1] ≥ 1− ϵ.

Perfect Completeness would survive. Soundness is affected though.

x /∈ L ⇒ ∀a.Prr[V(x, a, r) = 1] ≤ ϵ ⇒ Prr[∃a.V(x, a, r) = 1] ≤ 2|a|ϵ.

Since a is of polynomial size, verifier can reduce the error rate by
▶ repeating the protocol for a polynomial number of time and
▶ applying majority rule after getting all the answers.
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Collapse Theorem

Theorem (Babai, 1985). AM[k(n)− 1] = MA[k(n)] = AM[k(n)] for k(n) > 2.

Both AM(k(n)− 1) ⊆ AM(k(n)) and AM(k(n)− 1) ⊆ MA(k(n)) are obvious.
Suppose L ∈ AM(k(n)) has an interactive proof system that has a fragment of type AMAMA.
Let x be the input, and m be the length of Merlin’s answer.

Let (a1, b1, a2, b2, a3) be part of an interactive proof. We switch the 2nd and the 3rd actions.

(a1a12 . . . at
2, b′

1b1
2 . . . bt

2, ia′3),

followed by randomly selecting i ∈R [t] to continue. The number of round is reduced by 2.
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Before switching, if Arthur sends a1 to Merlin and Merlin responds with b, then the expected
value of Arthur’s decision is

Ax(b) def
= Ea2 [A(x, . . . , b, a2, . . .)].

The expected value of Arthur’s decision after a1.b1 before switching is Ax = Ax(b1). Clearly
Ax ≥ Ax(b) for all b.

After the switching, the expected value of Arthur’s decision is

Ea12,...,at
2

[
max

b′
1∈{0,1}m

{
Ei∈R[t][A(x, . . . , b′

1, ai
2, . . .)]

}]
, (1)

which by the uniform distribution is the same as

Ea12,...,at
2

[
max

b′
1∈{0,1}m

{
1

t

t∑
i=1

A(x, . . . , b′
1, ai

2, . . .)

}]
.
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After switching the probability that the expected value increases by at least δ is

Pra12,...,a
t
2

[
max

b′1∈{0,1}m

{
Ei∈R[t][A(x, . . . , b

′
1, ai

2, . . .)]
}
− Ax > δ

]

≤ Pra12,...,a
t
2

[
∃b′

1 ∈{0, 1}m.

∣∣∣∣∣
t∑

i=1

A(x, . . . , b′
1, ai

2, . . .)− tAx

∣∣∣∣∣ > δ

Ax
(tAx)

]

≤ 2m·Pra12,...,a
t
2

[∣∣∣∣∣
t∑

i=1

A(x, . . . , b′′
1 , ai

2, . . .)− tAx(b′′
1 )

∣∣∣∣∣ > δ

Ax(b′′
1 )

(
tAx(b′′

1 )
)]

≤ 2m·

(
2·e

− 1
3
·(tAx(b′′1 ))· δ2

Ax(b′′1 )2

)
≤ 2m+1·e

− 1
3

t δ2

Ax(b′′1 ) ≤ 2m+1·e−
1
3

tδ2

< 2−h.

The fifth inequality is valid by setting t = O((m + h)/δ2).

If x /∈ L, the error probability ≤ (1) < (1− p)(Ax + δ) + p < Ax + δ + 2−h ≤ 3
8 by taking

δ = 2−h = 1/8, assuming the error probability is 1
8 before switching.
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Arthur-Merlin Hierarchy Collapses

Theorem (Babai, 1985). AM[k] = AM[2] for all constant k > 2.
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By Babai Theorem the following abbreviation makes sense.

AM def
= AM[2].

《计算复杂性理论》，傅育熙，清华大学出版社 Interactive Proof System 44 / 155



Speedup Theorem for Unbounded Interaction

Theorem (Babai and Moran, 1988). AM[2k(n)] = AM[k(n)] if k(n) ≥ 2.

The overall error probability is bounded by

Ax +
k
4
·
(
δ + 2m+1·e− 1

3
tδ2

)
<

1

2
,

by taking δ = 1
4k and t = 48k4m.
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NP ⊆ MA ⊆ AM can be interpreted as saying that MA and AM are randomized
analogues of NP.
▶ In AM the randomness is announced first.
▶ In MA the randomness comes afterwards.

If BPP = P, then MA = NP. Under plausible complexity conjecture, AM = NP.
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1. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of
Interactive Proofs. STOC ’85.

2. L. Babai and S. Moran. Arthur-Merlin Games: A Randomized Proof System, and a
Hierarchy of Complexity Classes. JCSS, 1988.

The authors of the two papers shared the first Gödel Prize (1993).
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Set Lower Bound Protocol
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Set lower bound protocol [2] is based on Carter and Wegman’s universal hash function.

1. J. Carter and M. Wegman. Universal Classes of Hash Functions. Journal of Computer and System Sciences. 143-154, 1979. (FOCS 1977)
2. S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interactive Proof Systems. STOC 1986.
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Pairwise Independent Hash Function

Let Hn,k be a collection of hash functions from {0, 1}n to {0, 1}k.

We say that Hn,k is pairwise independent if the following hold:
▶ For each x ∈ {0, 1}n and each y ∈ {0, 1}k,

Prh∈RHn,k [h(x) = y] = 1

2k .

▶ For all x, x′ ∈ {0, 1}n with x 6= x′ and all y, y′ ∈ {0, 1}k,

Prh∈RHn,k [h(x) = y ∧ h(x′) = y′] = 1

22k .
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Efficient Pairwise Independent Hash Function

Theorem. For every n, let Hn,n be {ha,b}a,b∈GF(2n), where for all a, b the function
ha,b : GF(2n) → GF(2n) is defined by

ha,b(x) = a · x + b.

Then the collection Hn,n is efficient pairwise independent.

We get Hn,k from Hn,n/Hk,k by projection/embedding.
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Motivation
Assume S ⊆ {0, 1}m and 2k−2 < K ≤ 2k−1.

Suppose |S| ≥ K and y ∈R {0, 1}k. By pairwise independence,

Prh∈RHm,k [y∈ h(S)] ≥
∑
x∈S

Prh[h(x)= y]−
∑
x<x′

Prh

[
h(x) = = y,
h(x′)= y

]
= |S|

2k ·
(
1− |S| − 1

2
· 1
2k

)
>

13

16
.

By taking κ = k/(2− log 3) one gets

Prh1,...,hκ∈RHm,k

[
y /∈

κ⋃
i=1

hi(S)
]
≤
(
3

4

)κ

< 2−k.

Hence
Prh1,...,hκ∈RHm,k

[
∃y ∈ {0, 1}k.y /∈

κ⋃
i=1

hi(S)
]
< 1.

Conclude that
⋃κ

i=1 hi(S) = {0, 1}k for some h1, . . . , hκ ∈ Hm,k.
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Motivation

Suppose |S| ≤ K
p(k) for a polynomial p(k) ≥ 2κ. For all h1, . . . , hκ,∣∣∣∣∣
κ⋃

i=1

hi(S)
∣∣∣∣∣ ≤

κ∑
i=1

|hi(S)| ≤ K
p(k)κ ≤ 1

4
·2k = 1

4
·
∣∣∣{0, 1}k

∣∣∣ .
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Set Lower Bound Protocol.

M: Send h1, . . . , hκ to Arthur.
A: Pick y ∈R {0, 1}k. Send y to Merlin.
M: Send i, x to Arthur, together with a certificate that x ∈ S.

Arthur accepts if hi(x) = y and the certificate validates x ∈ S; otherwise it rejects.

The protocol has perfect completeness. Its soundness parameter is 1
4 .

The protocol can be simplified if perfect completeness is compromised.
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Set Lower Bound Protocol

Input.
1. Numbers K, k such that 2k−2 < K ≤ 2k−1.
2. S ⊆ {0, 1}m such that the membership in S can be certified.

Goal.
1. Prover tries to convince verifier that |S| ≥ K.
2. Verifier should reject with good probability if |S| ≤ K

2 .

Let ℓ = log k + 3. We transform in P-time the question “|S| ≥ K or |S| ≤ K/2 ? ” to

“|Sℓ| ≥ Kℓ or |Sℓ| ≤ Kℓ/2ℓ ? ”.

Then apply the protocol defined on the previous slide.
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GNI is in AM

Let S be
{〈H, π〉 | H ' G0 or H ' G1, and π is an automorphism}.

Observe that
if G0 6' G1 then |S| = 2n!

and
if G0 ' G1 then |S| = n!.

Now apply the set lower bound protocol.

1. Suppose 〈H, π〉 is coded up by binary string of length m. Then S ⊆ {0, 1}m.
2. Checking the membership of S can be done in P-time.
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Can GI be NP-Complete?

Theorem. If GI is NP-complete, then Σp
2 = Πp

2.

1. R. Boppana, J. Håstad, and S. Zachos. Does co-NP Have Short Interactive Proofs? Information Processing Letters, 25:127-132, 1987.
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Proof of Boppana-Håstad-Zachos Theorem
If GI is NP-complete, then GNI is coNP-complete. It follows that
▶ there is a reduction function f such that for every formula φ(x, y) of 2n variables

and for every fixed value x, ∀y.φ(x, y) if and only if f(∀y.φ(x, y)) ∈ GNI.

Consider an arbitrary
∑

2 SAT formula ψ = ∃x ∈ {0, 1}n.∀y ∈ {0, 1}n.φ(x, y). Now

ψ iff ∃x ∈ {0, 1}n.g(x) ∈ GNI,

where g is a P-time function that maps x onto f(∀y.φ(x, y)).

GNI has a two round Arthur-Merlin proof system with perfect completeness and
soundness error < 2−n. Let
▶ A be Arthur’s algorithm, and
▶ m be the length of Arthur’s questions and Merlin’s answers.
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Proof of Boppana-Håstad-Zachos Theorem
We claim that ψ is true if and only if

∀q ∈ {0, 1}m.∃x ∈ {0, 1}n.∃a ∈ {0, 1}m.A(g(x), q, a) = 1, (2)

which would show
∑

2 ⊆
∏

2. Notice that ψ is equivalent to

∃x ∈ {0, 1}n.∀q ∈ {0, 1}m.∃a ∈ {0, 1}m.A(g(x), q, a) = 1. (3)

(3)⇒(2). If (2) holds, that is ∀q ∈ {0, 1}m.∃x ∈ {0, 1}n.∃a ∈ {0, 1}m.A(g(x), q, a) = 1,
there is some x0 such that for at least 2m−n number of q ∈ {0, 1}m,

∃a ∈ {0, 1}m.A(g(x0), q, a) = 1.

This implies that the error rate for the input g(x0) is ≥ 1
2n if ψ does not hold, which

would contradict to our assumption. So (2) ⇒ Ψ. Conclude (2) ⇒ Ψ ⇒ (3) ⇒ (2).
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IP = PSPACE
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C. Lund, L. Fortnow, H. Karloff, and N. Nisan.
▶ Algebraic Methods for Interactive Proof Systems. FOCS 1990.

A. Shamir.
▶ IP = PSPACE. FOCS 1990.

L. Babai, L. Fortnow, and L. Lund.
▶ Nondeterministic Exponential Time has Two-Prover Interactive Protocols. FOCS 1990.
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We only have to prove TQBF ∈ IP.
We start by looking at an interactive proof system for a decision version of SAT.
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Counting the Number of Satisfying Assignments

Let #ϕ be the number of the satisfying assignments of ϕ.
▶ ϕ is a tautology iff #ϕ = 2n iff ∑

b1,...,bn∈{0,1}

ϕ(b1, . . . , bn)

 = 2n.

Let #SATD be {〈ϕ,K〉 | ϕ is a 3CNF and K = #ϕ}.
▶ This is a decision version of #SAT.
▶ An interactive proof system for #SATD solves SAT as well.
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Arithmetization

Suppose ϕ = ϕ1 ∧ . . . ∧ ϕm is a 3CNF with n variables.
Let X1, . . . ,Xn be variables over a finite field GF(p), where p is a prime in (2n, 22n].

Arithmetization refers to for example the following conversion:

xi ∨ xj ∨ xk 7→ 1− (1− Xi)Xj(1− Xk).

We let 1 represent the truth value and 0 the false value.

We write pj(X1, . . . ,Xn) for the arithmetization of ϕj.
We write pϕ(X1, . . . ,Xn) for

∏
j∈[m] pj(X1, . . . ,Xn), the arithmetization of ϕ.

▶ |pϕ(X1, . . . ,Xn)| = poly. But if we open up the brackets in pϕ(X1, . . . ,Xn), we
would generally get an expression of exponential size.
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Arithmetization

Clearly
#ϕ =

∑
b1∈{0,1}

∑
b2∈{0,1}

. . .
∑

bn∈{0,1}

pϕ(b1, . . . , bn) ≤ 2n.
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Suppose g(X1, . . . ,Xn) is a degree d polynomial, K an integer.

We show how the prover can provide an interactive proof for

K =
∑

b1∈{0,1}

∑
b2∈{0,1}

. . .
∑

bn∈{0,1}

g(b1, . . . , bn). (4)

Notice that ∑
b2∈{0,1}

∑
b3∈{0,1}

. . .
∑

bn∈{0,1}

g(X1, b2, . . . , bn) (5)

is a univariate polynomial h(X1) whose degree is bounded by d.

▶ It takes exponential time to calculate (5).
▶ Prover can produce the small size polynomial h(X1) equal to (5). Using h(X1) the

equality (4) becomes K = h(0) + h(1).
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Sumcheck Protocol

Protocol: Sumcheck

A: If n = 1, check g(0) + g(1) = K. If the equality is valid, accept; otherwise reject.
If n ≥ 2, ask M to send some polynomial equal to (5).
M: Send some polynomial s(X1) to A.
A: Reject if s(0) + s(1) 6= K; otherwise send a random a ∈R GF(p) to M. Recursively
use the protocol to check

s(a) =
∑

b2∈{0,1}

∑
b3∈{0,1}

. . .
∑

bn∈{0,1}

g(a, b2, . . . , bn).

Sumcheck is a public coins protocol with perfect completeness.
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Sumcheck Protocol

Claim. If (4) is true, then Pr[A accepts] = 1.

Claim. If (4) is false, then Pr[A rejects] ≥
(
1− d

p

)n−1
.

Proof.
Assume (4) is false.
Case n = 1. Arthur rejects with probability 1.
Case n > 1.
▶ If Merlin returns s(X1) 6= h(X1), then s(X1)− h(X1) has at most d roots.
▶ Since Arthur picks up a randomly, Pr[s(a) 6= h(a)] ≥ 1− d/p.

If s(a) 6= h(a), Arthur rejects inductively with probability ≥
(
1− d

p

)n−2
.
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Interactive Proof for #SATD

Theorem (Lund, Fortnow, Karloff, Nisan, 1990). #SATD ∈ IP.

Use the Sumcheck protocol.
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Arithmetization for TQBF

Given a quantified Boolean formula

ψ = ∀x1∃x2∀x3 . . . ∃xn.ϕ(x1, . . . , xn),

the arithmetization of ψ ⇔ > could be∏
b1∈{0,1}

∑
b2∈{0,1}

∏
b3∈{0,1}

. . .
∑

bn∈{0,1}

pϕ(b1, . . . , bn) 6= 0. (6)

The problem is that the degree of (6) could be too high.
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Arithmetization for TQBF

The idea is to use linearization operators

LXi(p) = (1− Xi)p0 + Xip1,
∀Xi(p) = p0p1,
∃Xi(p) = 1− (1− p0)(1− p1)

to obtain a multilinear polynomial, where

p0 = p(X1, . . . ,Xi−1, 0,Xi+1, . . . ,Xn),

p1 = p(X1, . . . ,Xi−1, 1,Xi+1, . . . ,Xn).

1. A. Shen. IP=PSPACE: Simplified Proof. J.ACM, 1992.
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Reduce the inequality (6) in O(n2) time to the equality:

∀X1LX1∃X2LX1LX2 . . . ∀Xn−1LX1 ...LXn−1∃XnLX1 ...LXn .pϕ(X1, . . . ,Xn) = 1. (7)

Then apply the modified sumcheck protocol to check if (7) is valid.

Sumcheck Protocol:
1. Merlin sends s1(X1) to Arthur, meant to be the openup of the red-expression in (7).
2. Arthur rejects if s1(0)·s1(1) 6= 1. Otherwise he chooses r1 ∈R GF(p) and asks Merlin to

prove
(LX1∃X2LX1LX2 . . . ∃XnLX1 ..LXn .pϕ(X1, . . . ,Xn)) {r1/X1} = s1(r1). (8)

3. Merlin sends s2(X1) to Arthur, meant to be the openup of the blue-expression in (8).
4. Arthur rejects if (1− r1)·s2(0) + r1·s2(1) 6= s1(r1). Otherwise he chooses r′1 ∈R GF(p) and

asks Merlin to prove blue-expression{r′1/X1} = s2(r′1).
5. …
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IP = PSPACE

Theorem (Shamir 1990). IP = PSPACE.

Using Sumcheck protocol one sees that TQBF is in IP.
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Theorem. IP =
⋃

c≥1 AM[cnc].

We have defined an Arthur-Merlin game for TQBF, which is PSPACE-complete. Hence

IP = PSPACE ⊆
⋃
c≥1

AM[cnc] ⊆ IP.

The theorem does not say that a constant round private coin interactive system can be simulated by a
constant round public coin interactive system.
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Remark on the Proof of IP = PSPACE

▶ The proof of IP = PSPACE does not relativize.
1. Fortnow and Sipser proved in 1988 that ∃O. coNPO 6⊆ IPO.
2. If IP = PSPACE had a proof that would relativize, then coNP ⊆ IP would have a

proof that would relativize.

▶ IP = PSPACE implies that every problem in IP has an interactive proof with
perfect completeness.
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There e-mail announcements were made within a month of 1989.
1. N. Nisan. “Co-SAT Has Multi-Prover Interactive Proofs”, Nov. 27.
2. C. Lund, L. Fortnow, H. Karloff, and N. Nisan. “The Polynomial Time Hierarchy Has

Interactive Proofs”, Dec. 13.
3. A. Shamir. “IP=PSPACE”, Dec. 26.

L. Babai. E-mail and the unexpected power of interaction. In Proc. The Fifth Annual Structure in
Complexity Theory Conference, 1990.
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Public Coins versus Private Coins
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Theorem (Goldwasser-Sipser). IP[k(n)] = AM[k(n)] for all polynomial k(n) > 2.

Goldwasser and Sipser. Private Coins versus Public Coins in Interactive Proof Systems. STOC 1986.
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The key to the proof of Goldwasser-Sipser Theorem is that Merlin can apply the set
lower bound protocol to convince Arthur that the chance for Prover to make Verifier
believe is big if x ∈ L.
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Proof of Goldwasser-Sipser Theorem

Let L be accepted by a 2k round private coin interactive proof system (V,P).
Let h be the length of V’s questions and P’s answers, ℓ be the length of random strings.
Without loss of generality suppose 2kh < ℓ.

Let x be the input.

We will design an O(k) round Arthur-Merlin game (A,M) that accepts L.
▶ (A,M) simulates every round of (V,P) by 3 rounds.
▶ Merlin will convince Arthur that in each round of (V,P) there are many random strings

that eventually force V to say “yes”.
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Proof of Goldwasser-Sipser Theorem

Let γi = a1, b1, . . . , ai, bi denote the initial i round dialogue between V and P.
Let γ0 be the empty string ϵ.

Let Yesx(γi) be the set of all the random strings r ∈ {0, 1}ℓ that make V say “yes” by
dialogues with the initial i rounds being γi.

By definition,
|Yesx(γi)| =

∑
a∈{0,1}h

|Yesx(γi, a)|. (9)

Since P is optimal,
|Yesx(γi, a)| = max

b∈{0,1}h
|Yesx(γi, a, b)|. (10)
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Proof of Goldwasser-Sipser Theorem
Suppose Ki ≤ . . . ≤ K0 = 2ℓ have been defined such that Kı ≤ |Yesx(γı)| for all ı ∈ {0, . . . , i}.

Classify into ℓ groups the elements a ∈ {0, 1}h satisfying |Yesx(γi, a)| > 0. For j ∈ {0} ∪ [ℓ− 1],

Vj =
{

a ∈ {0, 1}h | 2j ≤ |Yesx(γi, a)| < 2j+1
}
.

Since |Yesx(γi)| ≥ Ki, there is some j such that |{r ∈ Yesx(γi, a) | a ∈ Vj}| ≥ Ki/ℓ. Hence

|Vj| >
Ki

2j+1ℓ
. (11)

For every a ∈ Vj, one has
|Yesx(γi, a)| ≥ 2j. (12)

For each a in (12), Prover’s answer b ∈ {0, 1}h satisfies |Yesx(γi, a, b)| ≥ 2j. Let Ki+1 = 2j.

Two step verification: the membership check of the first step is broken into two parts, the
second part is carried out in the second step with additional messages from Merlin.
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Proof of Goldwasser-Sipser Theorem
Protocol input at round i + 1: input x, private coin interactive proof system (V,P), the i-round
dialogue γi = a1, b1, . . . , ai, bi, and Ki ≤ . . . ≤ K0 = 2ℓ.

M: Send j and h1, . . . , hκ to A.
A: Send α ∈R {0, 1}g to M.
M: Send s ∈ {0, 1}ℓ, f ∈ [κ] and ai+1, bi+1, γ to A. Also send h′

1, . . . , h′
κ′ to A.

A: If γi, ai+1, bi+1, γ is inconsistent with x, s, or V(x, s, γi, ai+1, bi+1, γ) = 0, or hf(ai+1) 6= α,
reject; otherwise send β ∈R {0, 1}j+2 to M.
M: Send t ∈ {0, 1}ℓ, f′ ∈ [κ′] and γ′ to A.
A: If γi, ai+1, bi+1, γ

′ is inconsistent with x, t, or V(x, t, γi, ai+1, bi+1, γ
′) = 0, or h′

f′(t) 6= β,
reject; otherwise go to round i + 2 with Ki+1 = 2j and γi+1 = γi, ai+1, bi+1.

h1, . . . , hκ : {0, 1}h → {0, 1}g and h′
1, . . . , h′

κ′ : {0, 1}ℓ → {0, 1}j+2 are pairwise independent
Hash functions; κ = g/(2− log 3) and 2g−2 ≤ Ki

2j+1ℓ < 2g−1; and κ′ = (j + 2)/(2− log 3).
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Proof of Goldwasser-Sipser Theorem

The protocol has perfect completeness. If x ∈ L, then for all i ∈ [k],

|Yesx(γi)| ≥ Ki.

Suppose (V,P) has an error probability 1
p(ℓ)k+1 for a large polynomial p. Suppose x /∈ L. Now

|Yesx(ϵ)| ≤
1

p(ℓ)k+1
·2ℓ = 1

p(ℓ)k+1
·K0.

Assume that the following holds:
|Yesx(γi)| <

1

p(ℓ)k+1−i ·Ki.

We will prove that (13) is valid with probability greater than 1− 1
3k .

|Yesx(γi+1)| <
1

p(ℓ)k+1−(i+1)
·Ki+1. (13)
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Proof of Goldwasser-Sipser Theorem
Consider S′ =

{
a
∣∣∣ |Yesx(γi, a)| ≥ 1

p(ℓ)k+1−(i+1) ·Ki+1

}
. By (9) and the inductive hypothesis, then

|S′|· 1

p(ℓ)k+1−(i+1)
·Ki+1 ≤ |Yesx(γi)| <

1

p(ℓ)k+1−i ·Ki.

According to the above inequality and (11),

|S′| < 1

p(ℓ) ·
1

Kj+1
·Ki <

1

p(ℓ) ·
1

2j ·Ki < 2ℓ· 1

p(ℓ) ·|Vj|.

Since p is large enough,
Prr∈R{0,1}ℓ [a ∈ S′] <

|S′|
|Vj|

<
2ℓ

p(ℓ) ≤ 1

3k .

Prr∈R{0,1}ℓ [a ∈ S′] is the probability that the following holds

|Yesx(γi, a)| ≥
1

p(ℓ)k+1−(i+1)
·Ki+1.

Since |Yesx(γi+1)| = |Yesx(γi, a)|, the probability that (13) is valid is at least 1− 1
3k .
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Proof of Goldwasser-Sipser Theorem

The following inequality is valid with probability greater than
(
1− 1

3k
)k ≥ 1− 1

3k ·k = 2
3 .

k∧
i=0

(
|Yesx(γi)| <

1

p(ℓ)k+1−i ·Ki

)
.

The set lower bound protocol has an error probability 1
4 .

The error probability of Goldwasser-Sipser Protocol is less than 1
3 + 2

3 ·
1
4 = 1

2 .

Conclude that
IP[2k(n)] ⊆ AM[6k(n)] ⊆ AM[2k(n)].
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Corollary. If k(n) > 2, then

IP[k(n)] = IP[k(n)]+ = AM[k(n)]+ = AM[k(n)],

where AM[k(n)]+ is the subset of AM[k(n)] with perfect completeness.

Corollary. AM = AM+ ⊆ Πp
2
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AM ?
= IP

Theorem. If PSPACE ⊆ P/poly then IP = MA = AM.

We only have to prove that PSPACE ⊆ MA. If PSPACE ⊆ P/poly, then the prover in
the TQBF protocol can be replaced by a P-size circuit family {Cn}n∈N.
Define a game in which Merlin simply sends the description of C|x| to Arthur.
Arthur can now make use of C|x| without the necessity for any further interaction.
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Theorem. If coNP ⊆ AM, then PH = AM.
Proof.
Clearly Σp

1 = NP ⊆ MA+ ⊆ AM+ = AM, and Πp
1 = coNP ⊆ AM by the hypothesis.

Prove that Σp
i ,Π

p
i ⊆ AM implies Σp

i+1,Π
p
i+1 ⊆ AM for all i > 0.

Corollary. If GI is NP-complete, then PH = AM.
Proof.
If GI is NP-complete, then GNI is coNP-complete. We have proved that GNI ∈ AM,
hence coNP ⊆ AM.
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Multi-Prover Interactive Proof System
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We know that NP ⊆ MA ⊆ AM ⊆ PH ⊆ PSAPCE = IP.
We do not know if interactive proof systems are more powerful than P-time NDTMs.
It turns out that multi-prover interactive proof systems are strictly more powerful.

1. M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-Prover Interactive Proofs: How to Remove
Intractability Assumptions. STOC 1988.

2. L. Babai, L. Fortnow, and L. Lund. Nondeterministic Exponential Time Has Two Prover Interactive
Protocols. Computational Complexity, 1991 (FOCS’90).

3. L. Fortnow, J. Rompel, and M. Sipser. On the Power of Multi-Prover Interactive Protocols. Theoretical
Computer Science, 1994.

Theorem. MIP = NEXP.
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Provers may decide on any strategy before the game. Once the game started, a prover
is only allowed to communicate with the verifier.
The verifier can talk to any prover.

The verifier can force a prover to answer in a nonadaptive fashion.
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Multi-Prover Interactive Proof System

Suppose k, t are polynomial, n is the input length.

A t(n)-round k(n)-prover interactive proof system consists of a verifier V and k(n)
provers P1, . . . ,Pk(n), the verifier is a P-time PTM, and a prover is a TM (function).
The number of messages exchanged between V and P1, . . . ,Pk(n) is 2t(n).

After the t(n)-round interaction, the verifier makes a decision V(x, r, γ1♯γ2♯ . . . ♯γk(n)),
where r is a random string, and for each i ∈ [k(n)], γi is the dialogue between V and Pi.
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Languages Accepted by Multi-Prover Interactive Proof System
L is accepted by a t(n)-round k(n)-prover interactive proof system (V, . . .) if for any x,

1. if x ∈ L, some P1, . . . ,Pk(|x|) exist such that

Prr∈{0,1}q(|x|) [V(x, r, γ1♯γ2♯ . . . ♯γk(|x|)) = 1] ≥ 1− 1

2|x|
;

2. if x /∈ L, then for any P1, . . . ,Pk(|x|),

Prr∈{0,1}q(|x|) [V(x, r, γ1♯γ2♯ . . . ♯γk(|x|)) = 1] <
1

2|x|
,

where q is a polynomial and q(|x|) is the length of verifier’s random string.

L∈MIP if L is accepted by a polynomial round k(n)-prover interactive proof system,
where k(n) is polynomial.
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Lemma. L ∈ MIP if and only if L is accepted by a P-round 2-prover interactive proof system.

We design a two prover interactive proof system (P1,P2,V) that simulates (Q1, . . . ,Qk,U).
1. V interacts with P1 to simulate the interaction of (Q1, . . . ,Qk,U).
2. To force nonadaptivity V chooses randomly i ∈ [k] and ask P2 to repeat the dialogue of Pi.

Error probability less than 1− 1
k + 1

2n . Repeat the protocol k2 times to reduce it to below 1
2n .

1. M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-Prover Interactive Proofs: How to Remove
Intractability Assumptions. STOC 1988.
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Probabilistic Oracle Turing Machine

A P-time Probabilistic OTM M? accepts L if the following statements are valid:
1. If x ∈ L, then some oracle O exists such that Pr[MO(x) = 1] ≥ 1− 1

2n .

2. If x /∈ L, then for any oracle O, it holds that Pr[MO(x) = 1] < 1
2n .
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Lemma. L ∈ MIP if and only if L is accepted by a P-time POTM.

(⇒). Question (i, j, d, γ1♯ . . . ♯γk), the d-th bit of Pi’s answer in the j-th round.
(⇐). To force non-adaptivity, the verifier asks at most one question to every prover.

1. L. Fortnow, J. Rompel, M. Sipser. On the power of multi-prover interactive protocols. In: The Third
Annual Conference on Structure in Complexity Theory. Also in Theoretical Computer Science, 134, 1994.
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Multi-Prover Interactive Proof System = POTM = 2-Prover Interactive Proof System

L ∈ MIP if and only if there is a polynomial round interactive proof system (V?,_),
where V? is a P-time POTM, such that the followings are valid.
1. If x ∈ L, then ∃O,P.Prr∈{0,1}q(n) [VO

P (x, r, γ1♯γ2) = 1] ≥ 1− 1

2n .

2. If x /∈ L, then ∀O,P.Prr∈{0,1}q(n) [VO
P (x, r, γ1♯γ2) = 1] <

1

2n .

The question is really about how many rounds are necessary.
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Proposition. MIP ⊆ NEXP.

Suppose a POTM Q? accepts L in nc time, and the input length is n.
Q? asks at most nc questions, the length of the answers is bounded by nc. There are at
most 2nc combinations of the answers.
A NDTM guesses an oracle O and simulates QO on all random strings.
If there is a computation path that accepts x by the ratio 1− 1

2n , accept; o.w. reject.

1. L. Fortnow, J. Rompel, M. Sipser. On the power of multi-prover interactive protocols. In: The Third
Annual Conference on Structure in Complexity Theory. Also in Theoretical Computer Science, 134, 1994.
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Perfect Completeness

Theorem. L ∈ MIP iff there is a polynomial round interactive proof system (V,_,_)
rendering true the followings:

1. Completeness. If x ∈ L, then ∃P1,P2.Prr∈{0,1}q(n) [VP1,P2(x, r, γ1♯γ2)= 1] = 1.
2. Soundness. If x /∈ L, then ∀P1,P2.Prr∈{0,1}q(n) [VP1,P2(x, r, γ1♯γ2)= 1] < 1

2n .
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Multiprover Interactive System for NEXP

Suppose a T(n) time NDTM N accepts L ∈ NP, and the input x is of length n.
By Cook-Levin reduction, one obtains a 3-CNF ψ(z) such that N(x) = 1 iff

ψ(z) =
∧

c∈[O(T(|x|))]
ψc(z1c , z2c , z3c ),

is true, where x is part of z.

The variables in z may be encoded by a string of length t = log |z| = O(log(|x|)).
We use variables v1, . . . , vt to represent z.
An assignment to v = v1, . . . , vt codes up a variable in z. An assignment to z is a function

A : {0, 1}t → {0, 1}.

A string of length s = O(log(|x|)) codes up c. Use variables u = u1, . . . , us to represent c.
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For u ∈ {0, 1}s and h ∈ [3], define the constant sh,u as follows:

sh,u =

{
1, if the h-th variable zh

u in ψu appears positive,
0, otherwise.

Define the indicator variable χh,u : {0, 1}t → {0, 1} as follows:

χh,u(v) =

{
1, if the h-th variable zh

u in ψu is coded up by v,
0, otherwise.

A truth assignment A satisfies ψu(z1u, z2u, z3u) iff∨
v1,v2,v3∈{0,1}t

∧
h∈[3]

χh,u(vh)(sh,u − A(vh)) = 0. (14)

A satisfies ψ(z) iff ∨
u∈{0,1}s

∨
v1,v2,v3∈{0,1}t

∧
h∈[3]

χh,u(vh)(sh,u − A(vh)) = 0. (15)
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We arithmetize (14) and (15).
▶ For instance t = 3 and the first variable of ψ4 is u5 = 101. Then χ1,4(v1) = v11(1− v12)v13.
▶ The arithmetization of A is a multilinear function.

▶ s1,u, s2,u, s3,u can be computed from u. Let θh(u1, . . . , us, sh,u) be the polylog size 3-CNF
for this computation. Let Oh(u1, . . . , us, sh,u) be the arithmetization.

▶ χ1,u(v1), χ2,u(v2), χ3,u(v3) can be computed respectively from u, v1, u, v2, u, v3.
Let ϑh(u1, . . . , us, vh) be the polylog 3-CNF that codes up this computation.
Let Qh(u1, . . . , us, vh) be the arithmetization.

Now arithmetize χh,u(vh)(sh,u = A(vh)) by

Qh(u1, . . . , us, vh)·Oh(u1, . . . , us, sh,u)·χh,u(vh)(sh,u − A(vh)).

Let Ψu,v1,v2,v3(A(v1),A(v2),A(v3)) denote the above arithmetic expression.
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It is tempting to apply the Sumcheck Protocol to test∑
u∈Fs

p

∑
v1,v2,v3∈Ft

p

∏
h∈[3]

Ψu,v1,v2,v3(A(v1),A(v2),A(v3)) = 0. (16)

There is however a problem.

Set ℓ = s + 3t. The verifier randomly selects r1, . . . , rℓ from Fp.
For every d = u, v1, v2, v3 ∈ {0, 1}ℓ, set ru,v1,v2,v3 =

∏
di=1 ri.

If some
∏

h∈[3] Ψu,v1,v2,v3(A(v1),A(v2),A(v3)) is unequal to 0, the following∑
u∈Fs

p

∑
v1,v2,v3∈Ft

p

ru,v1,v2,v3 ·
∏

h∈[3]

Ψu,v1,v2,v3(A(v1),A(v2),A(v3)) = 0 (17)

is valid with probability at least
(
1− 1

p

)ℓ

. This is clear if we see r1, . . . , rℓ as variables over Fp.
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We are now in a position to define the verifier as an POTM.

1. Test if the oracle A defined on Fp is multilinear. If successful, the probability that
Ψu,v1,v2,v3(A(v1),A(v2),A(v3)) is a low degree polynomial is great.

2. Suppose (17) is a d-degree polynomial, apply the Sumcheck Protocol.

During the interaction the verifier randomly assigns b1, . . . , bs, a11, . . . , a1t , a21, . . . , a2t , a31, . . . , a3t
to u1, . . . , us, v11, . . . , v1t , v21, . . . , v2t , v31, . . . , v3t . The prover answers with the polynomial
g1, . . . , gs+3t, and the verifier carries out consistency check after each round.
If the first s+3t− 1 consistency checks are successful, the verifier, after getting the final answer
a3s , gets A(a1), A(a2), A(a3) by querying the oracle A. It then does the last consistency check:

gs+3t(a3t ) = r′·
∏

h∈[3]

Ψb,a1,a2,a3(A(a1),A(a2),A(a3)).
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Let Fp be such that p = O(log |x|). Both the testing time and the size of random
strings are polylog.

The failure probability is(
1− O(1)

O(log |x|)

)O(log |x|)
·
(
1− O(1)

O(log |x|)

)O(log |x|)
· (success rate of linearity resting).

Repeat the protocol O(log |x|) times, the error probability is decreased to 1
polylog(|x|) .

Repeat the above proof to a 2poly time NDTM, one derives that NEXP ⊆ MIP.
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Theorem. MIP is the same as public-key 2-prover MIP.
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Multilinearity Testing

《计算复杂性理论》，傅育熙，清华大学出版社 Interactive Proof System 108 / 155



Multi-linear Function

A function f : Fs
p → Fp is multilinear if it is linear on every linear subspace l of Fs

p.

When we test a function, we test its geometric shape.
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Basic Idea

Consider s-ary functions f : Fs
p → Fp.

For ah ∈ Fp let fxh=ah be the function f(x1, . . . , ah, . . . , xs) on the (s−1)-dimensional
space

(
Fs

p
)xh=ah = {(a′1, . . . , a′s) ∈ Fs

p | a′h = ah}.

A function is xh-linear if it is a linear function by fixing all input parameters except xh.

f is multilinear if and only if for any (a1, . . . , as) ∈ Fs
p the function fx1=a1 is multilinear

and f(x1, a2, . . . , as) is x1-linear.
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Approximate Muliti-Linearity

The Hemming distance dist(f, g) of f, g : Fs
p → Fp is Prx∈RFsp [f(x) 6= g(x)].

Let ML be the set of the multilinear functions of type Fs
p → Fp.

We measure the dissimilarity of f to any multilinear function by

∆ML(f) = min
l∈ML

dist(f, l).
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Sample Points

A triple (a, b, c) is xh-colinear if a, b, c are on a line parallel to the xh-axis; and (a, b, c)
is colinear if it is xh-colinear for some xh.

Suppose (a, b, c) is an xh-colinear triple.
If there is an xh-linear function g : Fs

p → Fp such that f(a) = g(a), f(b) = g(b) and
f(c) = g(c), then (a, b, c) is called f-linear.

We shall measure the non-multilinearity of f by

τ(f) = |all colinear triples that are not f-linear|
|all colinear triples| .
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Main Lemma. Non-multilinearity and Hemming distance are related as follows:

τ(f) ≥ 3∆ML(f) (1−∆ML(f))
s − 3

p .

Suppose l is a multilinear function such that dist(f, l) = ∆ML(f).
Call colinear triple (a, b, c) chromatic if f(a) = l(a) and f(b) = l(b) and f(c) = l(c), or
f(a) 6= l(a) and f(b) 6= l(b) and f(c) 6= l(c). Call it non-chromatic otherwise.
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Proof of the Main Lemma

Let E be the union of the following events:
1. E1: f(a) = l(a) and f(b) 6= l(b),
2. E2: f(b) = l(b) and f(c) 6= l(c),
3. E3: f(c) = l(c) and f(a) 6= l(a).

By symmetry Pr[E] = 3·Pr[E1].

It is not difficult to see that the probability Pr[E] is the same as

Pr(a,b,c) colinear[(a, b, c) is non-chromatic].
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Proof of the Main Lemma

Select a, b randomly, by definition Pra,b∈Fsp [E1] = ∆ML(f) (1−∆ML(f)).

How do we choose two random points a, b that are on a line parallel to an axis?
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Proof of the Main Lemma

1. Select d, e ∈R Fs
p randomly.

2. Choose randomly s′ ∈R [s].
▶ Let the first s′ − 1 bits of a, b be the first s′ − 1 bits of d, and the last s − s′ bits of

a, b be the last s − s′ bits of e;
▶ Let the s′-th bit of a be the s′-th of d, and the s′-th bit of b be the s′-th bit of e.

If f(d) = l(d) and f(e) 6= l(e), then there are s equalities/inequalities:

f(d) = l(d), f(d1, . . . , ds−1, es)
?
= l(d1, . . . , ds−1, es), . . . , f(e) 6= l(e).

Pr[E] = 3·Pr[E1] ≥ 3·∆ML(f) (1−∆ML(f))
s . (18)

According to the inequality (18), there are enough non-chromatic colinear triples.
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Proof of the Main Lemma
We need to exclude from (18) the colinear triples that are f-linear.

Suppose (a, b, c) is xh-colinear and f-linear.
1. f(a) = g(a), f(b) = g(b) and f(c) = g(c) for some xh-linear function g.
2. g (consequently f) and l cannot coincide on two of a, b, c but differ on the other.
3. If the event E3 occurs, it must be that f(c) = l(c) and f(a) 6= l(a) and f(b) 6= l(b).
4. Thus g(c) = l(c).

For fixed a, b there is only one such triple.

Assume that (a, b, c′) were another such triple. Then f(a) = g′(a), f(b) = g′(b) and
f(c′) = g′(c′) for some xh-linear function g′, and g′(c′) = l(c′).
It follows from g(a) = f(a) = g′(a) and g(b) = f(b) = g′(b) that g(c′) =g′(c′) = l(c′).
One would then derive the contradictory equality l(a) 6= f(a) = g(a) = l(a).
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Proof of the Main Lemma

There are
(p
3

)
different triples on a line parallel to an axis.

By the discussion in the above, if there is some c on the line such that f(c) = l(c), there
are

(p−1
2

)
possibilities to pick a, b from the line such that f(a) 6= l(a) and f(b) 6= l(b).

So the colinear triples that are non-chromatic and f-linear account for at most(p−1
2

)
/
(p
3

)
= 3/p percent of all the colinear triples.

Conclude that

τ(f) ≥ Pr[E]− 3

p ≥ 3∆ML(f) (1−∆ML(f))
s − 3

p .
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Main Theorem. Suppose p > 20s. If ∆ML(f) ≥ 1
10 , then τ(f) > 1

10s .

Suppose p ≥ 20s and 1/10 ≤ ∆ML(f) ≤ 9/10.
In this case the minimal value of ∆ML(f)(1−∆ML(f)) is 9/100. Using the inequality of
Main Lemma one gets that

τ(f) > 1

9s . (19)
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Proof of the Main Theorem

Suppose p ≥ 20s and ∆ML(f) > 9/10. We shall prove by induction on s that

τ(f) >
(
1− 1

p

)s−1 1

9s . (20)

s = 1. In this case τ(f) > 1/9 must be valid, which implies that (20) is valid.
Proof.
If τ(f) ≤ 1/9, the probability of a random colinear triple being f-linear would be 8/9.
By the average principle, there must be two points a, b on a line parallel to some axis
such that at least 8/9 of the colinear triples of the form (a, b, c) on that line are f-linear.
It then follows that the Hemming distance between f and some multilinear function is
below 1/9, contradicting to the assumption ∆ML(f) > 9/10.
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Proof of the Main Theorem

s > 1. For any assignment x1 = a1, the function fx1=a1 is defined on
(
Fs

p
)x1=a1 . A

colinear triple is either in
(
Fs

p
)x1=a1 or on a line orthogonal to

(
Fs

p
)x1=a1 . Define

τa1 =
|T′

a1 |
|Ta1 |

,

where Ta1 is the set of x1-colinear triples with one point in
(
Fs

p
)x1=a1 , and T′

a1 is the
subset of Ta1 whose elements are not f-linear.
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Proof of the Main Theorem

Consider the probabilistic inequalities:

∆ML(fx1=a1) <
1

10
, (21)

τa1 <
1

3
. (22)

Assume that some b1 6= a1 also renders true the following:

∆ML(fx1=b1
) <

1

10
, (23)

τb1
<

1

3
. (24)

We prove that this is impossible.
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Proof of the Main Theorem

Suppose dist(fx1=a1 , la1) < 1/10 and dist(fx1=b1
, lb1

) < 1/10, where la1 , lb1
are multilinear.

Define the multilinear function

la1,b1
(x1, . . . , xs) = la1(x2, . . . , xs) +

x1 − a1
b1 − a1

(lb1
(x2, . . . , xs)− la1(x2, . . . , xs))

=
b1 − x1
b1 − a1

·la1(x2, . . . , xs) +
x1 − a1
b1 − a1

·lb1
(x2, . . . , xs).

We claim that
dist(f, la1,b1

) <
9

10
, (25)

which contradicts to ∆ML(f) > 9/10.
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Proof of the Main Theorem

We argue that (21), (22), (23) and (24) imply that dist(f, la1,b1
) < 9

10 .

Choose randomly two points r = (r1, r2, . . . , rs) 和 r′ = (r′1, r2, . . . , rs) on a line parallel to
x1-axis.

1. If r1 ∈ {a1, b1}, then by (21) and (23), Pr[f(r)= la1,b1(r)] ≥ 9/10, which implies (25).
2. Suppose r1 /∈ {a1, b1} and without loss of generality r′1 /∈ {a1, b1}.

▶ Suppose the line defined by r and r′ intersects with the hyperplane
(
Fs

p
)x1=a1 at ra1

and respectively the hyperplane
(
Fs

p
)x1=b1at rb1 .

▶ By (22)/(24), the probability of (ra1 , r, r′)/(rb1 , r, r′) being not f-linear is < 1
3 .

▶ By (21)/(23), fx1=a1(ra1) 6= la1(ra1)/fx1=b1(rb1) 6= lb1(rb1) holds with probability
< 1

10 .
▶ Hence Pr[f(r)= la1,b1

(r)] > 1− 1/3− 1/3− 1/10− 1/10 > 1/10. This is (25).
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Proof of the Main Theorem
There is at most one a1 that satisfies both (21) and (22). For all b1 6= a1 (virtually all points)
we may carry out the following case analysis.

1. 1/10 ≤ ∆ML(fx1=b1) ≤ 9/10. Fix x1 = b1. A total of 1
p ·

s−1
s ·|T| colinear triples. It follows

from induction on (19) that the non-fx1=b1
-colinear triples are bounded in number by

(s − 1)|T|
sp · 1

9(s − 1)
. (26)

2. ∆ML(fx1=b1) > 9/10. By induction on (20) one derives that the non-fx1=b1 -linear triples
are bounded in number by

(s − 1)|T|
sp ·

(
1− 1

p

)s−2
1

9(s − 1)
. (27)
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Proof of the Main Theorem

3 ∆ML(fx1=b1
) < 1

10 , and τb1
≥ 1/3. A hyperplane is orthogonal to one of s axis. An axis is

orthogonal to p hyperplanes. On average τb1Tb1 is at least

1

3
· |T|sp . (28)

The number of choices for b1 is p − 1. Summarizing (26), (27) and (28),

τ(f) ≥ (p − 1)min
{
(s − 1)

sp · 1

9(s − 1)
,
(s − 1)

sp ·
(
1− 1

p

)s−2
1

9(s − 1)
,
1

3
· 1sp

}

≥
(
1− 1

p

)s−1

· 1
9s .

Using p > 20s one gets τ(f) >
(
1− 1

20s
)s−1 · 19s >

1
10s .
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Algorithm

1. Choose randomly a colinear triple (a, b, c), and query f for f(a), f(b), f(c).
2. If f(a), f(b), f(c) are f-linear, report success.
3. Repeat the above two steps 10s times. If none reports failure, accept.

1. If f is multilinear, the algorithm always accepts.
2. If ∆ML(f) ≥ 0.1, the probability the algorithm refuses is greater than 1/2.
3. O(s2 log(s)) long random strings are sufficient.
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Parallel Repetition Theorem
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Theorem. For any game G and n > 1, the following is valid:

v(Gn) ≤
(
1− (1− v(G))3

6000

) n
log |G|

.

If v(G) ≤ 1− 1
p , then

(
1− 1

6000p3
) n

log(|G|)
≤ e−

6000p3
log |G| ·n.
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IP vs MIP
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Is there a hierarchy result

IP[n] ⊊ IP[n2] ⊊ IP[n3] ⊊ . . . ?

Or is there a collapsing theorem
IP = IP[n] ?
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For MIP the issue has been resolved.

1. L. Fortnow, J. Rompel and M. Sipser. On the power of multi-prover interactive protocols. In: Proceedings of the Third Annual Conference
on Structure in Complexity Theory, June 1988, pp. 156-161. Also in Theoretical Computer Science, 134:545-557, 1994.

2. J. Cai, A. Condon and R. Lipton. On bounded round multi-prover interactive proof systems. In Proceedings, Fifth Annual Conference on
Structure in Complexity Theory, 45-54, 1990.

3. J. Cai, A. Condon and R. Lipton. PSPACE is provable by two provers in one round. In Proceedings of Structures in Complexity Theory
Conference, 1991.

4. J. Kilian. Strong Separation Models of Multi Prover Interactive Proofs, DIMACS Workshop on Cryptography, October 1990.
5. U. Feige. On the success probability of the two provers in one round proof systems. In Proceedings of Structures in Complexity Theory

Conference, 1991.
6. D. Lapidot and A. Shamir. A one-round, two-rover, zero-knowledge protocol for NP, in Combinatorica, 15 (1995), pp. 203–214.
7. U. Feige and L. Lovász. Two-prover one-round proof systems, their power and their problems. In STOC 1992, ACM, New York, 733–744,

1992.
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Theorem. MIP = MIP[2, 1].

In retrospect the proof can be greatly simplified using Parallel Repetition Theorem and
the idea of Cai, Condon and Lipton.

The verifier can ask all questions in one go. How come?
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(V,P1,P2)

Suppose (V,P1,P2) is a polynomial round 2-prover interactive proof system.
1. Recall that V’s questions are random strings.
2. V may decide at random which prover to interact in the next round.

x ∈ L iff for any input x of length n the following are valid:
1. If x ∈ L, then P1,P2 exist such that

Prr11,...,r1t ,r21,...,r2t ∈{0,1}q [VP1,P2
(x, r11 . . . r1t , r21 . . . r2t ) = 1] ≥ 1− 1

2n .

2. If x /∈ L, then for any P1,P2,

Prr11,...,r1t ,r21,...,r2t ∈{0,1}q [VP1,P2
(x, r11 . . . r1t , r21 . . . r2t ) = 1] <

1

2n .

We define a one round 2-prover interactive system (V∗,P∗
1,P∗

2) that simulates (V,P1,P2).
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(V∗,P∗
1,P∗

2)

Protocol.
1. V∗ sends two random strings r1 = r11, . . . , r1t and r2 = r21, . . . , r2t to P∗

1.
2. P∗

1 replies with a1 = a11, . . . , a1t and a2 = a21, . . . , a2t .
3. V∗ chooses random s1, s2 ∈ [t], and sends r11, . . . , r1s1 and r21, . . . , r2s2 to P∗

2.
4. P∗

2 replies with b11, . . . , b1s1 and b21, . . . , b2s2 .

V∗ accepts, written V∗
P∗
1,P∗

2
(x, r1, r2) = 1, if the following statements are valid.

1. V(x, r1, a1, r2, a2) = 1.
2. a11, . . . , a1s1 = b11, . . . , b1s1 and a21, . . . , a2s2 = b21, . . . , b2s2 .

The completeness parameter of V∗ is at least as good as V.
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Soundness of (V∗,P∗
1,P∗

2)

Suppose x /∈ L.

The answer space of P∗
2 is T =

{
c1, . . . , cs | s ∈ [t] ∧ c1, . . . , cs ∈ {0, 1}q}.

P∗
2(x,_,_) : T2 → T2.

The projections are denoted by P∗
2(x,_,_)1,P∗

2(x,_,_)2 : T2 → T.
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Soundness of (V∗,P∗
1,P∗

2), plurality functions M1
r2,M2

r1 : T → T
M1

r2(r) = the string that occurs most frequently in {P∗
2(x, r, r′)1 | r′ is a prefix of r2},

M2
r1(r) = the string that occurs most frequently in {P∗

2(x, r′, r)2 | r′ is a prefix of r1}.

(r1, r2) is rational if one of the followings is valid:
1. V(x, r1,M1

r2(r1), r2,M2
r1(r2)) = 0;

2. Some s ∈ [t − 1] exists such that M1
r2(r11, . . . , r1s ) is not a prefix of

M1
r2(r11, . . . , r1s+1);

3. Some s ∈ [t − 1] exists such that M2
r1(r21, . . . , r2s ) is not a prefix of

M2
r1(r21, . . . , r2s+1).

Lemma. Prr1,r2∈R{0,1}qt [(r1, r2) is rational ] ≥ 1− 1/2n. there are many rational pairs

Proof.
By definition M1

r2 and M2
r1 are provers. They can simulate P1,P2 but cannot do better.

If (r1, r2) is not rational, V accepts x, the probability of which is less than 1/2n.
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Soundness of (V∗,P∗
1,P∗

2), more about the rational pairs

Suppose r′ is a prefix of r1 of length g and r′′ is a prefix of r2 of length h.
Abbreviate the answer P∗

2(x, r′, r′′) to P∗
2(g, h).

Consider the t × t grid. The value of the point (g, h) is P∗
2(g, h).
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Soundness of (V∗,P∗
1,P∗

2)

Lemma. If (r1, r2) is rational and V∗
P∗
1 ,P∗

2
(x, r1, r2) = 1, then

|{(g, h) | P∗
2(g, h) is not a prefix of P∗

1(x, r1, r2)}| ≥ t − 1.

Suppose P∗
1(x, r1, r2) = (a1, a2). For g ∈ [t], let Vg = {(g, h) | h ∈ [t]}. Consider the problem:

Is there any g ∈ [t] such that t/2 points in Vg have a value 6= M1
r2(r11, . . . , r1g)?

If the answer is positive, then at least t/2 points are not prefix of P∗
1(x, r1, r2).
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Soundness of (V∗,P∗
1,P∗

2)

If the answer is negative, then for all g ∈ [t], at least half of the points in Vg have values whose
first components are M1

r2(r11, . . . , r1g).

Since (r1, r2) is rational and V∗
P∗
1 ,P∗

2
(x, r1, r2) = 1, either M1

r2(r11, . . . , r1t ) 6= a1, or
M1

r2(r11, . . . , r1g′) is not a prefix of M1
r2(r11, . . . , r1g′+1) for some g′ ∈ [t − 1], and in the latter case

either M1
r2(r11, . . . , r1g′) or M1

r2(r11, . . . , r1g′+1) is not a prefix of a1.

In summary some g exists such that M1
r2(r11, . . . , r1g) is not a prefix of a1.

Conclude that there are at least t/2 points in Vg whose values are not prefix of P∗
1(x, r1, r2).

Using the same argument there is a horizontal line Hh containing at least t/2 points whose
values are not prefix of P∗

1(x, r1, r2).
Since Vg intersects Hh at no more than one point, |Vg ∪ Hh| ≥ t − 1.

《计算复杂性理论》，傅育熙，清华大学出版社 Interactive Proof System 141 / 155



Suppose V∗ sends a rational pair (r1, r2) to P∗
1.

1. If V∗
P∗
1,P∗

2
(x, r1, r2) = 0, then V∗ refuses x.

2. If V∗
P∗
1,P∗

2
(x, r1, r2) = 1, by the previous lemma, if V∗ sends to P∗

2 the points in R,
then V∗ refuses x, since P∗

2(g, h) is not a prefix of (a1, a2). The probability that
this happens is at least |R|/t2 ≥ (t − 1)/t2.

The probability that P∗
1 receives a rational pair (r1, r2) is at least 1− 1/2n.

So the probability that V∗ refuses is (1− 1
2n )

t−1
t2 − 1

2n >
1
t2 .

Conclusion: V∗ accepts x with probability no more than 1− 1
t2 .
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Parallel Repetition Theorem
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Programme Checking
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“Checking is concerned with the simpler task of verifying that a given program returns
a correct answer on a given input rather than on all inputs. Checking is not as good as
verification, but it is easier to do. It is important to note that unlike testing and
verification, checking is done each time a program is run.”

1. M. Blum and S. Kannan. Designing Programs that Check Their Work. J. ACM, 1995.
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Checker

A checker for a task T is a P-time probabilistic OTM C that, given a claimed program
P for T and an input x, the following statements are valid:
▶ If ∀y.P(y) = T(y), then Pr[CP(x) accepts P(x)] ≥ 2

3 .
▶ If P(x) 6= T(x), then Pr[CP(x) accepts P(x)] < 1

3 .

The checker C may apply P to a number of randomly chosen inputs before making a
decision. So even if P(x) = T(x), the checker may still reject P(x).
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Checker for Graph Nonisomorphism

Suppose P is a program for GNI:
▶ P(G1,G2) returns ‘yes’ if G1 6∼= G2 and ‘no’ if otherwise.

A program checker C for GNI can be designed as follow:
1. P(G1,G2) =‘no’.

▶ Run P(G1
1,G1

2), P(G1
1,G2

2), …, P(G1
1,Gn

2), where G1
1 is the graph obtained from G1 by

replacing the first node by a complete graph of n + 1 nodes, ….
▶ Accept if an isomorphism is found, and reject otherwise.

2. P(G1,G2) =‘yes’.
▶ Run the IP protocol for GNI using P as the prover for k times.

Clearly the checker C runs in P-time.
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Checker for Graph Nonisomorphism

Theorem. If P is a correct program for GNI, then C always says “P’s answer is
correct”. If P’s answer is incorrect, then the probability that C says “P’s answer is
correct” is less than 2−k.

Perfect completeness.
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Languages that have Checkers

If L has an interactive proof system where the prover can be efficiently implemented
using L as an oracle, then L has a checker.

Theorem. GI, ♯SATD and TQBF have checkers.

《计算复杂性理论》，傅育熙，清华大学出版社 Interactive Proof System 149 / 155



Random Self-Reducibility

Checkers can be designed by exploring the fact that the output of a program at an
input is related to the outputs of the program on some other inputs.
▶ The simplest such relationship is random self-reducibility.

A problem is randomly self-reducible if solving the problem on any input x can be
reduced to solving the problem on a sequence of random inputs y1, y2, . . ., where each
yi is uniformly distributed among all inputs.
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An Example

Consider a linear function f(x) =
∑n

i=1 aixi : GF(2n) → GF(2n).
▶ Given any x, pick some y randomly.
▶ Compute f(y) and f(y + x).
▶ Compute f(x) by f(y) + f(y + x).
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Lipton Theorem

Theorem (Lipton, 1991). There is a randomized algorithm that, given an oracle that
computes the permanent on 1− 1

3n fraction of the n×n matrices on GF(p), can
compute the permanents of all matrices on GF(p) correctly with high probability.
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Proof of Lipton Theorem

Let A be an input matrix. Pick a matrix R ∈R GF(p)n×n. Let

B(x) = A + xR.

Clearly perm(B(x)) is a degree n univariate polynomial.

For a 6= 0, B(a) is a random matrix. So the probability that the oracle computes
perm(B(a)) correctly is at least 1− 1

3n .
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Proof of Lipton Theorem

1. Randomly generate n + 1 distinct nonzero points a1, . . . , an+1.
2. Ask the oracle to compute perm(B(ai)) for all i ∈ [n + 1].
▶ According to union bound, with probability at most n+1

3n , the oracle may compute
at least one of perm(B(ai))’s incorrectly.

▶ So with probability at least 1− n+1
3n ≈ 2

3 , the oracle can compute all perm(B(ai))’s
correctly.

3. Finally calculate perm(A) = perm(B(0)).
▶ perm(B(x)) is a univariate polynomial of degree n.
▶ Construct the polynomial using interpolation.

Lipton’s algorithm provides a checker for the permanent problem.
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interaction + randomness + error
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