
Formalisation of Probabilistic Testing Semantics
in Coq?

Yuxin Deng1 and Jean-Francois Monin2

1 Shanghai Key Laboratory of Trustworthy Computing,
MOE International Joint Lab of Trustworthy Software, East China Normal University
2 Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France

Abstract. Van Breugel et al. [F. van Breugel et al, Theor. Comput. Sci.
333(1-2):171-197, 2005] have given an elegant testing framework that
can characterise probabilistic bisimulation, but its completeness proof
is highly involved. Deng and Feng [Y. Deng and Y. Feng, Inf. Com-
put. 257:58-64, 2017] have simplified that result for finite-state processes.
The crucial part in the latter work is an algorithm that can construct
enhanced tests. We formalise the algorithm and prove its correctness by
maintaining a number of subtle invariants in Coq. To support the formal-
isation, we develop a reusable library for manipulating finite sets. This
sets an early example of formalising probabilistic concurrency theory or
quantitative aspects of concurrency theory at large, which is a rich field
to be pursued.

1 Introduction

One of the central concepts in concurrency theory is bisimulation [24,25]. Its
generalisation in probabilistic concurrency theory is put forward by Larsen and
Skou in [22]. Various characterisations of the largest probabilistic bisimulation
(aka bisimilarity) by probabilistic extensions of Hennessy-Milner logic [17] have
appeared in the literature [22,11,12,26,8,18,16,10,6]. For example, it is shown in
[22] that probabilistic bisimilarity can be characterised by a very simple testing
framework for reactive probabilistic processes [22,28] with a minimal probabil-
ity assumption. In [27] van Breugel et al. generalise the testing characterisation
of [22] to labelled Markov processes, i.e., reactive probabilistic processes [22,28]
with continuous state spaces, and surprisingly, with an even simpler testing lan-
guage. Generally speaking, the simpler the logical or testing characterisation,
the more difficult the completeness proof of the chararacterisation. The reason
is that this kind of proofs usually involve constructing distinguishing formulae or
tests for non-bisimilar states, which is more challenging if there are fewer modal-
ities to use. Van Breugel et al. succeeded in proving such an elegant result by
making use of advanced machinery such as the Lawson topology on probabilistic
? Supported by the National Natural Science Foundation of China (61672229,
61832015), the French national research organization ANR (grant ANR-15-CE25-
0008), and the Inria-CAS joint project Quasar.

powerdomains [19] and Banach algebras. In [7], Deng and Feng consider finite-
state reactive probabilistic processes and give an extremely elementary proof of
the coincidence of bisimilarity with the aforementioned testing equivalence while
avoiding all the advanced machinery used in [27]. The core of that proof is to
construct a sort of enhanced tests from basic tests by a tricky algorithm. There-
fore, the correctness of the algorithm is crucial for the validity of the testing
characterisation of probabilistic bisimilarity. A manual proof is given in [7], but
to increase our confidence, a machine-checkable proof would be preferable. This
is worthwhile because, as far as we know, among all the modal or testing char-
acterisations of probabilistic bisimilarity, the one in [27] is the simplest, and the
completeness proof presented in [7] is the most elementary and thus accessible.

In the current work, we formalise the algorithm of [7] in Coq [5] and prove its
termination and correctness. We choose Coq because it is one of the mainstream
proof assistants that has a large number of users in both industry and research
communities. It has been successfully used for formal specifications of the X86
and LLVM instruction sets and programming languages such as C [20,29,21]. It
has also been used to build CompCert [23], a fully-verified optimizing C compiler,
and CertiKos [15], a fully verified hypervisor, for proving the correctness of many
algorithms. Moreover, some important results in mathematics, such as the four-
color theorem [13] and the Feit-Thompson theorem [14] are formally proved
with Coq. We also claim that some features of the type system of Coq are very
important in our formalisation in the presence of nested loops (cf. Section 4.5).

The algorithm that we formalise in the current work involves two nested loops
that render termination and correctness proofs highly non-trivial. We carefully
design a number of invariants and show that they are preserved by appropriate
loops. Sometimes, the invariants are not mutually independent. As we will see
in Section 5.3, there are scenarios where we have two invariants (a) and (b), and
after some steps of execution, invariant (b) holds as a post-condition because in
the precondition both (a) and (b) are required to hold. What is more, as invari-
ants are predicates on program states, they rely on another kind of invariants on
program states. This happens because we heavily use finite sets. On one hand,
if a set contains elements of the form (i, j) where i and j are natural numbers
with i < j, we must make sure that no matter how the set expands or shrinks,
its elements always keep that form. This is a particular invariant originated from
program states. On the other hand, since we represent finite sets as lists, a gen-
eral invariant to be maintained is that there is no duplicated elements in the
lists no matter how the lists evolve under different set operations. The outcome
of our development is not only a formal proof of the correctness of the non-
trivial algorithm for constructing enhanced tests, but also a convenient library
for manipulating finite sets.

Although there are efforts on the mechanisation of reasoning about ran-
domised algorithms [3] and on applications to cryptography [4] there exists little
work on formalising probabilistic concurrency theory, or quantitative aspects of
concurrency theory at large. The current work sets an example towards this
direction. Undoubtedly, much more can be done in the future.

The rest of the paper is structured as follows. In Section 2 we recall the back-
ground on probabilistic testing semantics and the algorithm that we will consider
in Section 4. In Section 3 we outline our use of Coq. In Section 4 we formalise the
algorithm in Coq. In Section 5 we introduce the main invariants used in proving
the correctness of the algorithm. Finally, we conclude in Section 6.

The Coq scripts are available at the following link
http://www-verimag.imag.fr/~monin/Proof/ProbaTesting/.

2 Preliminaries

In this section, we recall the probabilistic testing semantics and the algorithm
for computing enhanced tests introduced in [7].

Let S be a finite set. A (discrete) probability distribution over S is a function
∆ : S → [0, 1] with

∑
s∈S ∆(s) = 1. Its support is the set {s ∈ S | ∆(s) > 0}.

Let D(S) denote the set of all distributions over S. We write s for the point
distribution satisfying s(t) = 1 if t = s, and 0 otherwise. If pi ≥ 0 and ∆i is a
distribution for each i in some finite index set I, then

∑
i∈I pi ·∆i is the function

given by (
∑

i∈I pi · ∆i)(s) =
∑

i∈I pi · ∆i(s). If
∑

i∈I pi = 1 then this is easily
seen to be a distribution in D(S).

Definition 1. A reactive probabilistic labelled transition system (rpLTS) is a
triple (S,A,−→), where S is a finite set of states, A is a finite set of actions, and
the transition relation −→ is a partial function from S ×A to D(S).

We write s a−→ ∆ for −→ (s, a) = ∆. In the probabilistic setting, we often need to
compare distributions. There is a way of lifting relations on states to relations
on distributions [9].

Definition 2. Given two sets S, T and a relation R⊆ S × T , the lifted relation
R†⊆ D(S)×D(T) is the smallest relation that satisfies:

(i) s R t implies s R† t;
(ii) ∆i R† Θi for all i ∈ I implies (

∑
i∈I pi ·∆i) R† (

∑
i∈I pi ·Θi), where I is a

finite index set and
∑

i∈I pi = 1.

The above lifting operation is used to define probabilistic bisimulation.

Definition 3. A binary relation R⊆ S×S is a probabilistic simulation if s R t
and s a−→ ∆ implies the existence of some transition t a−→ Θ with ∆ R† Θ.

If both R and R−1 are probabilistic simulations, then R is a probabilistic
bisimulation. The largest probabilistic bisimulation is probabilistic bisimilarity.

Let us fix a rpLTS (S,A,−→) and recall the testing framework given in [27].

Definition 4. Let T be a testing language given by the grammar

t ::= ω | a · t | 〈t, t〉

http://www-verimag.imag.fr/~monin/Proof/ProbaTesting/

where a ranges over the set of labels A of our rpLTS. The function Pr : S×T 7→
[0, 1] prescribes the probability of applying a test to a state as follows:

Pr(s, ω) = 1

Pr(s, a · t) =
{∑

s′∈S ∆(s′) · Pr(s′, t) if s a−→ ∆
0 otherwise.

Pr(s, 〈t1, t2〉) = Pr(s, t1) · Pr(s, t2)

We call 〈t1, t2〉 a conjunction of two tests, which models the copying capacity
of probabilistic testing. Here, conjunction is given the arithmetic interpretation
as multiplication.

Definition 5. The testing language T induces a testing equivalence relation,
written =T , by letting s1 =T s2 if Pr(s1, t) = Pr(s2, t) for any t ∈ T .

It is shown in [7] that =T is a probabilistic bisimulation [22]. The key ingredi-
ent is to introduce a notion of enhanced tests. By making use of Algorithm 1, we
can construct enhanced tests that satisfy the conditions in Lemma 1. From that
lemma, it is not difficult to prove that =T is a probabilistic bisimulation. Let us
first set up the scenario where Algorithm 1 applies. Observe that =T is an equiv-
alence relation. Hence, we can partition the state space S according to =T . Let
C1, · · · , Cn be the equivalence classes induced by =T , where n ≥ 1. Within each
equivalence class Ci, the states are testing equivalent. So we can write Pr(Ci, t)
for Pr(sij , t), where sij is any state in Ci and t is any test. Nevertheless, for any
two states in different equivalence classes, there exist some tests that can tell
them apart. For any i, j with 1 ≤ i < j ≤ n, let tij be a test that distinguishes
Ci from Cj ; that is, Pr(Ci, tij) 6= Pr(Cj , tij). Notice that here tij is only a
distinguishing test for Ci and Cj , and in general it says nothing about a third
equivalence class Ck when k 6= i, j. For example, applying tij to Ci and then to
Ck might yield the same outcome. This is normal because tij is not necessarily
a distinguishing test for Ci and Ck. The surprising fact discovered in [7] is that
it is possible to construct an enhanced test that sharpens testing outcomes to
distinguish many equivalence classes. More precisely, applying the enhanced test
to some equivalence classes gives either 0 or distinct positive values.

Lemma 1. For any I ⊆ {1, · · · , n} with I 6= ∅, there exist a nonempty I ′ ⊆ I
and an enhanced test t such that

(i) for all k ∈ I, Pr(Ck, t) > 0 iff k ∈ I ′;
(ii) for any i 6= j ∈ I ′, Pr(Ci, t) 6= Pr(Cj , t).

The lemma is valid because we can use Algorithm 1 to construct such an
enhanced test. The current work proposes (and proves the correctness of) a func-
tional version of this algorithm. However, its design was driven by the original
imperative version given in [7]. Proving that the functional version fits in with the
imperative one could be performed using standard transformation techniques,
but this is not needed: what matters is the existence of an algorithm satisfying
the required specification. The algorithm initially sets I ′ to be I and t to be ω,

Algorithm 1: Compute an enhanced test
input : A nonempty I = {1, · · · , n} with the distinguishing tests tij , i 6= j.
output: A nonempty I ′ ⊆ I and an enhanced test t satisfying Lemma 1.

1 begin
2 Ipass ← ∅;
3 Irem ← {(i, j) ∈ I × I : i < j};
4 I ′ ← I;
5 t← ω;
6 while Irem 6= ∅ do
7 Choose arbitrarily (i, j) ∈ Irem;
8 I ′ ← {k ∈ I ′ : Pr(Ck, tij) > 0};
9 Idis ← {(k, l) ∈ Irem ∩ I ′ × I ′ : Pr(Ck, tij) 6= Pr(Cl, tij)};

10 Irem ← (Irem ∩ I ′ × I ′)\Idis;
11 Ipass ← (Ipass ∩ I ′ × I ′) ∪ Idis;
12 t← 〈t, tij〉;
13 Item ← ∅;
14 I ← Ipass;
15 while I 6= ∅ do
16 I ← {(k, l) ∈ Ipass\Item : Pr(Ck, t) = Pr(Cl, t)};
17 if I 6= ∅ then
18 t← 〈t, tij〉;
19 Item ← Item ∪ I;
20 end
21 end
22 end
23 return I ′, t;
24 end

then it gradually updates the test t to equipe it with more and more discrimi-
nating power. The construction of the new tests involves removing the indices k
with Pr(Ck, t) = 0 from I ′ and keeping the indices i, j such that Pr(Ci, t) and
Pr(Cj , t) are distinct and both positive. The outer loop uses four auxiliary sets:
Ipass, Irem, Idis, and Item. Among them, Ipass and Irem form a partition of the
set {(i, j) ∈ I ′ × I ′ : i < j}. The subset Ipass contains the pairs (i, j) such that
the current test t can distinguish Ci from Cj , while Irem contains the remaining
pairs to be processed. Each iteration of the outer loop picks up any pair (i, j) in
Irem, uses the distinguishing test tij to form Idis, which is a subset of Irem, and
moves it from Irem to Ipass. Each pair being moved, e.g., (k, l) ∈ Idis indicates
that Ck and Cl can be differed by tij . However, just expanding Ipass with Idis
is insufficient. A newly added index k might conflict with another index l, which
occurs either already in the old Ipass or in the set Idis, in the sense that Ck

and Cl cannot be distinguished by t. To solve this problem, the inner loop tries
to update t by padding it with enough copies of tij until it can distinguish all
the equivalence classes indicated by the pairs in Ipass. Interestingly, the padding
procedure only involves conjunctions of tests and this suffices for our purpose!

The auxiliary set Item is introduced to facilitate this procedure and contains all
the pairs indicating the equivalence classes distinguishable by the final enhanced
test. When all the pairs in Irem are explored, the whole procedure terminates.

Two main properties that interest us are the termination and the correctness
of the algorithm. Let us give a more detailed analysis of the termination property.
We first look at the inner while loop. In each iteration, I is assigned a new
value, which is a subset of Ipass\Iterm. If it becomes empty, the loop terminates
immediately. Otherwise, the set Item is enlarged to include I. Since the set
Ipass does not change in the inner loop, in the next iteration the set Ipass\Iterm
becomes smaller and so does I. Eventually, I must become empty and the loop
terminates. For the outerwhile loop, in each iteration we choose a pair, say (i, j),
from Irem, and then update Idis and Irem. Since tij is a distinguishing test for
(i, j), the two values Pr(Ci, tij) and Pr(Cj , tij) cannot be 0 at the same time.
If both of them are positive, then Idis contains at least the pair (i, j) and is not
empty. If exactly one of them, say Pr(Ci, tij), is 0, then the corresponding index
i is removed from I ′, which causes I ′ to shrink. In both cases, the assignment
of Irem by (Irem ∩ I ′ × I ′)\Idis makes Irem strictly smaller. Eventually, Irem
becomes empty and the outer loop terminates. The number of iterations for the
inner loop depends on the size of the set Ipass, and for the outer loop depends
on the size of Irem.

The correctness of the algorithm relies on the following four invariants,
namely, at the beginning of each run of the outer while loop,

(a) Ipass ∪ Irem = {(i, j) ∈ I ′ × I ′ : i < j};
(b) I ′ 6= ∅;
(c) for all k ∈ I, Pr(Ck, t) > 0 iff k ∈ I ′;
(d) for any (i, j) ∈ Ipass, Pr(Ci, t) 6= Pr(Cj , t).

A manual proof of these statements is provided in [7]. It is involved as it mixes
logical reasoning with quantitative computation. Therefore, a machine-checkable
proof is needed.

The above analysis of the algorithm serves as a guide for our formal proof of
the correctness in Coq. However, we do not faithfully follow the manual proofs
in [7]. In particular, for statement (d) we provide a proof that deviates a lot from
the original one and is easier to implement inductively.

3 Our use of Coq

In order to complete our case study, several issues need to be addressed:

1. Representing an (originally imperative) algorithm in Coq;
2. Dealing with finite sets;
3. Formalising and proving assertions and invariants;
4. Proving the termination property.

The previous issues are not independent from each other. For instance, in the
strongly normalising purely functional setting of Coq, only terminating functions

can be defined. In practice, it means that termination has to be taken into
account at the definition time of a function, making issues 1 and 4 interact.
Moreover, part of the invariants can be relevant to termination. Finally, design
choices related to issue 2 interact with all other issues.

About issue 1, an important design decision has to be taken from the very
beginning. If we stick to imperative programs, there are at least two distinct
techniques for representing them: by a function from states to states – typically,
a while loop will be encoded as a tail-recursive function – or, by an inductive
relation between input and output states. An extension of the last option is even
to consider an IMP-like toy imperative language (including ad-hoc operations
on sets), with a big-step or small-step operational semantics [1].

For our purpose here, we only need to prove that there exists an effective
terminating algorithm satisfying the expected input-output relation. The imper-
ative or functional nature of the presentation of the algorithm does not matter.
Therefore we just provide a Coq function returning the desired final state from
the initial state and the above considerations about imperative programming just
vanish. Nevertheless, the manual proof given before in an imperative setting is
an important guide in the Coq development. In particular, the given invariants
remain very important and provide the structure of the proof. Some amount
of dependent typing is needed, in particular in order to deal with the issue of
termination. For clarity, at the end, a simple executable functional program can
be extracted and it is easy (but not crucial) to manually check that this program
corresponds to the imperative one given in the previous section.

Issue 2 is not fundamental by itself: models and basic results for finite sets are
available in the standard library of Coq [2]. However, for the management of our
proofs, the introduction of concise and familiar set notations on top of it turned
out to be very important: our very first formalization, based only on available
libraries, resulted in statements very hard to reread and follow, and completing
the last steps of the proofs became a discouraging hassle. Another choice had
to be made: the representation of finite sets. Several options are possible and
available in existing librairies: lists, with or without duplicates, ordered or un-
ordered; binary search trees; AVL, to quote a few. Here we only need to prove
the correctness of an abstract algorithm, which does not depend on a specific
representation of finite sets. Efficiency of computation of the various operations
is an orthogonal issue which is not relevant here. In summary, we choose a very
simple representation of finite sets based on lists without duplicates, already
available in the Coq standard library, completed with convenient notations and
suitable basic lemmas.

Most of our efforts are spent on issue (3) because we are interested in the
correctness of the algorithm, which follows from a non-trivial combination of
invariants. In the presence of nested loops, the design of invariants is subtle. We
should pay attention to not only (i) the internal logic of the algorithm but also
(ii) the program states. Both (i) and (ii) give rise to different invariants and
furthermore one invariant may depend on another.

4 Formalisation of the algorithm

4.1 Preliminaries

We first formalise the testing semantics. According to the algorithm, an en-
hanced test t is always in the form 〈ω, t(i1,j1), t(i2,j2), ..., t(im,jm)〉 for some m > 0
with t(il,jl) being a distinguishing test and il, jl the indices for two different
equivalence classes. In other words, as far as the correctness of Algorithm 1 is
concerned, we do not need to consider tests of the form a·t, where a is a label and
t is a test, as previously given in Definition 4. Since the input of Algorithm 1 has
distinguishing tests and the final enhanced test is constructed out of them, we
make a distinction between the two types of tests. We formalise a distinguishing
test as a basic test and the enhanced test is constructed as a list of basic tests.
Inductive basic_test : Set :=

| mk_bt : N -> N -> basic_test.

Definition test : Set := list basic_test.
Now that we have two types of tests, it is natural to model the function Pr

given in Definition 4 in two steps. We first define a variable Prb that prescribes
the probability of applying a basic test to the states in an equivalence class. We
use the hypothesis that all probabilities are non-negative. Then we define the
function Pr to calculate the probability of applying a general test to a state by
multiplying the probabilities of applying Prb to basic tests and that state.
Variable Prb : N -> basic_test -> Q.
Hypothesis not_neg_bt : ∀ i t, 0 <= Prb i t.

Fixpoint Pr (i : N) (t : test) : Q :=
match t with
| nil => 1
| bt :: t’ => Qmult (Prb i bt) (Pr i t’)
end.

We see from the first case of the above definition that Pr i nil = 1, which
corresponds nicely to the fact that Pr(Ci, ω) = 1. Therefore, the special test ω
is modelled by the empty list and there is no need to define a special basic test.

4.2 States

Different parts of the algorithm involve different variables. States are represented
by records constrained by a structural invariant. Transitions are described by
functions between such records. In particular, loops are modelled by tail-recursive
functions. Instead of using a notion of global states containing all variables, we
use inner states and outer states to model the data flow of the inner loop and
the outer loop of the algorithm, respectively.

The inner states are determined by the three sets I, Item, and Ipass, together
with the test t. However, Ipass is not modified in the inner loop. An advantage
of the functional style is that we can consider this set as a constant parameter
of the corresponding function. This way, we get the invariance of Ipass for free,
without additional proof obligation. In Coq, we can conveniently use the scoping
mechanism of sections as follows.

Section sec_with_Y_pass.
Variable Y_pass : set N2.

The other sets are then modelled by the three components Y, Y term and tt
of the following record type.
Record in_iter_data : Type := mk_in_iter_data {

Y : set N2;
Y_term : set N2;
tt : test; }.
The outer states are determined by the three sets I’, Irem, and Ipass, to-

gether with the test t. They are modelled by the four components I’, Y rem,
Y pass and et of the following record type.
Record out_iter_data : Type := mk_out_iter_data {

I’ : set N;
Y_rem : set N2;
Y_pass : set N2;
et : test; }.
An invariant maintained by the outer states is the following. It says that each

pair (i, j) in Irem consists of two different indices, and there are no duplicates
in the three sets I ′, Irem, and Ipass.
Inductive out_data_inv0 (r: out_iter_data) : Prop :=
| out_data_inv0_intro :

(∀ i j, (i,j) ∈ (Y_rem r) -> i <> j) ->
NoDup (I’ r) -> NoDup (Y_rem r) -> NoDup (Y_pass r) ->
out_data_inv0 r.

Lines 2-5 in Algorithm 1 are the initialisation step. The effect is to create the
following initial state.
Definition init_data (m : N) : out_iter_data :=

{| I’ := createI m;
Y_rem := createY m;
Y_pass := ∅;
et := ∅ |}.

The two auxiliary functions createI and createY are introduced in order to
create the sets I = {1, ..., n} and {(i, j) ∈ I × I : i < j}, respectively.
Fixpoint createI (n : N) : set N :=

match n with
| O => ∅
| S n’ => n :: createI n’
end.

Definition createY n : set N2 :=
filter_lt (nodup (createI n × createI n)).
Here we see an example of using filters: from the set I × I we filter out all

pairs (i, j) not satisfying the condition i < j. This is a convenient means of
creating subsets from a given set that we often use in our Coq development.

The final output data of the algorithm is the set I ′ and the enhanced test t,
as described by the type final data.
Record final_data : Type := mk_final_data {

I’f : set N;
etf : test; }.

4.3 Inner loop

To formalise loops, our general strategy is to first define one round of itera-
tion, which is a function from a state possibly with additional parameters to
a new state, and then repeatedly apply the iteration until the state meets the
termination condition.

The inner loop (lines 15-21 of Algorithm 1) makes use of an iteration step
described below, where next Y inner loop computes the new value to be as-
signed to I, as stated in line 16.
Definition next_Y_inner_loop r := filter_eq (tt r) (Y_pass \ Y_term r).
Definition inner_loop_iter

(r : in_iter_data) (tij : basic_test) : in_iter_data :=
match Y r with
| ∅ => r
| _ :: _ => let Y’ := next_Y_inner_loop r in

match Y’ with
| ∅ => {| Y := Y’;

Y_term := Y_term r;
tt := tt r |}

| _ :: _ => {| Y := Y’;
Y_term := Y_term r ∪ Y’;
tt := tij :: tt r |}

end
end.
The structural invariant of the record maintained by the inner loop is:

Inductive in_data_inv (d: in_iter_data) : Prop :=
| in_data_inv_intro :

Y d ⊆ Y_pass -> Y_term d ⊆ Y_pass ->
NoDup (Y d) -> NoDup (Y_term d) -> in_data_inv d.

It requires that for an inner state (I, Iterm, t) to be legal, we must have that
I ⊆ Ipass, Iterm ⊆ Ipass, and there is no duplicated element in I, Iterm and
Ipass.

The inner loop itself is formulated as a recursive function that repeatedly
applies the iteration step inner loop iter . Note that each iteration step ei-
ther makes I empty, or decreases the size of the set Ipass\Item. So we define
the measure size of data for inner states, which yields a strictly decreasing
argument for the function in loop.
Definition size_of_data r := size (Y r) (Y_pass \ Y_term r).
Function in_loop (r : in_iter_data) (di : in_data_inv r) tij

{measure size_of_data r} : in_iter_data := match Y r with
| ∅ => r
| _ :: _ => in_loop (inner_loop_iter r tij)

(inner_loop_iter_inv di tij) tij
end.
The previous definitions are written inside Section sec with Y pass men-

tioned in Section 4.2. When refering to them outside of this section, namely when
they are used in functions and proofs modelling the outer loop, an actual param-
eter for Y pass has to be provided. Moreover, in loop needs a parameter stating
that Y pass has no duplicate in order to ensure that di is maintained invariant.
This assumption is stated at the beginning of Section sec with Y pass.

4.4 Interface between inner and outer loops

Before entering the inner loop, we need to pass the information stored in the
outer state to the inner state. The interface between the two loops is modelled
by the function mk in from out that creates an inner state from an outer state.
It contains the formalisation of lines 13-14 in Algorithm 1.
Definition mk_in_from_out

(r : out_iter_data) (bt : basic_test) : in_iter_data :=
let rnew := outer_loop_iter1 r bt in
{| Y := Y_pass rnew;

Y_term := ∅;
tt := et rnew |}.

Lemma out_data_in_data_inv r (dio : out_data_inv0 r) bt :
let rnew := outer_loop_iter1 r bt in
in_data_inv (Y_pass rnew) (mk_in_from_out r bt).

Note that the actual parameter given for Y pass to in data inv is Y pass
rnew.

4.5 Outer loop

As we did for the inner loop, we first specify one iteration step of the outer
loop. The sequence of assignments before entering the inner loop (lines 7-12 of
Algorithm 1) is described by the function outer loop iter1.
Definition outer_loop_iter1

(r : out_iter_data) (bt : basic_test) : out_iter_data :=
let nI’ := filter_pos bt (I’ r) in
let Ydis := filter_neq bt (Y_rem r ∩ (nI’ × nI’)) in
{| I’ := nI’;

Y_rem := (Y_rem r ∩ (nI’ × nI’)) \ Ydis;
Y_pass := (Y_pass r ∩ (nI’ × nI’)) ∪ Ydis;
et := bt :: et r |}.

Then the function outer loop iter2 formalises one iteration of the outer loop
by first calling outer loop iter1, then creating an inner state through the
interface mk in from out, and finally invoking in loop to deal with the tasks
required by the inner loop.
Definition outer_loop_iter2 r (dio : out_data_inv0 r) bt : out_iter_data :=

let rnew := outer_loop_iter1 r bt in
let rin := mk_in_from_out r bt in
let ndYp := nd_Y_pass r dio bt in
let rin’ := in_loop (Y_pass rnew) ndYp rin

(out_data_in_data_inv r dio bt) bt in
{| I’ := I’ rnew;

Y_rem := Y_rem rnew;
Y_pass := Y_pass rnew;
et := tt rin’ |}.

By repeatedly applying the iteration step outer loop iter2, we obtain a for-
malisation of the outer loop. The decreasing argument for the recursive function
out loop is the size of the set Irem.

Function out_loop r (di : out_data_inv0 r)
{measure size_of_out_data r} : out_iter_data :=

match (Y_rem r) with
| nil => r
| (i , j) :: _ => let (bt, _) := oracle i j in

out_loop (outer_loop_iter2 r di bt) (outer_loop_iter_inv0 r di bt)
end.

The definition of the outer loop uses the variable oracle with (oracle i j)
representing the distinguishing test tij for all equivalence class indices i 6= j.
The distinguishing tests are part of the input of the algorithm. A technical dif-
ference from the inner loop is that the definition of the iteration step is defined
only on states satisfying the loop invariant, entailing a more subtle use of de-
pendent typing. More specifically, if we compare the definitions of in loop and
out loop, both of them contain a tail recursive call with the first argument for
the state reached after one iteration step then the second argument embedding
the invariant satisfied by this state. This kind of of dependency, where properties
depending on data are kept separated from them, is rather common in Coq de-
velopments: for instance, it avoids complications related to proof irrelevance that
arise with dependent records (and any inductive type made of one constructor
with dependencies between its arguments). However, in contrast to the defini-
tion of in loop, where the state argument of the recursive call refers to data
only, the corresponding argument for out loop, namely outer loop iter2 r
di bt, makes a crucial use of invariant di. We believe that this would be hard to
express in a concise and accurate way without dependent types. In other words,
we benefit from the rich type system of Coq which includes dependent types,
while avoiding issues related to dependent records.

Interestingly, the exact reason for this situation is that invariant di is needed
in the body of outer loop iter2 in order to allow for a call to in loop. A
similar situation can reasonably be expected with the formalisation of many
algorithms containing nested loops, at least when non-trivial interactions occur
between these loops.

4.6 The whole algorithm

Once the outer loop is formalised, the whole algorithm easily follows. We first
initialise an outer state and then call out loop before obtaining the final set I ′
and the enhanced test t.
Definition algo_compt_enhanced_test (m : N) : final_data :=

let r := init_data m in
let final_r := out_loop r (init_data_inv0 m) in
{| I’f := I’ final_r;

etf := et final_r |}.

5 Formal proofs

In this section, we take a close look at some important invariants that finally
entail the correctness of the algorithm.

5.1 Invariants of the inner loop

As mentioned earlier, the definition of in loop embeds the structural invariant.
The following invariants are used for invariant (c) of the outer loop.
Lemma inner_loop_iter_inv_c {k r bt} : 0 < Pr k (tt r) ->

(∃ t, tt r = bt :: t) -> Pr k (tt (inner_loop_iter r bt)) > 0.
Lemma inner_loop_iter_inv_c2 {k r} :

Pr k (tt r) == 0 -> ∀ bt, Pr k (tt (inner_loop_iter r bt)) == 0.
The first one says that if Pr(Ck, t) > 0 and t is made from basic test bt then

after running one iteration of the inner loop with bt, the test may evolve into some
t′, but we still have Pr(Ck, t

′) > 0. The second one states that if Pr(Ck, t) = 0
and t is changed into some t′ then we always have Pr(Ck, t

′) = 0. The next two
lemmas tell us that executing the whole inner loop preserves similar properties.
Lemma in_loop_inv_c {k r bt di} : 0 < Pr k (tt r) ->

(∃ t, (tt r) = bt :: t) -> 0 < Pr k (tt (in_loop r di bt)).
Lemma in_loop_inv_c2 {k r di} :

Pr k (tt r) == 0 -> ∀ bt, Pr k (tt (in_loop r di bt)) == 0.
Many additional invariants and post-conditions are used for invariant (d) of

the outer loop. For example, the lemma in loop nextI says that if the compo-
nent I in an inner state is empty, then it remains empty after the execution of
the inner loop.
Definition loop_body bt r := inner_loop_iter r bt.

Inductive ufp (iid: in_iter_data) r bt : Prop :=
ufp_intro :
∀ n, iid = rditer _ n (loop_body bt) r ->

(Y r <> ∅ -> (0 < n)%nat /\
Y (rditer _ (pred n) (loop_body bt) r) <> ∅ /\
next_Y_inner_loop (rditer _ (pred n) (loop_body bt) r) = ∅) ->

(Y r = ∅ -> (n = 0)%nat)
-> ufp iid r bt.

Lemma unfold_fixed_point r (di : in_data_inv r) bt :
ufp (in_loop r di bt) r bt.

Lemma in_loop_nextI r di bt : Y r <> ∅ ->
next_Y_inner_loop (in_loop r di bt) = ∅.

5.2 Invariants of the outer loop

The outer loop maintains four invariants as given in page 6. They are for-
malised as the predicates on outer states: out data inv a, out data inv b,
out data inv c, and finally out data inv d. Althogether, they are used to
form the global invariant out data global inv.
Inductive out_data_inv_a (d: out_iter_data) : Prop :=
| out_data_inv_a_intro :

(Y_rem d ∪ Y_pass d) ⊆ (filter_lt (I’ d × I’ d)) ->
(filter_lt (I’ d × I’ d)) ⊆ (Y_rem d ∪ Y_pass d) ->
out_data_inv_a d.

Inductive out_data_inv_b (d: out_iter_data) : Prop :=
| out_data_inv_b_intro : I’ d <> ∅ -> out_data_inv_b d.

Inductive out_data_inv_c (d: out_iter_data) I : Prop :=
| out_data_inv_c_intro :

(∀ k, k ∈ I’ d -> 0 < Pr k (et d)) ->
(∀ k, k ∈ I \ I’ d -> Pr k (et d) == 0) ->
out_data_inv_c d I.

Inductive out_data_inv_d (d: out_iter_data) : Prop :=
| out_data_inv_d_intro :

all_false (Y_pass d) (eq_prob (et d)) -> out_data_inv_d d.

Inductive out_data_global_inv m I (r: out_iter_data) : Prop :=
odgi_intro :

out_data_inv_a r ->
((m > 0)%nat -> out_data_inv_b r) ->
out_data_inv_c r I ->
out_data_inv_d r ->
out_data_global_inv m I r.

5.3 Preservation lemmas for the outer loop

In order to show that the global invariant is preserved by the outer loop, we con-
sider invariants (a)-(d) separately. Each of them is preserved after one iteration of
the outer loop, and it is the same case for out data inv0 given in Section 4.2.
Note that those invariants are not completely independent. For example, the
preservation of invariant (b) depends on invariant (a), and the preservation of
invariant (d) relies on invariant (c).
Lemma outer_loop_iter_inv0 : ∀ r (dio : out_data_inv0 r) bt,

out_data_inv0 (outer_loop_iter2 r dio bt).

Lemma outer_loop_iter_inv_a {r dio bt} : out_data_inv_a r ->
out_data_inv_a (outer_loop_iter2 r dio bt).

Lemma outer_loop_iter_inv_b {r i j dio bt} : out_data_inv_a r ->
(i,j) ∈ (Y_rem r) -> (i <> j -> Qeq_bool (Prb i bt) (Prb j bt) = false) ->
out_data_inv_b (outer_loop_iter2 r dio bt).

Lemma outer_loop_iter_inv_c {r bt dio I} : out_data_inv_c r I ->
out_data_inv_c (outer_loop_iter2 r dio bt) I.

Lemma outer_loop_iter_inv_d {r bt dio I} :
out_data_inv_c r I -> out_data_inv_d r ->
out_data_inv_d (outer_loop_iter2 r dio bt).

Lemma out_loop_inv m I r (di : out_data_inv0 r) :
out_data_global_inv m I r -> out_data_global_inv m I (out_loop r di).
In the proofs of the lemmas outer loop iter inv c and

outer loop iter inv d, we need to make an in-depth analysis of the inner
loop and use a number of invariants discussed in Section 5.1. Moreover, the
emptyness of I rem is (trivially) ensured after running the outer loop, which
implies the termination of the outer loop.
Lemma out_loop_ensures_empty_Yrem r di : Y_rem (out_loop r di) = ∅.

5.4 Main theorem

The desired post-condition is ensured after running the algorithm. It says that
the final set I ′ and the enhanced test t satisfy the conditions required by Lemma 1.
In other words, we have formally proved the correctness of the algorithm.
Theorem correctness : ∀ m,

let (fI, ft) := algo_compt_enhanced_test m in
((0 < m)%nat -> fI <> ∅) /\
(∀ k, k ∈ fI -> 0 < Pr k ft) /\
(∀ k, k ∈ (createI m \ fI) -> Pr k ft == 0) /\
(∀ i j, i ∈ fI -> j ∈ fI -> i <> j -> Qeq_bool (Pr i ft) (Pr j ft) = false).

6 Conclusion

We have demonstrated a mechanisation of proofs in probabilistic testing seman-
tics with Coq. Proving properties in this setting requires subtle reasoning both
on algorithmic and quantitative aspects of program states. Our development in-
cludes more than 500 lines of specifications and definitions, and more than 900
lines of proof scripts. Along with a machine-checkable proof of the correctness
of the non-trivial algorithm with nested loops for constructing enhanced tests,
we obtain a convenient library for manipulating finite sets, which we believe will
benefit future formalisation efforts such as formal reasoning with probabilistic
bisimulations and testing equivalences.

Acknowledgment We would like to thank Yves Bertot for helpful discussion.

References

1. https://softwarefoundations.cis.upenn.edu/lf-current/index.html.
2. https://coq.inria.fr.
3. P. Audebaud and C. Paulin-Mohring. Proofs of randomized algorithms in Coq.

Science of Computer Programming, 74(8):568–589, 2009.
4. G. Barthe, J. M. Crespo, B. Grégoire, C. Kunz, and S. Zanella-Béguelin. Computer-

Aided Cryptographic Proofs. In ITP 2012, volume 7406 of LNCS. Springer, 2012.
5. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-

ment: Coq’Art: The Calculus of Inductive Constructions. Springer Verlag, 2004.
6. Y. Deng. Semantics of Probabilistic Processes: An Operational Approach. Springer,

2015.
7. Y. Deng and Y. Feng. Probabilistic bisimilarity as testing equivalence. Information

and Computation, 257:58–64, 2017.
8. Y. Deng and R. van Glabbeek. Characterising probabilistic processes logically. In

Proc. LPAR 2010, volume 6397 of LNCS, pages 278–293. Springer, 2010.
9. Y. Deng, R. van Glabbeek, M. Hennessy, and C. Morgan. Testing finitary prob-

abilistic processes (extended abstract). In Proc. CONCUR 2009, volume 5710 of
LNCS, pages 274–288. Springer, 2009.

10. Y. Deng and H. Wu. Modal characterisations of probabilistic and fuzzy bisimu-
lations. In Proc. ICFEM 2014, volume 8829 of LNCS, pages 123–138. Springer,
2014.

https://softwarefoundations.cis.upenn.edu/lf-current/index.html
https://coq.inria.fr

11. J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labelled Markov
processes. Information and Computation, 179(2):163–193, 2002.

12. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Approximating
labelled Markov processes. Information and Computation, 184(1):160–200, 2003.

13. G. Gonthier. Formal proof — the four-color theorem. Notices of the American
Mathematical Society, 55(11):1382–1393, 2008.

14. G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot, S. L. Roux,
A. Mahboubi, R. O’Connor, S. O. Biha, I. Pasca, L. Rideau, A. Solovyev, E. Tassi,
and L. Théry. A machine-checked proof of the odd order theorem. In Proc. ITP
2013, volume 7998 of LNCS, pages 163–179. Springer, 2013.

15. R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg, and D. Costanzo. Certikos:
An extensible architecture for building certified concurrent OS kernels. In Proc.
OSDI 2016, pages 653–669. USENIX Association, 2016.

16. M. Hennessy. Exploring probabilistic bisimulations, part I. Formal Aspects of
Computing, 24(4-6):749–768, 2012.

17. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32(1):137–161, 1985.

18. H. Hermanns, A. Parma, R. Segala, B. Wachter, and L. Zhang. Probabilistic logical
characterization. Information and Computation, 209(2):154–172, 2011.

19. C. Jones. Probabilistic nondeterminism. PhD thesis, University of Edinburgh,
1990.

20. A. Kennedy, N. Benton, J. B. Jensen, and P. Dagand. Coq: the world’s best macro
assembler? In Proc. PPDP 2013, pages 13–24. ACM, 2013.

21. R. Krebbers. The C standard formalized in Coq. PhD thesis, Radboud University
Nijmegen, 2015.

22. K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94:1–28, 1991.

23. X. Leroy, S. Blazy, D. Kästner, B. Schommer, M. Pister, and C. Ferdinand.
Compcert – a formally verified optimizing compiler. In Proceedings of the 8th
European Congress on Embedded Real Time Software and Systems. SEE, 2016.
https://hal.inria.fr/hal-01238879.

24. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
25. D. Park. Concurrency and automata on infinite sequences. In Proceedings of the

5th GI Conference, volume 104 of LNCS, pages 167–183. Springer, 1981.
26. A. Parma and R. Segala. Logical characterizations of bisimulations for discrete

probabilistic systems. In Proc. FOSSACS 2007, volume 4423 of LNCS, pages 287–
301. Springer, 2007.

27. F. van Breugel, M. W. Mislove, J. Ouaknine, and J. Worrell. Domain theory, testing
and simulation for labelled Markov processes. Theoretical Computer Science, 333(1-
2):171–197, 2005.

28. R. J. van Glabbeek, S. A. Smolka, B. Steffen, and C. M. N. Tofts. Reactive,
generative, and stratified models of probabilistic processes. In Proc. LICS 1990,
pages 130–141. IEEE Computer Society, 1990.

29. J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Formalizing the
LLVM intermediate representation for verified program transformations. In Proc.
POPL 2012, pages 427–440. ACM, 2012.

https://hal.inria.fr/hal-01238879

	Formalisation of Probabilistic Testing Semantics in Coq

