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Abstract. For the model of probabilistic labelled transition systems that allow for the
co-existence of nondeterminism and probabilities, we present two notions of bisimulation
metrics: one is state-based and the other is distribution-based. We provide a sound and
complete modal characterisation for each of them, using real-valued modal logics based
on Hennessy-Milner logic. The logic for characterising the state-based metric is much
simpler than an earlier logic by Desharnais et al. as it uses only two non-expansive
operators rather than the general class of non-expansive operators. For the kernels of the
two metrics, which correspond to two notions of bisimilarity, we give a comprehensive
comparison with some typical distribution-based bisimilarities in the literature.

1 Introduction

Bisimulation is an important proof technique for establishing behavioural equivalences of con-
current systems. In probabilistic concurrency theory, there are roughly two kinds of bisimula-
tions: one is state-based that is directly defined over states and then lifted to distributions, and
the other is distribution-based as it is a relation between distributions. The former is originally
defined in [34] to represent a branching time semantics; the latter, as defined in [13, 21, 28],
represents a linear time semantics.

In correspondence with those bisimulations, there are two notions of behavioural pseudo-
metrics (simply called metrics in the current work). They are more robust ways of formalising
behavioural similarity between formal systems than bisimulations because, particularly in the
probabilistic setting, bisimulations are too sensitive to probabilities (a very small perturbation
of the probabilities would render two systems non-bisimilar). A metric gives a quantitative
measure of the distance between two systems and distance 0 usually means that the two sys-
tems are bisimilar. A logical characterisation of the state-based bisimulation metric for labelled
Markov processes is given in [16]. For a more general model of labelled concurrent Markov
chains (LCMCs) that allow for the co-existence of nondeterminism and probabilities, a weak
bisimulation metric is proposed in [17]. Its logical characterisation uses formulae like h ◦ f ,
which is the composition of formula f with any non-expansive operator h on the interval [0, 1],
i.e. |h(x) − h(y)| ≤ |x − y| for any x, y ∈ [0, 1]. A natural question then arises: instead of the
general class of non-expansive operators, is it possible to use only a few simple non-expansive
operators without losing the capability of characterising the bisimulation metric?

In the current work, we give a positive answer to the above question. For simplicity of pre-
sentation, we focus on strong bisimulation metrics. But the proof idea can be generalised to
the weak case. We work in the framework of probabilistic labelled transition systems (pLTSs)
that are essentially the same as LCMCs, so the interplay of nondeterminism and probabilities
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is allowed. We provide a modal characterisation of the state-based bisimulation metric closely
in line with the classical Hennessy-Milner logic (HML) [27]. Our variant of HML makes use of
state formulae and distribution formulae, which are formulae evaluated at states and distribu-
tions, respectively, and yield success probabilities. We use merely two non-expansive operators:
negation (¬φ) and testing (φ	p). Negation is self-explanatory and the testing operator checks if
a state satisfies a property with certain threshold probability. More precisely, if state s satisfies
formula φ with probability q, then it satisfies ¬φ with probability 1− q, and satisfies φ	 p with
probability q − p if q > p and 0 otherwise. In other words, we do not need the general class of
non-expansive operators because negation and testing, together with other modalities inherited
from the classical HML, are expressive enough to characterise bisimulation metrics4. As regards
to the characterisation of distribution-based bisimulation metric, we drop state formulae and
use distribution formulae only. In addition, we show that the distribution-based metric is a
lower bound of the state-based metric when the latter is lifted to distributions.

The kernels of the two metrics generate two notions of bisimilarities: one is state-based
and the other is distribution-based. The state-based bisimilarity is widely accepted by the
community of probabilistic concurrency theory, and it admits elegant characterisations from
metric, logical, and algorithmic perspectives [10]. On the contrary, there is no general agreement
on what is a good notion of distribution-based bisimilarity. We compare the two bisimilarities
induced by our metrics with some typical notions of distribution-based bisimilarities proposed
in the literature. Our distribution-based bisimilarity turns out to coincide with the one defined
in [21] and they constitute the coarsest bisimilarity for distributions.

The rest of this paper is organised as follows. Section 2 provides some basic concepts on
pLTSs. Section 3 defines a two-sorted modal logic that leads to a sound and complete charac-
terisation of the state-based bisimulation metric. Section 4 gives a similar characterisation for
the distribution-based bisimulation metric. In Section 5 we compare the two metrics discussed
in the previous two sections. In Section 6 we compare the two bisimilarities generated by the
two metrics with some distribution-based bisimilarities appeared in the literature. In Section 7
we review some related work. Finally, we conclude in Section 8.

2 Preliminaries

Let S be a countable set. A (discrete) probability subdistribution over S is defined as a function
∆ : S → [0, 1] with

∑
s∈S ∆(s) ≤ 1. It is a (full) distribution if

∑
s∈S ∆(s) = 1. Its support,

written d∆e, is the set {s ∈ S | ∆(s) > 0}. Let Dsub(S) (resp. D(S)) denote the set of all
subdistributions (resp. distributions) over S. We use ε to stand for the empty subdistribution,
that is ε(s) = 0 for any s ∈ S. We write s for the point distribution, satisfying s(t) = 1 if t = s,
and 0 otherwise. The total mass of subdistribution ∆, written |∆|, is defined as

∑
s∈S ∆(s). A

weight function ω ∈ D(S × S) for (∆,Θ) ∈ D(S) × D(S) is given if
∑
t∈S ω(s, t) = ∆(s) and∑

s∈S ω(s, t) = Θ(t) for all s, t ∈ S. We denote the set of all weight functions for (∆,Θ) by
Ω(∆,Θ).

A metric d over a space S is a distance function d : S × S → R≥0 satisfying: (i) d(s, t) = 0
iff s = t (isolation), (ii) d(s, t) = d(t, s) (symmetry), (iii) d(s, t) ≤ d(s, u) + d(u, t) (triangle
inequality), for any s, t, u ∈ S. If we replace (i) with d(s, s) = 0, we obtain a pseudometric.
In this paper we are interested in pseudometrics because two distinct states can still be at
distance zero if their behaviour is similar. But for simplicity, we often use the term metrics
though we really mean pseudometrics. Let c ∈ R≥0 be a positive real number. A metric d over
S is c-bounded if d(s, t) ≤ c for any s, t ∈ S.

4 Notice that we do not claim that negation and testing operators, plus some constant functions, suffice
to represent all the non-expansive operators on the unit interval. That claim is too strong to be true.
For example, the operator f(x) = 1

2
x cannot be represented by those operators.
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Let d : S× S→ [0, 1] be a metric over S. We can lift it to be a metric over D(S) by using the
Kantorowich metric [31] K (d) : D(S)×D(S)→ [0, 1] defined via a linear programming problem
as follows:

K (d)(∆,Θ) = min
ω∈Ω(∆,Θ)

∑
s,t∈S

d(s, t) · ω(s, t) (1)

for ∆,Θ ∈ D(S). The dual of the above linear programming problem is the following

max
∑
s∈S(∆(s)−Θ(s))xs, subject to 0 ≤ xs ≤ 1

∀s, t ∈ S : xs − xt ≤ d(s, t) .
(2)

The duality theorem in linear programming guarantees that both problems have the same
optimal value.

Let d̂ : D(S) × D(S) → [0, 1] be a metric over D(S). We can lift it to be a metric over
the powerset of D(S), written P(D(S)), in the standard way by using the Hausdorff metric

H (d̂) : P(D(S))× P(D(S))→ [0, 1] given as follows

H (d̂)(Π1, Π2) = max{ sup
∆∈Π1

inf
Θ∈Π2

d̂(∆,Θ), sup
Θ∈Π2

inf
∆∈Π1

d̂(Θ,∆)}

for all Π1, Π2 ⊆ D(S), whereby inf ∅ = 1 and sup ∅ = 0.
Probabilistic labelled transition systems (pLTSs) generalize labelled transition systems by

allowing for probabilistic choices in the transitions. They are essentially simple probabilistic
automata [39] without initial states.

Definition 1. A probabilistic labelled transition system is a triple (S,A,−→), where S is a
countable set of states, A is a countable set of actions, and the relation −→ ⊆ S × A×D(S) is
a transition relation.

We write s
a−→ ∆ for (s, a,∆) ∈ −→ and s 6 a−→ if there is no ∆ satisfying s

a−→ ∆. We let

der(s, a) = {∆ | s a−→ ∆} be the set of all a-successor distributions of s. A pLTS is image-finite
(resp. deterministic or reactive) if for any state s and action a the set der(s, a) is finite (resp.
has at most one element). In the current work, we focus on image-finite pLTSs with finitely
many states.

3 State-Based Bisimulation Metrics

We consider the complete lattice ([0, 1]S×S ,v) defined by d v d′ iff d(s, t) ≤ d′(s, t), for all
s, t ∈ S. For any D ⊆ [0, 1]S×S the least upper bound is given by (

⊔
D)(s, t) = supd∈D d(s, t),

and the greatest lower bound is given by (
d
D)(s, t) = infd∈D d(s, t) for all s, t ∈ S. The bottom

element 0 is the constant zero function 0(s, t) = 0 and the top element 1 is the constant one
function 1(s, t) = 1 for all s, t ∈ S.

Definition 2. A 1-bounded metric d on S is a state-based bisimulation metric if for all s, t ∈ S
with d(s, t) < 1, whenever s

a−→ ∆ then there exists some t
a−→ ∆′ with K (d)(∆,∆′) ≤ d(s, t).

The smallest (wrt. v) state-based bisimulation metric, denoted by ds , is called state-based
bisimilarity metric. Its kernel is the state-based bisimilarity as defined in [34, 39]. Note that 0
does not satisfy Definition 2 for general pLTSs, thus is not a state-based bisimulation metric.

Example 3. Let us calculate the distance between states s and t in Figure 1. Firstly, observe
that ds(s2, t3) = 0 because s2 is bisimilar to t3 while ds(s3, t3) = 1 because the two states s3
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Fig. 1: ds(s, t) = 1
2

and t3 perform completely different actions. Secondly, let ∆ = 1
2s2 + 1

2s3 and Θ = t3. We see
that

K (ds)(∆,Θ) = minω∈Ω(∆,Θ) ds(s2, t3) · ω(s2, t3) + ds(s3, t3) · ω(s3, t3)
= minω∈Ω(∆,Θ) 0 · ω(s2, t3) + 1 · ω(s3, t3)
= 0 · 12 + 1 · 12
= 1

2

Here the only legitimate weight function is ω with ω(s2, t3) = ω(s3, t3) = 1
2 . It follows that

ds(s1, t1) = 1
2 . Similarly, we get ds(s1, t2) = 1

2 . Then it is not difficult to see that

K (ds)(s1,
1

2
t1 +

1

2
t2) = ds(s1, t1) · 1

2
+ ds(s1, t2) · 1

2
=

1

2

from which we finally obtain ds(s, t) = 1
2 .

The above coinductively defined bisimilarity metric can be reformulated as a fixed point of
a monotone functional operator. Let us define the functional operator F s : [0, 1]S×S → [0, 1]S×S

for d : S × S → [0, 1] and s, t ∈ S by

F s(d)(s, t) = sup
a∈A
{H (K (d))(der(s, a), der(t, a))} . (3)

It can be shown that F s is monotone and its least fixed point is given by
⊔
di, where d0 = 0

and di+1 = F s(di) for all i ∈ N.

Proposition 4. ds is the least fixed point of F s. ut

Essentially the same property as Proposition 4 has appeared in [17].
Now we proceed by defining a real-valued modal logic based on Hennessy-Milner logic [27],

called metric HML, to characterize the bisimilarity metric. It is motivated by [4, 16,17,30].

Definition 5. Our metric HML is two-sorted and has the following syntax:

ϕ ::= > | ¬ϕ | ϕ	 p | ϕ1 ∧ ϕ2 | 〈a〉ψ
ψ ::= [ϕ] | ¬ψ | ψ 	 p | ψ1 ∧ ψ2

with a ∈ A and p ∈ [0, 1].



5

Let L denote the set of all metric HML formulae, ϕ range over the set of all state formulae
LS, and ψ range over the set of all distribution formulae LD. The two kinds of formulae are
defined simultaneously. The operator ϕ	 p tests if a state passes ϕ with probability at least p.
Each state formula ϕ immediately induces a distribution formula [ϕ]. Sometimes we abbreviate
〈a〉[ϕ] as 〈a〉ϕ. All other operators are standard.

Definition 6. A state formula ϕ ∈ LS evaluates in s ∈ S as follows:

J>K(s) = 1
J¬ϕK(s) = 1− JϕK(s)

Jϕ	 pK(s) = max(JϕK(s)− p, 0)
Jϕ1 ∧ ϕ2K(s) = min(Jϕ1K(s), Jϕ2K(s))

J〈a〉ψK(s) = max
s

a−→∆
JψK(∆)

and a distribution formula ψ ∈ LD evaluates in ∆ ∈ D(S) as follows:

J[ϕ]K(∆) =
∑
s∈S ∆(s) · JϕK(s)

J¬ψK(∆) = 1− JψK(∆)
Jψ 	 pK(∆) = max(JψK(∆)− p, 0)

Jψ1 ∧ ψ2K(∆) = min(Jψ1K(∆), Jψ2K(∆)).

We often use constant formulae e.g. p for any p ∈ [0, 1] with the semantics JpK(s) = p,
which is derivable in the above logic by letting p = > 	 (1 − p). Moreover, we write ϕ ⊕ p for
¬((¬ϕ)	 p) with the semantics Jϕ⊕ pK(s) = min(JϕK(s) + p, 1) = 1−max(1− JϕK(s)− p, 0).
In the presence of negation and conjunction we can derive disjunction by letting ϕ1 ∨ ϕ2 be
¬(¬ϕ1 ∧ ¬ϕ2). Intuitively, [[ϕ]](s) measures the degree that formula ϕ is satisfied by state s;
similarly for distribution formulae. Therefore, negation is naturally interpreted as complement,
conjunction as minimum and disjunction as maximum5. The formula 〈a〉ψ specifies the property
for a state to perform action a and result in a possible distribution to satisfy ψ. Because of
nondeterminism, from state s there may be several outgoing transitions labelled by the same
action a, e.g. s

a−→ ∆i with i ∈ I. We take the optimal case by taking [[〈a〉ψ]](s) to be the
maximal [[ψ]](∆i) when i ranges over I.

The above metric HML induces two natural logical metrics dls
s and dld

s on states and dis-
tributions respectively, by letting

dls
s (s, t) = supϕ∈LS |JϕK(s)− JϕK(t)|

dld
s (∆,Θ) = supψ∈LD |JψK(∆)− JψK(Θ)|.

Example 7. Consider the two probabilistic systems depicted in Figure 2. We have the formula
ϕ = 〈a〉ψ where ψ = [〈a〉>]∧ [〈b〉>] and would like to know the difference between s and t given
by ϕ. Let

∆1 = 0.2 · s1 + 0.8 · s2
∆2 = 0.8 · s5 + 0.2 · s6
∆3 = 0.5 · s3 + 0.5 · s4

Note that J〈a〉>K(s1) = 1 and J〈a〉>K(s2) = 0. Then

J[〈a〉>]K(∆1) = 0.2 · J〈a〉>K(s1) + 0.8 · J〈a〉>K(s2) = 0.2.

5 Since we will compare our logic with that in [17], it is better for our semantic interpretation to
be consistent with that in the aforementioned work. In the literature, there are also other ways of
interpreting conjunction and disjunction in probabilistic settings, see e.g. [3, 29].
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Fig. 2: dls
s (s, t) = 0.3

Similarly, J[〈b〉>]K(∆1) = 0.8. It follows that

JψK(∆1) = min(J[〈a〉>]K(∆1), J[〈b〉>]K(∆1)) = 0.2.

With similar arguments, we see that JψK(∆2) = 0.2 and JψK(∆3) = 0.5. Therefore, we can
calculate that

JϕK(s) = max(JψK(∆1), JψK(∆2)) = 0.2
JϕK(t) = max(JψK(∆1), JψK(∆2), JψK(∆3)) = 0.5.

So the difference between s and t with respect to ϕ is |JϕK(s) − JϕK(t)| = 0.3. In fact we also
have dls

s (s, t) = 0.3.

In the presence of testing operators in state formulae, one might wonder if the testing oper-
ators in distribution formulae can be removed. Unfortunately, this is not the case, as indicated
by the following example.

Example 8. At first sight the following two equations seem to be sound.

J[ϕ]	 pK(∆) = J[ϕ	 p]K(∆) and JψK(
∑
i

pi∆i) =
∑
i

pi(JψK(∆i))
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However, in general they do not hold, as witnessed by the counterexamples below. Let ϕ = 〈b〉>,
ψ = [ϕ]	 0.5 and the distribution ∆1 be the same as in Example 7. Then we have

J[ϕ]	 0.5K(∆1) = max(J[ϕ]K(∆1)− 0.5, 0)
= max(0.2J[〈b〉>]K(s1) + 0.8J[〈b〉>]K(s2)− 0.5, 0)
= max(0.2 · 0 + 0.8 · 1− 0.5, 0)
= 0.3

J[ϕ	 0.5]K(∆1) = 0.2Jϕ	 0.5K(s1) + 0.8Jϕ	 0.5K(s2)
= 0.2 max(JϕK(s1)− 0.5, 0) + 0.8 max(JϕK(s2)− 0.5, 0)
= 0.2 max(0− 0.5, 0) + 0.8 max(1− 0.5, 0)
= 0.4

0.2JψK(s1) + 0.8JψK(s2) = 0.2J[ϕ]	 0.5K(s1) + 0.8J[ϕ]	 0.5K(s2)
= 0.2 max(J[ϕ]K(s1)− 0.5, 0) + 0.8 max(J[ϕ]K(s2)− 0.5, 0)
= 0.2 max(0− 0.5, 0) + 0.8 max(1− 0.5, 0)
= 0.4

So we see that J[ϕ]	 0.5K(∆1) 6= J[ϕ	 0.5]K(∆1) and JψK(∆1) 6= 0.2JψK(s1) + 0.8JψK(s2).

It turns out that the logic L precisely captures the bisimilarity metric ds : the metric dls
s

defined by state formulae coincides with ds and the metric dld
s defined by distribution formulae

coincides with K (ds), the lifted form of ds .

Theorem 9. ds = dls
s and K (ds) = dld

s ut

The two properties in Theorem 9 are coupled and should be proved simultaneously because
state formulae and distribution formulae are defined reciprocally. The proof is carried out in
three steps:

(i) We show dls
s v ds and dld

s v K (ds) simultaneously by structural induction on formulae.
(ii) We establish K (dls

s ) v dld
s by exploiting the dual form of the Kantorovich metric in (2).

Here it is crucial to require the state space of the pLTS under consideration to be finite
in order to use binary conjunctions rather than infinitary conjunctions. The negation and
testing operators in state formulae play an important role in the proof.

(iii) We verify that dls
s is a state-based bisimulation metric and so obtain ds v dls

s . This part is
based on (ii) and requires the pLTS to be image-finite. Its proof makes use of the negation
and testing operators in distribution formulae.

Remark 10. For deterministic pLTSs, the proof of Theorem 9 can be greatly simplified. In
that case, we can even fold distribution formulae into state formulae and then the state-based
bisimilarity metric can be characterised by the following one-sorted metric logic

ϕ ::= > | ¬ϕ | ϕ	 p | ϕ1 ∧ ϕ2 | 〈a〉ϕ . (4)

Therefore, for deterministic pLTSs, the two-sorted logic in Definition 5 degenerates into the
logic considered in [16, 23, 45], as expected. In the one-sorted logic, the formula 〈a〉(ϕ 	 p)
will be interpreted the same as the formula 〈a〉[ϕ 	 p] in LS, but no formula has the same
interpretation as 〈a〉([ϕ]	 p) in LS; the subtlety has already been discussed in Example 8.

In [2, 7] a bisimulation metric for game structures is characterised by a quantitative µ-
calculus where formulae are evaluated also on states and no distribution formula is needed.
This is not surprising because the considered 2-player games are deterministic: at any state
s, if two players have chosen their moves, say a1 and a2, then there is a unique distribution
δ(s, a1, a2) to determine the probabilities of arriving at a set of destination states.
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4 Distribution-Based Bisimulation Metric

The bisimilarity metric given in Definition 2 measures the distance between two states. Alter-
natively, it is possible to directly define a metric that measures subdistributions. In order to do
so, we first define a transition relation between subdistributions.

Definition 11. With a slight abuse of notation, we also use the notation
a−→ to stand for the

transition relation between subdistributions, which is the smallest relation satisfying:

1. if s
a−→ ∆ then s

a−→ ∆;
2. if s 6 a−→ then s

a−→ ε;
3. if ∆i

a−→ Θi for all i ∈ I then (
∑
i∈I pi ·∆i)

a−→ (
∑
i∈I pi ·Θi), where I is a finite index set

and
∑
i∈I pi ≤ 1.

Note that if ∆
a−→ ∆′ then some (not necessarily all) states in the support of ∆ can perform

action a. For example, consider the two states s2 and s3 in Figure 1. Since s2
c−→ s4 and s3

cannot perform action c, the distribution ∆ = 1
2s2 + 1

2s3 can make the transition ∆
c−→ 1

2s4 to
reach the subdistribution 1

2s4.

Definition 12. A 1-bounded pseudometric d on Dsub(S) is a distribution-based bisimulation
metric if | |∆1|− |∆2| | ≤ d(∆1, ∆2) and for all ∆1, ∆2 ∈ Dsub(S) with d(∆1, ∆2) < 1, whenever

∆1
a−→ ∆′1 then there exists some transition ∆2

a−→ ∆′2 such that d(∆′1, ∆
′
2) ≤ d(∆1, ∆2).

The condition | |∆1|− |∆2| | ≤ d(∆1, ∆2) is introduced to ensure that the distance between two
subdistributions should be at least the difference between their total masses. The smallest (wrt.
v) distribution-based bisimulation metric, notation dd , is called distribution-based bisimilarity
metric. Distribution-based bisimilarity [13] is the kernel of the distribution-based bisimilarity
metric.

Let der(∆, a) = {∆′ | ∆ a−→ ∆′}. We define the functional operator

F d : [0, 1]Dsub(S)×Dsub(S) → [0, 1]Dsub(S)×Dsub(S)

for d : Dsub(S)×Dsub(S)→ [0, 1] and ∆,Θ ∈ Dsub(S) by

F d(d)(∆,Θ) = max(sup
a∈A
{H (d)(der(∆, a), der(Θ, a))}, | |∆| − |Θ| |) . (5)

It can be shown that F d is monotone and its least fixed point is given by
⊔
di, where we set

d0(∆,Θ) = | |∆| − |Θ| | for any ∆,Θ ∈ Dsub(S) and di+1 = F d(di) for all i ∈ N. The property
below is analogous to Proposition 4.

Proposition 13. dd is the least fixed point of F d. ut

It is not difficult to see that ds is different from dd , as witnessed by the following example.
A more accurate comparison is given in Section 5.

Example 14. Consider the states in Figure 1. We first observe that dd(s2, t3) = 0 because s2
and t3 can match each other’s action exactly. Similarly, we have dd(s3, t4) = 0. Then it is easy

to see that dd( 1
2s2 + 1

2s3,
1
2 t3 + 1

2 t4) = 0. Since s1
b−→ 1

2s2 + 1
2s3 and 1

2 t1 + 1
2 t2

b−→ 1
2 t3 + 1

2 t4,
we infer that dd(s1,

1
2 t1 + 1

2 t2) = 0. This, in turn, implies dd(s, t) = 0. We have already seen
in Example 3 that ds(s, t) = 1

2 . Therefore, the two distance functions ds and dd are indeed
different.
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We now turn to the logical characterisation of dd . Consider the metric logic LD∗ whose
formulae are defined below:

ψ ::= > | ¬ψ | ψ 	 p | ψ1 ∧ ψ2 | 〈a〉ψ . (6)

This logic is the same as that defined in (4) except that now we only have distribution formulae.
The semantic interpretation of formulae comes with no surprise.

Definition 15. A formula ψ ∈ LD∗ evaluates in ∆ ∈ Dsub(S) as follows:

J>K(∆) = |∆|
J¬ψK(∆) = 1− JψK(ψ)

Jψ 	 pK(∆) = max(JψK(∆)− p, 0)
Jψ1 ∧ ψ2K(∆) = min(Jψ1K(∆), Jψ2K(∆))

J〈a〉ψK(∆) = max
∆

a−→∆′
JψK(∆′).

This induces a natural logical metric dld
d over subdistributions defined by

dld
d (∆,Θ) = sup

ψ∈LD∗
|[[ψ]](∆)− [[ψ]](Θ)|

It turns out that dld
d coincides with dd ; the proof is similar to but easier than that of Theorem 9.

Theorem 16. dd = dld
d ut

5 Comparison of the Bisimilarity Metrics

In this section, we compare the state-based bisimilarity metric ds with the distribution-based
bisimilarity metric dd . More precisely, we show that dd is a lower bound of K (ds) when measur-
ing full distributions6. The proof makes use of fully enabled pLTSs as a stepping stone. Let us
first fix an overall set of actions Act and a special action ⊥ 6∈ Act. Let EA(s) = {a | ∃∆. s a−→ ∆}
be the set of actions that are enabled at state s.

Definition 17. A pLTS is fully enabled if ∀s. EA(s) = Act. Given any pLTS A = (S,A,−→)
with A ⊆ Act, we can convert it into a fully enabled pLTS A⊥ = (S⊥, Act∪{⊥},−→⊥) as follows:

– S⊥ = S ∪ {⊥}
– −→⊥=−→ ∪{(s, a,⊥) | s 6 a−→ and a ∈ Act} ∪ {(⊥, a,⊥) | a ∈ Act ∪ {⊥}}.

Each state s in A corresponds to a state s⊥ in A⊥ such that s⊥ keeps all the transitions of s
and can evolve into the absorbing state ⊥ by performing any action in Act not enabled by s. As
a consequence, each subdistribution ∆ on the states of A has a corresponding full distribution
∆⊥ on the states of A⊥ such that ∆⊥(s⊥) = ∆(s) and ∆⊥(⊥) = 1− |∆|.

For any pLTS, let s, t be two states and ∆,Θ two subdistributions. It can be shown that
ds(s, t) = ds(s⊥, t⊥) and dd(∆,Θ) = dd(∆⊥, Θ⊥). Moreover, for fully enabled pLTSs, the
metric dd turns out to be a lower bound of K (ds) as far as distributions are concerned. Then
we arrive at the following theorem.

Theorem 18. Let ∆,Θ be two distributions on a pLTS. Then dd(∆,Θ) ≤ K (ds)(∆,Θ). ut
6 Although dd can measure the distance between two subdistributions, the Kantorovich lifting of ds

can only measure the distance between full distributions or subdistributions of equal mass, which
can easily be normalized to full distributions.
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6 Bisimulations

The kernel of ds (resp. dd) is the state-based (resp. distribution-based) bisimilarity, denoted by
∼s (resp. ∼d). They can be defined in a more direct way. The definition of ∼s requires us to lift
a relation on states to be a relation on distributions. There are several different but equivalent
formulations of the lifting operation, and they are closely related to the Kantorovich metric;
see [10] for more details. The following one is taken from [15].

Definition 19. Let S and T be two sets and R⊆ S×T be a binary relation. The lifted relation
R†⊆ Dsub(S)×Dsub(T ) is the smallest relation that satisfies:

1. s R t implies s R† t;
2. ∆i R† Θi for all i ∈ I implies (

∑
i∈I pi ·∆i) R† (

∑
i∈I pi ·Θi), where I is a finite index set

and
∑
i∈I pi ≤ 1.

The state-based bisimilarity ∼s is essentially Larsen and Skou’s probabilistic bisimilarity
[34], which is originally defined for deterministic systems.

Definition 20. Let ∼s⊆ S×S be the largest symmetric relation such that if s ∼s t and s
a−→ ∆

then there exists some t
a−→ Θ with ∆ (∼s)† Θ.

The distribution-based bisimilarity ∼d is proposed in [13] as a sound and complete coin-
ductive proof technique for linear contextual equivalence, a natural extensional behavioural
equivalence for functional programs.

Definition 21. Let ∼d⊆ Dsub(S) × Dsub(S) be the largest symmetric relation such that if

∆ ∼d Θ then |∆| = |Θ| and ∆
a−→ ∆′ implies the existence of some Θ′ such that Θ

a−→ Θ′ and
∆′ ∼d Θ′.

It is obvious that s ∼s t iff ds(s, t) = 0 iff [[ϕ]](s) = [[ϕ]](t) for any states s, t and formula
ϕ ∈ LS. Similarly, ∆ ∼d Θ iff dd(∆,Θ) = 0 iff [[ψ]](∆) = [[ψ]](Θ) for any subdistributions
∆,Θ and formula ψ ∈ LD∗. Although the state-based bisimilarity is widely accepted, there
is no general agreement on what is a good notion of distribution-based bisimilarity. In the
literature [14,18,20,21,26,28], several variations of distribution-based bisimulations have been
proposed. Some of them are defined for pLTSs with states labelled by atomic propositions. We
adapt them to our setting so as to compare with ∼d.

In a pLTS (S,L,−→), a transition goes from a state to a distribution, e.g. s
a−→ ∆. In order

to lift −→ to be a relation between distributions, e.g. ∆
a−→ Θ, usually we need to decide whether

(i) to require all the states in the support of ∆ to perform action a;
(ii) to combine transitions with the same label, which we explain below.

In [18, 20, 21] both (i) and (ii) are imposed, while in [28] and also in our definition of ∼d
(i) is not used. The condition (ii) is built in Definition 11 but partially used in [28], as we will

see in the sequel. Let {s a−→ ∆i}i∈I be a collection of transitions, and {pi}i∈I be a collection of

probabilities with
∑
i∈I pi = 1. Then s

a−→C (
∑
i∈I pi ·∆i) is called a combined transition [40].

Let us write ∆
a−→C Θ if s

a−→C ∆s for each s ∈ d∆e and Θ =
∑
s∈d∆e∆(s) ·∆s.

Remark 22. An equivalent way of defining combined transitions is to use Definition 11. We have
that s

a−→C ∆ iff s
a−→ ∆ and |∆| = 1; ∆

a−→C Θ iff ∆
a−→ Θ and |∆| = |Θ|.

Note that a simple way of comparing subdistributions is to lift the state-based bisimilarity
and use the relation (∼s)†. That relation can be slightly weakened by using the combined

transition t
a−→C Θ in place of t

a−→ Θ in Definition 20 to get a coarser notion of state-based
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bisimilarity called strong probabilistic bisimulation in [40], written ∼′s, and then lifting it to

subdistributions to finally obtain (∼′s)
†
. This is essentially the relation investigated in [26].

However, most distribution-based bisimilarities proposed in the literature directly compare the
transitions between (sub)distributions, so there is no need of defining certain relations on states
and then lift them to subdistributions. Below we recall four typical proposals.

Firstly, we adapt the bisimulation of [21] to our setting. Let (S,A,−→) be a pLTS, we extend
it to be a fully enabled pLTS (S⊥, Act ∪ {⊥},−→⊥) according to Definition 17.

Definition 23. Let ∼1⊆ D(S⊥) × D(S⊥) be the largest symmetric relation such that ∆ ∼1 Θ
implies

1. ∆(S) = Θ(S),

2. for each a ∈ A, whenever ∆
a−→C ∆′, there exists Θ′ with Θ

a−→C Θ′ and ∆′ ∼1 Θ
′.

Secondly, we adapt the bisimulation in [14,26] for subdistributions.

Definition 24. Let ∼2⊆ Dsub(S)×Dsub(S) be the largest symmetric relation such that ∆ ∼2 Θ
implies, for all finite sets of probabilities {pi | i ∈ I} satisfying

∑
i∈I pi ≤ 1,

1. |∆| = |Θ|,
2. whenever ∆

a−→C ∆′, there exists Θ′ with Θ
a−→C Θ′ and ∆′ ∼2 Θ

′,
3. whenever ∆ =

∑
i∈I pi ·∆i, for any subdistributions ∆i, there are some subdistributions Θi

with Θ =
∑
i∈I pi ·Θi, such that ∆i ∼2 Θi for each i ∈ I.

Thirdly, we adapt the bisimulation in [18] to pLTSs. A subdistribution is consistent, if
EA(s) = EA(t) for any s, t ∈ d∆e. That is, all the states in the support of ∆ have the same set
of enabled actions.

Definition 25. Let ∼3⊆ Dsub(S)×Dsub(S) be the largest symmetric relation such that ∆ ∼3 Θ
implies

1. |∆| = |Θ|,
2. whenever ∆

a−→C ∆′, there exists Θ′ with Θ
a−→C Θ′ and ∆′ ∼3 Θ

′,
3. if ∆ is not consistent, there exist decompositions ∆ =

∑
i∈I pi · ∆i and Θ =

∑
i∈I pi · Θi

such that ∆i ∼3 Θi for each i ∈ I.

Finally, we adapt the bisimulation of [28]. Let A be a set of labels. We write s
A−→ ∆ if

s
a−→C ∆ for some a ∈ A and denote by SA = {s | ∃∆. s A−→ ∆} the set of states that can

perform some action from A. Then we define a transition relation for distributions by letting

∆
A−→ Θ if s

A−→ ∆s for each s ∈ SA ∩ d∆e and Θ = 1
∆(SA)

∑
s∈SA∩d∆e∆(s) ·∆s.

Definition 26. Let ∼4⊆ Dsub(S)×Dsub(S) be the largest symmetric relation such that ∆ ∼4 Θ
implies

1. |∆| = |Θ| and ∆(SA) = Θ(SA) for any A ⊆ L,

2. for each A ⊆ L, whenever ∆
A−→ ∆′, there exists Θ′ with Θ

A−→ Θ′ and ∆′ ∼4 Θ
′.

Theorem 27. Figure 3 depicts the relationship between the seven bisimilarities for distributions
mentioned above. ut

If we confine ourselves to deterministic pLTSs, then combined transitions add nothing new
to ordinary transitions and thus ∼′s degenerates into ∼s, but the rest of Figure 3 remains
unchanged.
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(∼s)†(∼′
s)

†=∼2∼3∼d

∼4

=∼1

Fig. 3: Relationship between the seven bisimilarities for distributions. An arrow pointing from
one relation to another means that the former relation is strictly coarser than the latter. Two
relations are incomparable if there is no path from one to the other.

7 Other Related Work

Metrics for probabilistic transition systems are first suggested by Giacalone et al. [25] to for-
malize a notion of distance between processes. They are used also in [33,36] to give denotational
semantics for deterministic models. De Vink and Rutten [8] show that discrete probabilistic tran-
sition systems can be viewed as coalgebras. They consider the category of complete ultrametric
spaces. Similar ultrametric spaces are considered by den Hartog in [9]. In [46] Ying proposes
a notion of bisimulation index for the usual labelled transition systems, by using ultrametrics
on actions instead of using pseudometrics on states. A quantitative linear-time-branching-time
spectrum for non-probabilistic systems is given in [19].

Metrics for deterministic systems are extensively studied. Desharnais et al. [16] propose a
logical pseudometric for labelled Markov chains, which is a deterministic model of probabilistic
systems. A similar pseudometric is defined by van Breugel and Worrell [44] via the terminal
coalgebra of a functor based on a metric on the space of Borel probability measures. Essentially
the same metric is investigated in the setting of continuous Markov decision processes [23]. The
metric of [16, 23, 45] works for continuous probabilistic transition systems, while in this work
we concentrate on discrete systems with nondeterminism. In the future it would be interesting
to see how to generalise our results to continuous systems. In [43] van Breugel and Worrell
present a polynomial-time algorithm to approximate their coalgebraic distances. Furthermore,
van Breugel et al. propose an algorithm to approximate a behavioural pseudometric without
discount [42]. In [22] a sampling algorithm for calculating bisimulation distances in Markov
decision processes is shown to have good performance. In [6, 7] the probabilistic bisimulation
metric on game structures is characterised by a quantitative µ-calculus. Algorithms for game
metrics are proposed in [2, 38]. A notion of bisimulation distance for distributions is proposed
in [21]. It is defined for full distributions only and the definition itself has to be given in terms
of fully enabled transition systems. Our distribution-based bisimulation metric generalises it
to subdistributions, and allowing transitions between subdistributions has the advantage of
allowing our definition to be more direct.

Metrics for nondeterministic probabilistic systems are considered in [17], where Desharnais et
al. deal with labelled concurrent Markov chains (similar to pLTSs, this model can be captured
by the simple probabilistic automata of [39]). They show that the greatest fixed point of a
monotonic function on pseudometrics corresponds to the weak probabilistic bisimilarity of [37].
In [24] a notion of uniform continuity is proposed to be an appropriate property of probabilistic
processes for compositional reasoning with respect to ds . In [41] a notion of trace metric is
proposed for pLTSs and a tool is developed to compute the trace metric. In [1] the boolean-
valued logic from [12] is used to characterise state-based bisimulation metrics. It crucially relies
on distribution formulae of the form

⊕
i∈I piϕi, which is demanding in the sense that if ∆
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satisfies that formula then there is some decomposition ∆ =
∑
i∈I pi · ∆i such that for each

i ∈ I all the states in the support of ∆i must satisfy ϕi.
Metrics for other quantitative models are also investigated. In [11] a notion of bisimulation

metric is proposed that extends the approach of [16, 17] to a more general framework called
action-labelled quantitative transition systems. In [5] de Alfaro et al. consider metric transition
systems in which the propositions at each state are interpreted as elements of metric spaces.
In that setting, trace equivalence and bisimulation give rise to linear and branching distances
that can be characterised by quantitative versions of linear-time temporal logic [35] and the
µ-calculus [32].

8 Concluding Remarks

We have considered two behavioural pseudometrics for probabilistic labelled transition sys-
tems where nondeterminism and probabilities co-exist. They correspond to state-based and
distribution-based bisimulations. Our modal characterisation of the state-based bisimulation
metric is much simpler than an earlier proposal by Desharnais et al. since we only use two
non-expansive operators, negation and testing, rather than the general class of non-expansive
operators. A similar idea is used to characterise the distribution-based bisimulation metric.
The characterisations are shown to be sound and complete. We have also shown that the
distribution-based bisimulation metric is a lower bound of the state-based bisimulation metric
lifted to distributions. In addition, we have compared the bisimilarities entailed by the two
metrics with a few other distribution-based bisimilarities.

In the current work we have not distinguished internal actions from external ones. But it
is not difficult to make the distinction and abstract away internal actions so as to introduce
weak versions of bisimulation metrics. In a finite-state and finitely branching pLTS, the set
of subdistributions reachable from a state by weak transitions may be infinite but can be
represented by the convex closure of a finite set [10]. This entails that the logical characterisation
of weak bisimulation metrics would be similar to those presented here.
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