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We show that the proof-theoretic notion of logical preorder coincides with the process-theoretic no-
tion of contextual preorder for a CCS-like calculus obtained from the formula-as-process interpre-
tation of a fragment of linear logic. The argument makes use of other standard notions in process
algebra, namely a labeled transition system and a coinductively defined simulation relation. This
result establishes a connection between an approach to reason about process specifications and a
method to reason about logic specifications.

1 Introduction

By now, execution-preserving relationships between (fragments of) linear logic and (fragments of) pro-
cess algebras are well-established (see [5] for an overview). Abramsky observed early on that linear
cut elimination resembles reduction in CCS and the π-calculus [15], thereby identifying processes with
(some) linear proofs and establishing the process-as-term interpretation [1]. The alternative process-as-
formula encoding, pioneered by Miller around the same time [14], maps process constructors to logical
connectives and quantifiers, with the effect of relating reductions in process algebra with proof steps, in
the same way that logic programming achieves computation via proof search. This interpretation has
been used extensively in a multitude of domains [3, 4, 5, 14], e.g., programming languages and security.

Not as well established is the relationship between the rich set of notions and techniques used to
reason about process specifications and the equally rich set of techniques used to reason about (linear)
logic. Indeed, a majority of investigations have attempted to reduce some of the behavioral notions
that are commonplace in process algebra to derivability within logic. For example, Miller identified a
fragment of linear logic that could be used to observe traces in his logical encoding of the π-calculus,
thereby obtaining a language that corresponds to the Hennessy-Milner modal logic, which characterizes
observational equivalence [14]. A similar characterization was made in [12], where a sequent Γ ` ∆ in a
classical logic augmented with constraints was seen as process state Γ passing test ∆. Extensions of linear
logic were shown to better capture other behavioral relations: for example, adding definitions allows
expressing simulation as the derivability of a linear implication [13], but falls short of bisimulation, for
which a nominal logic is instead an adequate formalism [17].

This body of work embeds approaches for reasoning about process specifications (e.g., bisimulation
or various forms of testing) into methods for reasoning with logic (mainly derivability). Little investiga-
tion has targeted notions used to reason about logic (e.g., proof-theoretic definitions of equivalence).
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Γ;a ` a
init

Γ,A;∆,A ` C
Γ,A;∆ ` C clone

Γ;∆1 ` A Γ;∆2 ` B
Γ;∆1,∆2 ` A⊗B

⊗R
Γ;∆,A,B ` C

Γ;∆,A⊗B ` C
⊗L

Γ; · ` 1 1R
Γ;∆ ` C

Γ;∆,1 ` C 1L

Γ;∆ ` A Γ;∆ ` B
Γ;∆ ` A&B

&R
Γ;∆,Ai ` C

Γ;∆,A1 &A2 ` C
&Li

Γ;∆ ` > >R (no rule >L)

Γ;∆,a ` B
Γ;∆ ` a(B

(R
Γ;∆1 ` a Γ;∆2,B ` C

Γ;∆1,∆2,a(B ` C
(L

Γ; · ` A
Γ; · ` !A !R

Γ,A;∆ ` C
Γ;∆, !A ` C

!L

Figure 1: A Fragment of Dual Intuitionistic Linear Logic

This paper outlines one such relationship — between the inductive methods used to reason about
logic and the coinductive methods used to reason about process calculi. On the linear logic side, we
focus on the inductively-defined notion of logical preorder; this preorder is novel in the sense that it is a
natural and proof-theoretic way of relating contexts to other contexts. On the process-algebraic side, we
consider an extensional behavioral relation adapted from the standard coinductive notion of contextual
preorder. We prove that, for a fragment of linear logic and a matching process calculus, these notions
coincide, and we hope in future work to extend this result to a larger fragment of intuitionistic linear
logic. Our proofs rely on other standard process algebraic notions as stepping stones, namely simulation
and labeled transition systems.

The rest of the paper is organized as follows. In Section 2, we briefly review the fragment of lin-
ear logic we are focusing on and define the logical preorder. Then, in Section 3, we recall its standard
process-as-formula interpretation and define the contextual preorder. In Section 4, we prove their equiv-
alence through the intermediary of a simulation preorder defined on the basis of a labeled transition
system. Full proofs of all results in this paper can be found in the accompanying technical report [7].

2 Logical Preorder

The fragment of linear logic considered in this paper is given by the following grammar:

A,B,C ::= a | 1 | A⊗B | > | A&B | a(B | !A

where a is an atomic formula. This language is propositional and, as often the case in investigations of
CCS-like process algebras [3, 4, 5], the antecedent of linear implication is restricted to atomic formulas
(see the remarks in Section 5 about lifting these constraints).

Derivability for this language is given in terms of dual intuitionistic linear logic (DILL) sequents [2,
5] of the form Γ;∆ ` A, where the unrestricted context Γ and the linear context ∆ are multisets of
formulas. Formally, they are defined by the productions Γ,∆ ::= · | ∆,A where “·” represents the empty
context, and “∆,A” is the context obtained by adding the formula A to the context ∆. As usual, we tacitly
treat “,” as an associative and commutative context union operator “∆1,∆2” with “·” as its unit.

The fairly standard inference rules defining derivability are given in Figure 1. A DILL sequent
Γ;∆ ` A corresponds to !Γ,∆ ` A in Girard’s original presentation [9]. We take the view, common in
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practice, that the context part of the sequent (Γ;∆) represents the state of some system component and
that the consequent A corresponds to some property satisfied by this system.

We will be interested in a relation, the logical preorder, that compares specifications on the basis of
the properties they satisfy, possibly after the components they describe are plugged into a larger system.
This relation, written �l , is given by the following definition.

Definition 1 (Logical preorder) The logical preorder is the smallest relation �l such that (Γ1;∆1) �l
(Γ2;∆2) if, for all Γ′, ∆′, and C, we have that (Γ′,Γ1);(∆′,∆1) ` C implies (Γ′,Γ2);(∆′,∆2) ` C. ut

This relation is reflexive and transitive, and therefore a preorder [7, Theorem 2.5]; we could define
logical equivalence as the symmetric closure of �l . The above definition is extensional in the sense
that it refers to all contexts Γ′ and ∆′ and formulas C. It has also an inductive characterization based on
derivability [7, Theorem 2.8]:

Property 2 (Γ1;∆1)�l (Γ2;∆2) iff Γ2;∆2 `
⊗

!Γ1 ⊗
⊗

∆1

Here,
⊗

∆1 denotes the conjunction of all formulas in ∆1 (or 1 if it is empty) and !Γ1 is the linear context
obtained by prefixing every formula in Γ1 with “!”.

The logical preorder has other interesting properties, such as harmony [7, Proposition 2.6]:

Property 3 (Harmony) Γ;∆ ` A if and only if (·;A)�l (Γ;∆). ut

In the accompanying technical report, we show that a deductive system satisfies harmony if and only if
the rules of identity and cut are admissible:

Γ;A ` A
identity

Γ;∆ ` A Γ′;∆′,A ` C
(Γ,Γ′);(∆,∆′) ` C

cut

In particular, this means that harmony holds not only for our restricted fragment of DILL, but for full
DILL and most other syntactic fragments of DILL as well [7, Section 2.3].

3 Contextual Preorder

The subset of linear logic just introduced has a natural interpretation as a fragment of CCS [15] with
CSP-style internal choice [10]. It is shown in Figure 2. We will now switch to this reading, which is
known as the conjunctive process-as-formula interpretation of linear logic [14, 5]. Therefore, for most
of the rest of this section, we understand A as a process.

Under this reading, contexts (Γ;∆) are process states, i.e., systems of parallel processes understood
as the parallel composition of each process in ∆ and, after restoring the implicit replication, in Γ. In
process algebra, parallel composition is considered associative and commutative and has the null process
as its unit. This endows process states with the following structural congruences:

(Γ; ∆, ·) ≡ (Γ; ∆) (Γ, ·; ∆) ≡ (Γ; ∆)
(Γ; ∆1,∆2) ≡ (Γ; ∆2,∆1) (Γ1,Γ2; ∆) ≡ (Γ2,Γ1; ∆)

(Γ; ∆1,(∆2,∆3)) ≡ (Γ; (∆1,∆2),∆3) (Γ1,(Γ2,Γ3); ∆) ≡ ((Γ1,Γ2),Γ3; ∆)
(Γ,A,A; ∆) ≡ (Γ,A; ∆)

which amount to asking that ∆ and Γ be commutative monoids. The last equality on the right merges
identical replicated processes, making Γ into a set. In the following, we will always consider process
states modulo this structural equality, and therefore treat equivalent states as syntactically identical.
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a atomic process that sends a
A⊗B process that forks into processes A and B

1 null process
A1 &A2 process that can behave either as A1 or as A2

> stuck process
a(B process that receives a and continues as B

!A any number of copies of process A

Figure 2: Process-as-formula Interpretation

(Γ; ∆,A⊗B)  (Γ; ∆,A,B)
(Γ; ∆,1)  (Γ; ∆)

(Γ; ∆,A1 &A2)  (Γ; ∆,Ai)
(No rule for >)

(Γ; ∆,a,a(B)  (Γ; ∆,B)
(Γ; ∆, !A)  (Γ,A; ∆)
(Γ,A; ∆)  (Γ,A; ∆,A)

Figure 3: Transitions

Opening a parenthesis back into logic, it easy to prove that structurally equivalent context pairs are
logically equivalent. In symbols, if (Γ1;∆1)≡ (Γ2;∆2), then (Γ1;∆1)�l (Γ2;∆2) and (Γ2;∆2)�l (Γ1;∆1).

The analogy with CCS above motivates the reduction relation between process states defined in
Figure 3. A formula A⊗B (parallel composition) transitions to the two formulas A and B in parallel,
for instance, and a formula A&B (choice) either transitions to A or to B. The rule corresponding to
implication is also worth noting: a formula a(B can interact with an atomic formula a to produce
the formula B; we think of the atomic formula a as sending a message asynchronously and a(B as
receiving that message. We write ∗ for the reflexive and transitive closure of .

Intuitively, two systems of processes are contextually equivalent if they behave in the same way
when composed with any given process. We will be interested in the asymmetric variant of this notion, a
relation known as the contextual preorder. We understand “behavior” as the ability to produce the same
messages. To model this, we write (Γ;∆)↓a whenever a ∈ ∆, and ∆⇓a whenever (Γ;∆) ∗ (Γ′;∆′) for
some (Γ′;∆′) with (Γ′;∆′)↓a. We also define the composition of two states (Γ1;∆1) and (Γ2;∆2), written
((Γ1;∆1),(Γ2;∆2)), as the state ((Γ1,Γ2);(∆1,∆2)).

In defining our contextual preorder, we will also require that partitions of systems of processes behave
congruently — a related notion, Markov simulation, is used in probabilistic process algebras [6]. We
formally capture it by defining that a partition of a state (Γ;∆) is any pair of states (Γ1;∆1) and (Γ2;∆2)
such that (Γ;∆)≡ ((Γ1;∆1),(Γ2;∆2)).

Definition 4 (Contextual preorder) Let R be a binary relation over states. We say that R is
barb-preserving if, whenever (Γ1;∆1) R (Γ2;∆2) and (Γ1;∆1)↓a, we have that (Γ2;∆2)⇓a for any a.

reduction-closed if (Γ1;∆1) R (Γ2;∆2) and (Γ1;∆1)  (Γ′1;∆′1) implies (Γ2;∆2)  ∗ (Γ′2;∆′2) and
(Γ′1;∆′1) R (Γ′2;∆′2) for some (Γ′2;∆′2).

compositional if (Γ1;∆1) R (Γ2;∆2) implies ((Γ1;∆1),(Γ;∆)) R ((Γ2;∆2),(Γ;∆)) for all (Γ;∆).

partition-preserving if (Γ1;∆1) R (Γ2;∆2) implies that
1. if ∆1 = ·, then (Γ2;∆2) ∗ (Γ′2; ·) and (Γ1; ·) R (Γ′2; ·),
2. for all (Γ′1;∆′1) and (Γ′′1;∆′′1), if (Γ1;∆1) = ((Γ′1;∆′1),(Γ

′′
1;∆′′1)) then there exists (Γ′2;∆′2) and

(Γ′′2;∆′′2) such that (Γ2;∆2) ∗ ((Γ′2;∆′2),(Γ
′′
2;∆′′2)) and furthermore (Γ′1;∆′1) R (Γ′2;∆′2) and

(Γ′′1;∆′′1) R (Γ′′2;∆′′2),
The contextual preorder, denoted by �c, is the largest relation over processes which is barb-preserving,
reduction-closed, compositional and partition-preserving. ut

The contextual preorder is indeed reflexive and transitive, and therefore a preorder [7, Theorem
3.7]. In contrast to the proof of analogous property of the logical preorder, the proof of this result is
coinductive.
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(Γ;∆,a) !a−→ (Γ;∆)
lts!

(Γ;∆,a(B) ?a−→ (Γ;∆,B)
lts?

(Γ1;∆1)
!a−→ (Γ′1;∆′1) (Γ2;∆2)

?a−→ (Γ′2;∆′2)

((Γ1;∆1),(Γ2;∆2))
τ−→ ((Γ′1;∆′1),(Γ

′
2;∆′2))

lts!?

(Γ;∆,A⊗B) τ−→ (Γ;∆,A,B)
lts⊗

(Γ;∆,1) τ−→ (Γ;∆)
lts1

(Γ;∆,A1 &A2)
τ−→ (Γ;∆,Ai)

lts&i
(No rule for >)

(Γ;∆, !A) τ−→ (Γ,A;∆)
lts!A

(Γ,A;∆)
τ−→ (Γ,A;∆,A)

ltsClone

Figure 4: Labeled Transition System

Contextual equivalence, which is the symmetric closure of the contextual preorder, has been widely
studied in concurrency theory, though its appearance in linear logic seems to be new. It is also known as
reduction barbed congruence and used in a variety of process calculi [11, 16, 8, 6].

4 Correspondence via Simulation

In this section, we show that the logical and the contextual preorders are the same relation. A direct
proof eluded us, as the inductive reasoning techniques that underlie derivations (on which �l is based)
do not play nicely with the intrinsically coinductive arguments that are natural for �c. Instead, our proof
uses a second relation, the simulation preorder, as a stepping stone. This intermediary relation is also
coinductive, but it is relatively easy to show that it is equivalent to the logical preorder.

The definition of the simulation preorder relies on the labeled transition system in Figure 4. It defines
the transition judgment (Γ1;∆1)

β−→ (Γ2;∆2) between states (Γ1;∆1) and (Γ2;∆2). Here, β is a label. We
distinguish “non-receive” labels, denoted α , as either the silent action τ or a label !a for atomic formula a
— it represents a send action of a. Generic labels β extend them with receive actions ?a. We write τ

=⇒ for
the reflexive and transitive closure of τ−→, and (Γ1;∆1)

β
=⇒ (Γ2;∆2) for (Γ1;∆1)

τ
=⇒ β−→ τ

=⇒ (Γ2;∆2), if
β 6= τ .

Rule lts!? synchronizes a send action (rule lts!) with a receive action (rule lts?), thereby achieving the
same effect as the transition for( in Figure 3. The other τ transitions in Figure 4 correspond directly
to reductions (since > is the stuck process, it has no action to perform). Indeed, the following result
holds [7, Lemma 4.1, Lemma 5.2]:

Property 5 (Γ1;∆1)
τ

=⇒ (Γ2;∆2) if and only if (Γ1;∆1) ∗ (Γ2;∆2). ut

Based on the labeled transition system in Figure 4, we are in a position to give a coinductive definition
of the simulation preorder.

Definition 6 (Simulation preorder) A relation R between two processes represented as (Γ1;∆1) and
(Γ2;∆2) is a simulation if (Γ1;∆1) R (Γ2;∆2) implies that
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1. if (Γ1;∆1)≡ (Γ′1; ·) then (Γ2;∆2)
τ

=⇒ (Γ′2; ·) and (Γ′1; ·) R (Γ′2; ·).
2. if (Γ1;∆1)≡ ((Γ′1;∆′1),(Γ

′′
1;∆′′1)) then (Γ2;∆2)

τ
=⇒ ((Γ′2;∆′2),(Γ

′′
2;∆′′2)) for some (Γ′2;∆′2) and (Γ′′2;∆′′2)

such that (Γ′1;∆′1) R (Γ′2;∆′2) and (Γ′′1;∆′′1) R (Γ′′2;∆′′2).

3. if (Γ1;∆1)
α−→ (Γ′1;∆′1), there exists (Γ′2;∆′2) such that (Γ2;∆2)

α
=⇒ (Γ′2;∆′2) and (Γ′1;∆′1)R (Γ′2;∆′2).

4. if (Γ1;∆1)
?a−→ (Γ′1;∆′1), there exists (Γ′2;∆′2) such that (Γ2; ∆2,a)

τ
=⇒ (Γ′2;∆′2) and (Γ′1;∆′1) R

(Γ′2;∆′2).

We write (Γ1;∆1) �s (Γ2;∆2) if there is some simulation R with (Γ1;∆1) R (Γ2;∆2). We call �s the
simulation preorder. ut
The first two points of the definition ensure that a simulation is partition-preserving. The others char-
acterize similarity. The fourth is a key bridge to the logical behavior of implication. The simulation
preorder is reflexive, transitive (i.e., a preorder) and compositional [7, Proposition 4.9, Theorem 4.11,
Proposition 5.5]:

Property 7 (�s is a compositional preorder)

• �s is a preorder.
• If (Γ1;∆1)�s (Γ2;∆2), then ((Γ1;∆1),(Γ;∆))�s ((Γ2;∆2),(Γ;∆)) for any process state (Γ;∆). ut

The soundness and completeness of the contextual preorder with respect to the simulation preorder
is readily established by coinduction [7, Theorem 4.12, Theorem 4.13, Theorem 5.6]:

Theorem 8 (Γ1;∆1)�c (Γ2;∆2) if and only if (Γ1;∆1)�s (Γ2;∆2). ut

Relating the simulation preorder and the logical preorder is more involved, and is where the inductive
approach to reasoning about the former meets the coinductive arguments normally used with the latter.
The following set of properties establish the connection: the directions that assume the linear preorder
proceed by induction, while those that assume the simulation preorder use coinduction.

Property 9

• Γ;∆ ` A if and only if (·;A)�s (Γ;∆) [7, Theorem 5.9].
• (Γ;∆)�l (·; !Γ,∆) and (·; !Γ;∆)�l (Γ;∆) [7, Lemma 5.14].
• (Γ;∆)�s (·; !Γ,∆) and (·; !Γ,∆)�s (Γ;∆) [7, Lemma 5.15]. ut

We can now establish the correspondence between the two preorders [7, Theorem 4.17, Theorem 5.16].

Theorem 10 (Γ1;∆1)�l (Γ2;∆2) if and only if (Γ1;∆1)�s (Γ2;∆2). ut

Chaining Theorems 8 and 10 yields the main result of the paper, i.e., the equivalence of the logical
and contextual preorder [7, Corollary 4.18, Corollary 5.18].

Corollary 11 (Γ1;∆1)�l (Γ2;∆2) if and only if (Γ1;∆1)�c (Γ2;∆2). ut

5 Conclusions and Future Work

Corollary 11 shows that the proof-theoretic notion of logical preorder coincides with an extensional
behavioral relation adapted from the process-theoretic notion of contextual preorder. The former is
defined exclusively in terms of traditional derivability, and the latter is defined in terms of a CCS-like
process algebra inspired by the formula-as-process interpretation of a fragment of linear logic. In order to
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establish the connection, a key ingredient is to introduce a coinductively defined simulation as a stepping
stone. It is interesting to see that coinduction, a central proof technique in process algebras, is playing
an important role in this study of linear logic. This topic definitely deserves further investigation so that
useful ideas developed in one field can benefit the other, and vice versa.

We have started expanding the results in this paper by examining general implication (i.e., formulas of
the form A(B rather than a(B) and the usual quantifiers. While special cases are naturally interpreted
into constructs found in the join calculus and the π-calculus, the resulting language appears to extend
well beyond them. If successful, this effort may lead to more expressive process algebras. We are also
interested in understanding better the interplay of the proof techniques used in the present work. This
may develop into an approach to employ coinduction effectively in logical frameworks so as to facilitate
formal reasoning and verification of concurrent systems.
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