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Abstract. Markov decision processes (MDPs) have long been used to model
qualitative aspects of systems in the presence of uncertainty. However, much of
the literature on MDPs takes a monolithic approach, by modelling a system as
a particular MDP; properties of the system are then inferred by analysis of that
particular MDP. In this paper we develop compositional methods for reasoning
about the qualitative behaviour of MDPs. We consider a class of labelled MDPs
called weighted MDPs from a process algebraic point of view. For these we define
a coinductive simulation-based behavioural preorder which is compositional in
the sense that it is preserved by structural operators for constructing MDPs from
components.
For finitary convergent processes, which are finite-state and finitely branching
systems without divergence, we provide two characterisations of the behavioural
preorder. The first uses a novel qualitative probabilistic logic, while the second
is in terms of a novel form of testing, in which benefits are accrued during the
execution of tests.

1 Introduction

Markov decision processes (MDPs) have long been used to model qualitative aspects of
systems in the presence of uncertainty [12, 13, 1]. A comprehensive account of analysis
techniques may be found in [12], while [13] provides a good account of model-checking.

However, much of the literature on MDPs takes a monolithic view of systems; es-
sentially a system is modelled using a particular MDP, and properties of the system are
then inferred by analysis of that MDP. In this paper, instead, we would like to develop
compositional methods for reasoning about qualitative behaviour of Markov decision
processes. This involves defining an appropriate method for comparing the behaviour
MDPs which is susceptible to compositional analysis; the behaviour of a composite
system should be determined by that of its components.

Our starting point is the idea of one system being able to simulate another. For
example consider the following three systems:
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The first, a two-state machine, continually performs an up action, which accrues a ben-
efit of 3 units, followed by a down action, which accrues a benefit of 1. The second ma-
chine performs the same actions but with benefits 2 and 4 respectively. In some sense t0
is an improvement on s0; intuitively t0 can simulate the behaviour of s0 but in so doing
accrue more benefits; this is true even if one of its actions up is less beneficial than the
corresponding action of s0. The same is true for the machine u0; it can also simulate the
behaviour of s0, with more benefit, although in this case some internal weighted actions,
denoted by τ, participate in the simulation and add to the accumulation of benefits. In
our terminology we will write s0 vsim t0, s0 vsim u0. However, we will have t0 6vsim u0
because although u0 can simulate the behaviour of t0 it accumulates less benefit.

Similar informal reasoning can also be applied to probabilistic systems. Consider
the following systems:
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4

down3down1
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up2
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3
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4
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down1

The first, from state s1, can perform the up action with benefit 2 and a quarter of the
time it ends up in a state in which down can be performed with benefit only 1. But
for the remaining three-quarters it ends up in a state in which down can be performed
for the larger benefit 3. The circular darkended node represents a distribution of states,
with its outgoing edges describing the associated probabilities. Again intuitively we can
see that s1 is an improvement on s0 because it can simulate s0 and on average accrue
slightly more benefits; in our theory we will have s0 vsim s1.

The mixture of probabilistic behaviour and internal actions introduces complica-
tions. Consider the system t1 above which after performing an up probabilistically de-
cides internally whether to perform a down action for benefit 1, or branch back to make
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another probabilistic choice. However, each time it reverts back it accumulates a non-
zero benefit via the internal weighted action τ1, albeit with diminishing probability.
Nevertheless, it will turn out that s0 vsim t1 and indeed s1 vsim t1.

Systems exhibiting both probabilistic and nondeterministic behaviour require more
complicated analysis. Consider the following system:

s2

S T

up1

1
4

3
4

down2

down1

down6

After performing the action up it finds itself either in a state in which the action down
will accrue the benefit 2, or 25% of the time there will be a nondeterministic choice
between it accruing either 1 or 6. In the literature there are numerous mechanisms,
such as policies, schedulers, adversaries, etc. [12, 14, 13] for resolving such choices.
Here one can see if this choice systematically leads to the lower benefit 1 then s2 will
not simulate s0 as it does not accrue sufficient benefits. This is a pessimistic outlook;
an optimistic outlook means that the best choices are systematically made. If this is
assumed then we will have s0 vsim s2; in s2 one execution of up followed by down will
yield on average the benefit 1 + ( 3

4 · 2 + 1
4 · 6) = 4.

The main contribution of the paper is a coinductively defined behavioural preorder
vsim between MDPs based on simulations which validate the examples discussed in-
formally above. We confine our attention to the optimistic approach to the resolution
of nondeterministic choices, although in a later paper we hope to investigate the pes-
simistic approach. We also show that this preorder is compositional in the sense that it
is preserved by structural operators for constructing MDPs from components. The main
operator is one for composing two MDPs in parallel. In P | Q the two MPDs P and
Q remain independent, execute in parallel and may communicate by synchronising on
complementary actions; these internal synchronisations accrue the combined benefits
of the associated complementary actions.

For finitary convergent MDPs, which are finite-state and finitely branching systems
without divergence, we also provide two characterisations for the behavioural preorder
vsim. The first is in terms of a qualitative probabilistic logic LQ. In addition to the stan-
dard logical connectives ∧, ∨ and both maximal and minimal fixpoints this contains a
novel qualitative possibility modality 〈α〉

w
(φ1 p⊕ φ2), where p is some probability be-

tween 0 and 1. Intuitively this is satisfied by an MDP which can accrue at least the
benefit w by performing the action α, and subsequently satisfy the probabilistic asser-
tion φ1 p⊕ φ2. It turns out that the simulation preorder is completely determined by
the logic LQ. Further evidence of the compatibility between the logic and the simu-
lation relation is the fact that every system P has a characteristic formula φ(P) in the
logic which captures its behaviour; informally system Q can simulate P if and only if it
satisfies the characteristic formula φ(P).
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Our second characterisation is in terms of a novel form of testing called benefits
testing. Intuitively a system P can be tested by running it in parallel with another testing
system T , and seeing the possible accrued benefits. In the presence of nondeterminism
the execution of the combined system (T | P) will result in a non-empty set of benefits,
Benefits(T | P). Then systems P and Q can be compared by comparing the associated
benefit sets Benefits(T | P) and Benefits(T | Q) where T ranges over some collection
of possible tests. We show that the simulation preorder vsim is also determined in this
manner by a suitable collection of tests T .

The rest of this paper is organised as follows. In Section 2 we introduce the model of
weighted MDPs, the notation of hyper-derivations and some important properties. Then
we define a behavioural preorder based on amortised weighted simulations, which turns
out to be a precongruence in a CCS-like process calculus for MDPs. Next, we provide
logical and testing characterisations of the behavioural preorder over finitary conver-
gent processes. In Section 3 we present a qualitative probabilistic logic whose formulae
completely determine the behavioural preorder. We also show that characteristic formu-
lae can be constructed for any state in such an MDP. In Section 4 we propose a testing
framework where our behavioural preorder is sound and complete for may testing pre-
order. Finally, we conclude in Section 5.

Due to lack of space, we omit all detailed proofs: they are reported in [4].

2 Simulations for weighted Markov decision processes

There is considerable variation in the literature in the formal definition of a (labelled)
Markov decision process [13, 12]. For the purpose of this paper we use Definition 1.

We first fix some notation. A (discrete) probability subdistribution over a countable
set S is a function ∆ : S → [0, 1] with

∑
s∈S ∆(s) ≤ 1; the support of such an ∆ is

the set d∆e = { s ∈ S | ∆(s) > 0 }. A subdistribution is a (total, or full) distribution
if
∑

s∈S ∆(s) = 1. The point distribution s assigns probability 1 to s and 0 to all other
elements of S , so that dse = s. We use Dsub(S ) to denote the set of subdistributions
over S , andD(S ) its subset of full distributions.

Let {∆k | k ∈ K} be a set of subdistributions, possibly infinite. Then
∑

k∈K ∆k is the
real-valued function in S → R defined by (

∑
k∈K ∆k)(s) :=

∑
k∈K ∆k(s). This is a partial

operation on subdistributions because for some state s the sum of ∆k(s) might exceed 1.
If the index set is finite, say {1..n}, we often write ∆1 + . . .+∆n. For p a real number from
[0, 1] we use p · ∆ to denote the subdistribution given by (p · ∆)(s) := p · ∆(s). Finally
we use ε to denote the everywhere-zero subdistribution that thus has empty support.
These operations on subdistributions do not readily adapt themselves to distributions;
yet if

∑
k∈K pk = 1 for some collection of pk ≥ 0, and the ∆k are distributions, then so is∑

k∈K pk · ∆k.

Definition 1 (Weighted Markov decision process). A weighted Markov decision pro-
cess or wMDP is a 4-tuple 〈S ,A,W,−→〉 where S is a set of states, A a set of actions,
W a set of weights, and −→ ⊆ S × A × W × D(S ). We normally write s

α
−→w ∆ to

mean (s, α,w, ∆) ∈−→. In this paper we set W to be R≥0, the set of non-negative real
numbers, and we assume A has the structure Actτ = Act∪ {τ} where, for the purpose of
communication, each a in Act has an inverse a satisfying a = a. ut
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A wMDP is
– finite-state if S is a finite set;
– finitely branching if for each state s, the set {(α,w, ∆) | s

α
−→w ∆} is finite;

– finitary if it is both finite-state and finitely branching.
In the Introduction we have used a straightforward graphical representation for wMDPs;

a state s is represented by a node s while darkened circular nodes are used for dis-
tributions, and arrows between nodes and distributions are annotated with their weights.
Often a point distribution is represented by the unique state in its support; see the first
series of examples with initial states s0, t0 and u0.

2.1 Hyper-derivations

As we have seen in the Introduction, when reasoning informally that t1 can simulate
s0, the limiting behaviour of internal computations must be taken into account. We
formalise this by extending the approach originally given in [5].

In a wMDP actions are only performed by states, in that actions are given by rela-
tions from states to distributions. But formally, systems or processes in general corre-
spond to distributions over states, so in order to define what it means for a process to
perform an action, we need to lift these relations so that they also apply to distributions.
In fact we will find it convenient to lift them to subdistributions.

Definition 2. Let R⊆ S × (R≥0 × Dsub(S )) be a relation from states to pairs of weights
and subdistributions. Then R ⊆ Dsub(S )× (R≥0 ×Dsub(S )) is the smallest relation that
satisfies:

(i) s R 〈 r, Θ 〉 implies s R 〈 r, Θ 〉, and
(ii) (Linearity) ∆i R 〈 ri, Θi 〉 for i ∈ I implies (

∑
i∈I pi · ∆i) R (

∑
i∈I pi · 〈 ri, Θi 〉) for

any pi ∈ [0, 1] (i ∈ I) with
∑

i∈I pi ≤ 1. ut

An application of Definition 2 to the arrow relation
α
−→ in a wMDP gives a relation

(
α
−→) ⊆ D(S ) × (W ×D(S )); for convenience we also denote elements of this relation

as ∆
α
−→w Θ. Thus, as source of a relation

α
−→ we now also allow distributions, and

even subdistributions.

Definition 3 (Hyper-derivations). A hyper-derivation consists of a collection of sub-
distributions ∆, ∆→k , ∆

×
k , for k ≥ 0, with the following properties:

∆ = ∆→0 + ∆×0

∆→0
τ
−→w0 ∆

→
1 + ∆×1

... (1)

∆→k
τ
−→wk ∆

→
k+1 + ∆×k+1

...

∆′ =

∞∑
k=0

∆×k
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Then we call ∆′ =
∑∞

k=0 ∆
×
k a hyper-derivative of ∆, and write ∆

τ
=⇒w ∆′, where w =∑

k≥0 wk. Note that in general w ∈ R≥0 ∪ {∞}; that is there is no guarantee that the sum∑
k≥0 wk has a finite limit. ut

The reader is referred to [5] for a detailed discussion of the concept of hyper-derivation.

Example 1. Consider the wMDP with initial state t1 discussed in the Introduction.
Then we have the following hyper-derivation:

U = U + ε

U
τ
−→0

3
4
· R +

1
4
· D

3
4
· R

τ
−→ 3

4

3
4
· U + ε

3
4
· U

τ
−→0 (

3
4

)2 · R + (
3
4

)
1
4
· D

(
3
4

)2 · R
τ
−→( 3

4 )2 (
3
4

)2 · U + ε

...

(
3
4

)k · U
τ
−→0 (

3
4

)(k+1) · R + (
3
4

)k 1
4
· D

(
3
4

)(k+1) · R
τ
−→( 3

4 )(k+1) (
3
4

)(k+1) · U + ε

...

That is, U
τ

=⇒w
∑

k≥0 ( 3
4 )k( 1

4 · D) where w =
∑

k≥1( 3
4 )k. However this weight evaluates

to 3, while the sum of the sub-distributions is the full point distribution D. In other
words U

τ
=⇒3 D. ut

Hyper-derivations satisfy the transitivity property: if ∆
τ

=⇒w1 ∆1 and ∆1
τ

=⇒w2 ∆2

then ∆
τ

=⇒w1+w2 ∆2. The generation of a hyper-derivative is in general highly nonde-
terministic. In (1) of Definition 3 the calculation of ∆→k+1 and ∆×k+1 from ∆→k involves
making nondeterministic choices. But these choices can be governed by policies.

Definition 4 (Static policies). A static policy for a wMDP is a partial function
pp : S ⇀ R≥0 ×D(S ) such that if pp(s) = 〈w, ∆ 〉 then s

τ
−→w ∆. ut

Let us write ∆
τ

=⇒pp,w ∆
′ to mean that the hyper-derivative ∆′ is generated with weight

w from ∆ using the policy pp. Formally this means that in (1) of Definition 3 the weights
wk and subdistributions ∆→k , ∆

×
k are calculated as follows:

– s ∈ d∆×k e if and only if pp(s) is undefined
– s ∈ d∆→k e if and only if pp(s) is defined
– 〈wk+1, ∆

→
k+1 + ∆×k+1 〉 =

∑
s∈d∆→k e

∆→k (s) · pp(s) for all k ≥ 0.

Theorem 1 (Finite generability). Let pp1, ..., ppn (n ≥ 1) be all the static policies in
a finitary wMDP. Suppose ∆

τ
=⇒ppi,wi ∆

′
i and wi < ∞ for all 1 ≤ i ≤ n. If ∆

τ
=⇒w ∆′

then there are probabilities pi for all 1 ≤ i ≤ n with
∑n

i=1 pi = 1 such that 〈w, ∆′ 〉 =∑n
i=1 pi · 〈wi, ∆

′
i 〉. ut
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In later developments it will be important to rule out the possibility of hyper-derivatives
generating an infinite weight.

Definition 5. A wMDP is convergent if s
τ

=⇒w ε for no state s and weight w; in other
words there is no divergent internal computation from any state. A wMDP is bounded
if it is finitary and whenever ∆

τ
=⇒w ∆

′ then w ∈ R≥0. ut

A simple source of unboundedness is divergence. Consider the trivial wMDP consisting
of one state s and one arrow s

τ
−→1 s. This is not a bounded wMDP because s

τ
=⇒∞ s.

In fact for finitary wMDPs, this is the only source of unboundedness:

Theorem 2. Every finitary convergent wMDP is also bounded. ut

The proof of the above theorem relies on Theorem 1. Another important consequence
of Theorem 1 is the following.

Corollary 1. In a bounded wMDP, for every ∆ the set { 〈w, ∆′ 〉 | ∆
τ

=⇒w ∆′ } is com-
pact, in the standard Euclidean topology. ut

2.2 (Amortised weighted) simulations
Here we assume some wMDP 〈S ,Actτ,R≥0,−→〉. Our simulation relation is parametrised
on an initial investment r ∈ R≥0 and relates states to distributions, rather than states
to states. It also uses weak arrow relations, defined using hyper-derivations: we write
∆

a
=⇒w Θ whenever ∆

τ
=⇒w1 ∆

′
a
−→w2 Θ

′
τ

=⇒w3 Θ, where w = w1 + w2 + w3.
Definition 6. Given a relation R ⊆ S × (R≥0 ×D(S )), let S(R) ⊆ S × (R≥0 ×D(S )) be
the relation defined by letting s S(R) 〈 r, Θ 〉 whenever

s
α
−→v ∆ implies the existence of some w and Θ′ with Θ

α
=⇒w Θ

′ and ∆ R 〈 r+w−v, Θ′ 〉.

We say R is an (amortised weighted) simulation if R⊆ S(R). The operator S(−) is
(pointwise) monotonic and so it has a maximal fixpoint, which is also a simulation, and
which we denote by C. We often write s Cr Θ for s C 〈 r, Θ 〉 and use ∆ vsim Θ to mean
that there is some initial investment r such that ∆ Cr Θ. ut

The basic idea here is that s Cr Θ intuitively means that Θ can simulate the actions of s
but with more benefit, or at least not less benefit. The parameter r should be viewed as
compensation which Θ has accumulated and can be used in local comparisons between
the benefits of individual actions. Thus when we simulate s

α
−→v ∆ with Θ

α
=⇒w Θ′

there are two possibilities:
(i) w > v; here the accumulated compensation is increased from r to r + (w − v). In

subsequent rounds this extra compensation may be used to successfully simulate
a heavier action with a lighter one.

(ii) w ≤ v; here the compensation is decreased from r to r − (v − w).
Finally it is important that r ≥ 0, and remains greater than or equal to zero, or otherwise
the presence of weights would have no effect. Thus in case (ii) if (v − w) > r then the
attempted simulation is not successful.

We now show that with this formal definition of the relation vsim the various state-
ments asserted in the Introduction are true:
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(l-act)

αw.(⊕i∈I pi · Pi)
α
−→w Dist({ (pi, Pi) | i ∈ I })

(l-alt)

P1
α
−→w ∆

P1 + P2
α
−→w ∆

(l-comm)

P1
a
−→w1 ∆1, P2

a
−→w2 ∆2

P1 | P2
τ
−→w ∆1 | ∆2

w = w1 + w2

(l-par)

P1
α
−→w ∆

P1 | P2
α
−→w ∆ | P2

(l-hide)

P
α
−→w ∆

P\a
α
−→w ∆\a

α , a, a

(l-def)

PA
α
−→w ∆

A
α
−→w ∆

A⇐ PA

Fig. 1. Weighted actions for CCMDP

Example 2. Consider the first two systems, s0 and t0, viewed as wMDPs. Then the
relation R given by R = {(s0, 〈 r, t0 〉) | r ≥ 1} ∪ {(sd, 〈 r, td 〉) | r ≥ 0} is a simulation.
Thus s0 Cr t0 for any r ≥ 1. As pointed out in [11] this example shows the need for the
parametrisation with respect to initial investments r; Because of the weights associated
with the action up an initial investment of at least one is required in order for t0 to be
able to match s0.

We also have s0 Cr s1 for any r ≥ 1 because of the following simulation:
R = {(s0, 〈 r, s1 〉) | r ≥ 1} ∪ {(sd, 〈 r, ∆ 〉) | r ≥ 0}

where ∆ is the distribution 1
4 · O + 3

4 · T . Note that this is indeed a simulation because

∆
down
−→2.5 s1. Incidently this example shows the necessity of relating states to distribu-

tions, rather than states; no individual state accessible from s1 can simulate sd.
Similarly s1 Cr t1 for every r ≥ 0 because of the simulation:
R = {(s1, 〈 r, t1 〉) | r ≥ 0} ∪ {(O, 〈 r,U 〉) | r ≥ 0} ∪ {(T, 〈 r,U 〉) | r ≥ 0}

This relies on the fact that U
down
=⇒4 t1, which follows by transitivity, since we have

already seen in Example 1 that U
τ

=⇒3 D.
Finally s0 C2 s2 because of the following simulation:

R = {(s0, 〈 r, s2 〉) | r ≥ 2} ∪ {(sd, 〈 r, ∆ 〉) | r ≥ 0}

where ∆ is the distribution 1
4 · S + 3

4 · T . Note that ∆
down
=⇒3 s2 although it is also possible

for it to do the down action for much less benefit. ut

The simulation relations Cr are defined coinductively. But in bounded wMDPS they
can also be characterised inductively.
Definition 7. For every k ≥ 0 we define the relation Ck⊆ S × (R≥0 ×D(S )) as follows:

(i) C0= S × (R≥0 ×D(S ))
(ii) Ck+1= S(Ck) for every k ≥ 0.

Finally we let C∞ be
⋂∞

k=0 C
k. ut

Theorem 3. In a bounded wMDP, the two relations C and C∞ coincide. ut

Corollary 1 plays a crucial role in proving the above theorem.

The simplest approach to discussing compositionality is, as in [8], to introduce a
process calculus-like syntax for wMDPs. Our calculus, CCMDP, is based on CCS:

P ::= αw.(⊕i∈I pi · Pi) | P | P | P + P | 0 | P\a | A (2)
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The main operator is prefixing, αw.(⊕i∈I pi · Pi). Here α is taken from Actτ, w from R≥0,
I is a non-empty finite index set and pi are probabilities satisfying

∑
i∈I pi = 1. We also

assume a set of definitional constants, ranged over by A, and each such A has a definition
associated with it, a process term PA. We often write these definitions as A⇐ PA.

Intuitively, we view each process term as describing a wMDP. Formally we describe
one overarching wMDP where the states are all terms P in the grammar (2) and the
weighted actions P

α
−→w ∆ are those which can be derived by the rules in Figure 1; ob-

vious symmetric counterparts to the rules (l-alt) (l-par) are omitted. In rule (l-act)
we use the obvious notationDist({ (pi, Pi) | i ∈ I }) for constructing a distribution from
the formal term ⊕i∈I pi · Pi. In rules (l-comm) and (l-par) we use an abbreviation for
distributing parallel composition over a distribution: e.g. ∆1 | ∆2 is the distribution given
by (∆1 | ∆2)(R) = ∆1(P1) · ∆2(P2) if R = P1 | P2 and 0 otherwise. Similar is the hiding
operator in (l-hide). Note that all of the wMDPs described graphically in the Intro-
duction can be described in CCMDP. In the sequel we will not distinguish between the
syntactic term P, its interpretation as a state in the wMDP defined in Figure 1, and the
wMDP it induces by considering only those states accessible from it.

Theorem 4 (Compositionality). The preorders Cr, for each r ∈ R≥0, are preserved by
each of the operators in the language CCMDP. ut

Example 3. Let P,Q be two processes with P C0 Q. Consider the following processes:
U ⇐ τ0.(τ1.U 3

4
⊕ down1.Q)

P′ ≡ up2.(down1.P 1
4
⊕ down3.P)

Q′ ≡ up2.U
By the analysis in Example 1 we know that U

τ
=⇒3 down1.Q, thus U

down
=⇒4 Q. Then it is

easy to see that down1.P C0 U and down3.P C0 U. It follows from the compositionality
of C0 that (down1.P 1

4
⊕ down3.P) C0 U and furthermore P′ C0 Q′. ut

3 A qualitative probabilistic logic

Let Var be a set of variables, ranged over by X. We define the set of formulae as follows:

φ ::= tt | ff | 〈α〉
w
(φ1 p⊕ φ2), α ∈ Actτ,w ∈ R≥0, p ∈ [0, 1]

| φ1 ∧ φ2 | φ1 ∨ φ2 | X | min X. φ | max X. φ

The two fixpoint operators min X. − and max X. − act as binders in the standard manner;
we use LQ to denote the set of closed formulae, that is containing no free variables. As
a shorthand, we write 〈α〉

w
φ for 〈α〉

w
(φ 1⊕ φ

′) for any φ′.
Let Con denote the set of configurations, pairs 〈r, ∆〉 where r ∈ R≥0 and ∆ ∈ D(S ),

with S denoting the state space of some wMDP. Intuitively this represents a system
which has accumulated compensation r which it can use to satisfy formulae in the
future. A formula from LQ determines a set of configurations, those which satisfy it;
their calculation is standard, apart from the novel qualitative possibility operator. An
environment ρ is a function that maps each variable in Var to a subset of Con. For a set
V ⊆ R≥0 × D(S ) and a variable X ∈ Var, we write ρ[X 7→ V] for the environment that
maps X to V and Y to ρ(Y) for all Y , X. The semantics of a formula φ is given by the
set of configurations [φ]ρ defined as follows:
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– [tt]ρ = Con, [ff]ρ = ∅

– [φ1 ∧ φ2]ρ = [φ1]ρ ∩ [φ2]ρ, [φ1 ∨ φ2]ρ = [φ1]ρ ∪ [φ2]ρ

– [〈α〉
v
(φ1 p⊕ φ2)]ρ = { 〈 r, ∆ 〉 | ∆

α
=⇒w Θ where

〈 (r + w − v), Θ 〉 = 〈 r1, Θ1 〉 p⊕ 〈 r2, Θ2 〉 and 〈 ri, Θi 〉 ∈ [φi]ρ }
– [X]ρ = ρ(X)
– [min X. φ]ρ =

⋂
{V | [φ]ρ[X 7→V] ⊆ V }

– [max X. φ]ρ =
⋃
{V | V ⊆ [φ]ρ[X 7→V] }

When φ is closed the set [φ]ρ is independent of the environment ρ, and in this case we
use the standard notation C |= φ in place of C ∈ [φ].

The novel qualitative formula 〈α〉
v
(φ1 p⊕ φ2) represents the ability to do an α action

with benefit at least v and then probabilistically satisfy the property φ1 p⊕ φ2; we have
〈r, ∆〉 |= 〈α〉

v
(φ1 p⊕ φ2) whenever ∆

α
=⇒w Θ1 p⊕ Θ2 and 〈ri, Θi〉 |= φi for some ri

satisfying (r + w − v) = p · r1 + (1 − p) · r2. Here there are two possibilities:

(i) v > w: here the compensation comes into play. The action may be accepted despite
being too heavy but the compensation for future use is reduced from r to r−(v−w);
this is split into r1, r2 via the probability p. Note this possibility will only exist if
r − (v − w) ≥ 0.

(ii) v ≤ w: The action is accepted and then the compensation is increased from r to
r + (w − v), which again is split proportionally into r1, r2, to satisfy φ1 and φ2
respectively.

Example 4. Both liveness and safety properties can be expressed in LQ. For example,
suppose AB denote the formula 〈a〉

0
(〈b〉

10
tt 9

10
⊕ tt) and C is a configuration. Then

C |= AB means that C can perform an a action such that at least 90% of the time
it can subsequently perform a b action with a benefit of at least 10. So the formula

min X. 〈up〉
0
(〈down〉

10
X 9

10
⊕ tt) ∨ 〈up〉

0
X

expresses the liveness property of being able to perform a sequence of up actions to
arrive at a state where at least 90% of the time a down action for benefit at least 10 can
be performed. On the other hand, the formula

max X. 〈up〉
0
(〈down〉

10
X 9

10
⊕ tt) ∧ 〈stay〉

0
X

expresses the safety property of always being able to perform a stay action and at the
same time to perform an up action to arrive at a state where at least 90% of the time a
down action for benefit at least 10 can be performed. ut

Let LQ(r, ∆) = { φ ∈ LQ | 〈r, ∆〉 |= φ }. We have the following logical characterisa-
tion of simulations.

Theorem 5 (Logical characterisation). In a bounded wMDP, s Cr Θ if and only if
LQ(0, s) ⊆ LQ(r, Θ). ut

The proof of Theorem 5 exploits Theorem 3, which says that C can be approximated by
a family of stratified relations Ck for k ∈ N. So it suffices to prove that each approximant
Ck is completely determined by the finite fragment of the qualitative probabilistic logic.

The import of Theorem 5 is that if s Cr Θ does not hold then there is a formula φ
from LQ which s satisfies but Θ does not. Furthermore, it turns out that in a bounded
wMDP this distinguishing formula will always be finite; that is contains no occurrence
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Fig. 2. Testing systems

of a fixpoint operator. For example, s2 6C0 s0, where these are defined in the Introduc-
tion, because of the distinguishing formula 〈up〉

1
(〈down〉

6
tt 1

4
⊕ 〈down〉

2
tt).

Our logic is expressive enough so that the whole behaviour of a state in a bounded
wMDP can be captured by one formula in the logic:

Theorem 6 (Characteristic formula). In a bounded wMDP, for every state s there is
a characteristic formula φ(s) ∈ LQ such that s Cr Θ if and only if 〈 r, Θ 〉 |= φ(s). ut

For example, the state s1 in the Introduction has the following characteristic formula:
φ(s1) = max X. 〈up〉

2
(〈down〉

1
X 1

4
⊕ 〈down〉

3
X).

4 Benefits based testing

Standard theories of testing involve the idea of applying tests to processes and seeing
if the result is a success. With the presence of weights in wMDPs we have a more
elementary way of testing; we run them in parallel with other wMDPs and calculate
the possible benefits which can be accrued. Then two wMDPs can be compared by
examining the resulting sets of possible accrued benefits.

Consider the simple fully probabilistic wMDP in Figure 2(a), which results from
running the test T = up1.down4. 0 in parallel with the system s1 from the Introduction.
Formally this is the sub-wMDP of the wMDP (s1 | T ) obtained by concentrating on the
internal actions τw; this is just the wMDP represented by (s1 | T )\Act that we denote
by s1 || T . Every time the experiment runs we get the initial benefit 3; three-quarters of
the time we also get the benefit 7 while a quarter of time we get 5. So the total benefit
is 3 + 3

4 · 7 + 1
4 · 5 = 9.5. In the presence of nondeterminism there will in general be a

set of possible benefits, depending on the way in which the nondeterminism is resolved.
Traditionally this resolution is expressed in terms of a scheduler, or adversary, which
for each state decides which of its successors is chosen for execution, with the resulting
set of benefits consequently depending on the choice of scheduler. Here we take a more
abstract approach, following [5], and essentially allow arbitrary schedulers.

Definition 8 (Extreme derivatives). For any ∆ in a wMDP we write ∆
τ

=⇒�w Φ if

– ∆
τ

=⇒w Φ, that is Φ is a hyper-derivative of ∆
– Φ is stable, that is s

τ
9 for every s in dΦe
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where s
τ
9 means that s cannot enable any τ-transition. We say Φ is an extreme deriva-

tive of ∆, with weight w. ut

Intuitively every extreme derivation ∆
τ

=⇒�w Φ represents a computation from the initial
distribution ∆ guided by some implicit scheduler. For example, consider the hyper-
derivation of an extreme derivative:

∆ = ∆→0 + ∆×0

∆→0
τ
−→w0 ∆

→
1 + ∆×1

... (3)

∆→k
τ
−→wk ∆

→
k+1 + ∆×k+1

...

Φ =

∞∑
k=0

∆×k

where w =
∑

k≥0 wk. Initially, since ∆×0 is stable, ∆→0 contains (in its support) all states
which can proceed with the computation. The implicit scheduler decides for each of
these states which step to take, cumulating in the first move, ∆→0

τ
−→w0 ∆

→
1 + ∆×1 . At an

arbitrary stage, ∆→k contains all states which can continue; the scheduler decides which
step to take for each individual state and the overall result of the schedulers decision for
this stage is captured in the step ∆→k

τ
−→wk ∆

→
k+1 + ∆×k+1.

Example 5. Referring to Figure 2(a) it is easy to see that s has a unique (degenerate)
extreme derivative, s1

τ
=⇒�9.5 ( 1

4 sl + 3
4 sr), intuitively representing the unique weighted

computation from s1. However, consider the wMDP in Figure 2(b), in which there is
a nondeterministic choice from state t2; here the extreme derivatives generated from t,
and their associated weights, will depend on the choices made during the computation
by the implicit scheduler.

First suppose that the scheduler uses the static policy which maps t2 to 〈 12, t4 〉.
Then it is easy to see that the generated extreme derivative, which is degenerate, is
t

τ
=⇒�12 ( 3

4 t4 + 1
4 t5). However using the static policy which maps t2 to 〈 4, t1 〉 we gener-

ate, using (3), a non-degenerate extreme derivative; after some calculations this can be
seen to be t1

τ
=⇒�24 t5.

However there are many other possible implicit schedulers, for example at different
times in the computations employing either of these static policies, or even choosing
nondeterministically between them. But these are the only static policies and therefore
we know from Theorem 1 that if t1

τ
=⇒�w ∆ then w must take the form p ·12+(1− p) ·24

for some 0 ≤ p ≤ 1. That is the set of benefits which can be generated from t1 is
{ 24 − 12 · p | 0 ≤ p ≤ 1 }. ut

Definition 9 (May testing). In a wMDP, for any ∆ ∈ D(S ), let

Benefits(∆) = {w ∈ R≥0 | ∆
τ

=⇒�w Φ, for some Φ ∈ Dsub(S ) }
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Benefit sets are compared as follows:

B1 ≤
r
Ho B2 if for every r1 ∈ B1 there exists some r2 ∈ B2 such that r1 ≤ r + r2

For any two distributions ∆, Θ we write ∆ vr
may Θ if for every finite (testing) process T ,

Benefits(∆ || T ) ≤r
Ho Benefits(Θ || T ). We write ∆ vmay Θ to mean that there is some

r ∈ R≥0 such that ∆ vr
may Θ. ut

This interpretation of processes is optimistic; ∆ vr
may Θmeans that, given the investment

r, every possible benefit produced by ∆ can in principle be improved upon by Θ.
Note that in a bounded wMDP Benefits(∆) cannot contain ∞. Moreover we can

show that the parallel composition of a bounded wMDP with a finite wMDP is also
bounded. This means that if we confine our attention to bounded wMDPs then benefit
sets will always only contain real numbers. One way of restricting to bounded wMDPS
is, by Theorem 2, to only use finitary convergent wMDPs.

Our first result shows that simulations can be used as a sound proof technique for
this semantics:

Theorem 7 (Soundness). ∆ Cr Θ implies ∆ vr
may Θ. ut

The converse is not true in general:

Example 6. Consider the two distributions ∆ = 0 1
2
⊕ a1. 0 and Θ = τ2. 0 1

2
⊕ a0. 0. It

is easy to see that ∆ 6C0 Θ because there is no way to decompose Θ into Θ1 1
2
⊕ Θ2 for

some Θ1, Θ2 such that a1. 0 C0 Θ2. However, one can show that ∆ v0
may Θ. This follows

from the observations below:

(i) For all weights w and tests T , Benefits(τw. 0 || T ) = {v + w | v ∈ Benefits(0 || T )}.
(ii) For all weights w and tests T , Benefits(aw. 0 || T ) ≤w

Ho Benefits(a0. 0 || T ).

Both assertions can be proved by structural induction on T .
Now suppose w ∈ Benefits(∆ || T ) for an arbitrary test T . There is some stable

derivative Γ such that ∆ || T
τ

=⇒w Γ. It can be shown that there are some w1,w2, Γ1, Γ2

with 0 || T
τ

=⇒w1 Γ1, a1. 0 || T
τ

=⇒w2 Γ2, w = 1
2 w1 + 1

2 w2, and Γ = 1
2 · Γ1 + 1

2 · Γ2,
where both Γ1 and Γ2 are stable. In other words, we have w1 ∈ Benefits(0 || T ) and
w2 ∈ Benefits(a1. 0 || T ). By (i) above, w1 + 2 ∈ Benefits(τ2. 0 || T ); by (ii) above, there
exists some w′2 ∈ Benefits(a0. 0 || T ) with w2 ≤ w′2 + 1. Thus, we can infer that

w = 1
2 w1 + 1

2 w2

< 1
2 (w1 + 2) + 1

2 (w2 − 1)
≤ 1

2 (w1 + 2) + 1
2 w′2

It turns out that 1
2 (w1 + 2) + 1

2 w′2 ∈ Benefits(Θ || T ). Therefore, we have

Benefits(∆ || T ) ≤0
Ho Benefits(Θ || T ).

Since this reasoning is carried out for an arbitrary test T , it follows that ∆ v0
may Θ. ut
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Nevertheless we do have a testing characterisation for the unannotated simulation
preorder:

Theorem 8 (Testing characterisation). In a bounded wMDP, s vmay Θ if and only if
s vsim Θ.

Proof (Outline). One direction follows from Theorem 7. For the converse we carry out
the proof in two steps: we first prove that s vr

may Θ implies the existence of some
compensation r′ ≥ r with LQ(0, s) ⊆ LQ(r′, Θ), then appeal to Theorem 5. In the first
step we proceed by constructing, for each formula φ, a characteristic test T (φ), such
that if a process satisfies φ then it passes test T (φ) with some threshold benefit. ut

An alternative approach to testing would be to use one special action ω in a test to
report success and when applying such a test to a system to report the weighted average
of the weight of each path leading to an occurrence of the success action; this we refer
to as expected benefits testing. Here we will not give the formal definition of how these
expected benefits are calculated, which is provided in [4], but simply give an informal
argument to show that our simulation preorder is not sound with respect to it.

Example 7 (Simulation is unsound for expected benefits testing). Consider the fol-
lowing processes: P = τ2.(0 1

4
⊕ a0. 0)

Q = τ1.(τ2.(0 1
2
⊕ a0. 0) 1

2
⊕ a0. 0)

It is easy to see that P C0 Q as the transition P
τ
−→2 0 1

4
⊕ a0. 0 can be simulated by the

hyper-derivative Q
τ

=⇒2 0 1
4
⊕ a0. 0. Now let T be the test ā0.ω. Both P || T and Q || T

give rise to fully probabilistic wMDPs. The unique expected benefit resulted from P || T
is 1

4 ·0+ 3
4 ·2, i.e. 3

2 . On the other hand, the unique expected benefit obtained from Q || T
is 1

2 · 1 + 1
2 ( 1

2 · 0 + 1
2 · 3), i.e. 5

4 . As { 32 } 6≤
0
Ho {

5
4 }, we have that P is not related to Q under

expected benefits may testing; thus C is unsound for expected benefits testing. Note that
if we consider total benefits, then Benefits(P || T ) = {2} = Benefits(Q || T ). ut

5 Concluding remarks

We have proposed the model of weighted Markov decision processes for compositional
reasoning about the behaviour of systems with uncertainty. Amortised weighted sim-
ulation is coinductively defined to be a behavioural preorder for comparing different
wMDPs. It is shown to be a precongruence relation with respect to all structural oper-
ators for constructing wMDPs from components. For finitary convergent wMDPs, we
have also given logical and testing characterisations of the simulation preorder: it can
be completely determined by a qualitative probabilistic logic and for each system we
can find a characteristic formula to capture its behaviour; the simulation preorder also
coincides with a notion of may testing preorder.

The dual of may testing is must testing. It would be interesting to investigate the
must preorder given by our testing approach. We leave it as future work to provide a
coinductive formulation of the preorder and study its logical characterisations.
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There is a very limited literature on compositional theories of Markov decision pro-
cesses particularly in the presence of weights. There is however an extensive literature
on probabilistic variations of bisimulation equivalence for Markov chains; see Chapter
10 of [1] for an elementary introduction and [10] for a survey. Bisimulation equivalence
has also been defined in [8] for Interactive Markov Chains (IMCs), and it is shown to be
compositional, in the sense of our Theorem 4: it is preserved by the operators of a pro-
cess calculus interpreted as IMCs. Bisimulation and testing equivalence for Markovian
process algebras are also investigated in [9, 2], but the analysis was mainly restricted to
models free of nondeterminism. Recently a combination of probabilistic automata and
IMCs has been studied in [7], where a notation of weak bisimulation is proposed. Since
time rates are treated essentially as action names, some intuitively equivalent processes
are differentiated by the weak bisimulation.

There is also an extensive literature on weighted automata [6], and probabilistic
variations have also been studied [3]. However there the focus is on traditional language
theoretic issues, rather than our primary concern, compositionality.
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