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Abstract

In this paper we propose a metric for finite processes in a
probabilistic extension of CSP. The kernel of the metric cor-
responds to trace equivalence and most of the operators in
the process algebra is shown to satisfy non-expansiveness
property with respect to this metric. We also provide an al-
gorithm to calculate the distance between two processes to
a prescribed discount factor in polynomial time. The al-
gorithm has been implemented in a tool that helps us to
measure processes automatically.

1 Introduction

Quantitative transition systems extend the usual transi-
tion systems, by labeling transitions with both actions and
numbers. It has been argued that notions of exact behavioral
equivalence such as trace equivalence do not fit well with
quantitative transition systems. The standard notion of trace
equivalence treat the quantities as labels, this means that
processes that differ from a very small probability would
be considered just as different as processes that perform
completely different actions. To find a more flexible way
to identify processes, we want an “approximate” notion of
equality of processes. Researchers have used the notion of
metric to express the similarity of the behavior of processes.
The smaller the distance, the more alike the behavior is. In
particular, the distance between two processes is 0 if they
are indistinguishable.

Much work has been reported recently in this field. The
first proposal based on metric was made by Giacalone et
al. [10] for deterministic probabilistic processes. Later, van
Breugel et al. [19, 18] and Desharnais et al. [9, 8] inves-
tigated the notion of metric for more general probabilistic
systems involving probabilistic distributions, nondetermin-
ism and recursion. In [19, 18], van Breugel and Worrell
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defined a metric via the terminal coalgebra of a functor and
studied the fine structure of their metric whose dual problem
can be reduced to a particular linear programming problem:
the transshipment problem. In [9, 8], Desharnais et al. stud-
ied the metrics for labeled Markov chains and labeled con-
current Markov chains respectively and defined the intended
metric as the greatest fixed point of a monotonous function.
Deng et al. [4] defined a notion of state-metric, which ex-
tended the approach of [9, 8], to a more general framework
called action-labeled quantitative transition systems.

In this paper, we measure the distance of processes in
a finite probabilistic process algebra, pCSP, investigated
in [7, 6]. We represent the operational behavior of a pro-
cess as a finite acyclic directed graph and interpret it as a
set of distributions on maximal traces. We first define a no-
tion of metric for traces. Then we lift it to distributions of
traces by Kantorovich metric [12]. Next, we lift it again to
be a metric for sets of distributions of traces using Haus-
dorff distance. Finally, the distance of two processes is
determined by the distance of two sets of distributions of
traces that they represent. We show that the kernel of the
metric corresponds to trace equivalence and all operators of
the process algebra, except for parallel composition, satisfy
non-expansiveness property with respect to this metric, i.e.
the distance between two processes does not expand when
they are put in the same context. We also give an algo-
rithm to calculate the distance between two processes to a
prescribed discount factor in polynomial time. We have
developed an tool that implements this algorithm and helps
to measure processes automatically.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce pCSP and give the notion of trace
equivalence between processes. In Section 3, we describe
our metric on processes and relate it to trace equivalence.
Some non-expansiveness properties are proved in Section 4.
The reduction of calculating the metric to a transshipment
problem is presented in Section 5. In Section 6, we present
an algorithm. Some examples and comparison with other
metrics are discussed in Section 7. In Section 8, we con-
clude and discuss some future work.



2 Finite Probabilistic CSP

We briefly introduce a simple probabilistic process alge-
bra based on CSP [1]; following [7, 6], we call it pCSP.
We give its operational semantics in terms of a probabilistic
labeled transition system and define a notion of trace equiv-
alence between processes.

2.1 Syntax and Semantics

Let Act be a finite set of actions, ranged over by a, b, · · ·,
which processes can perform. Then the finite probabilistic
CSP processes are given by the following two-sorted syn-
tax:

P ::= S | P p⊕ P
S ::= 0 | a.P | P u P | S � S | S |A S

Here P p⊕ Q, for p ∈ (0, 1], represents a probabilistic
choice between P and Q: with probability p it will act like
P and with probability 1− p it will act like Q. Any process
is a probabilistic combination of state-based processes (the
sub-sort S above) built by repeated application of the op-
erator p⊕. The state-based processes have a CSP-like syn-
tax, involving the stopped process 0, action prefixing a. ,
internal- and external choices u and �, and a parallel com-
position |A for A ⊆ Act .

The process P u Q will first do a so-called internal ac-
tion τ 6∈Act , choosing nondeterministically between P and
Q. Therefore u, like a. , acts as a guard, in the sense that it
converts any process arguments into a state-based process.

The process P � Q on the other hand does not perform
actions itself, but merely allows its arguments to proceed,
disabling one argument as soon as the other has done a vis-
ible action. In order for this process to start from a state
rather than a probability distribution of states, we require its
arguments to be state-based as well; the same applies to |A.
Expressions P � Q and P |A Q for processes P and Q
that are not state-based are therefore syntactic sugar for an
expression in the above syntax obtained by distributing �
and |A overp⊕.

Finally, the expression P |A Q, where A ⊆ Act , repre-
sents processes P and Q running in parallel. They may syn-
chronize by performing the same action from A simultane-
ously; such a synchronization results in τ . In addition P and
Q may independently do any action from (Act\A) ∪ {τ}.

We write pCSP for the set of process terms defined by
this grammar, and sCSP for the subset comprising only the
state-based process terms. The full language of CSP [1] has
many more operators; we have simply chosen a represen-
tative selection, and have added probabilistic choice. Our
parallel operator is not a CSP primitive, but it can easily
be expressed in terms of them. It can also be expressed in

terms of the parallel composition, renaming and restriction
operators of CCS.

As usual the prefixing operator a. binds stronger than
any binary operator; and precedence between binary opera-
tors is indicated via brackets or spacing.

The above intuitions are formalised by an operational
semantics associating with each process term a graph-like
structure representing its possible reactions to users’ re-
quests: we use a generalisation of labelled transition sys-
tems [1] that includes probabilities.

A (discrete) probability distribution over a set S is a
function ∆ : S → [0, 1] with

∑
s∈S∆(s) = 1; the support

of ∆ is given by d∆e = { s ∈ S | ∆(s) > 0 }. We write
D(S), ranged over by ∆, for the set of all distributions over
S with finite support. We also write s to denote the point
distribution assigning probability 1 to s and 0 to all others,
so that dse = {s}.

We now give the probabilistic generalisation (pLTSs) of
labelled transition systems (LTSs):

Definition 1. A probabilistic labelled transition system is a
triple 〈S,Actτ ,→〉, where

1. S is a set of states;

2. Actτ is a set of actions Act, augmented by τ 6∈Act; we
let a range over Act and α over Actτ ;

3. relation→ is a subset of S ×Actτ ×D(S).

As with LTSs, we usually write s
α−→∆ for (s, α,∆) ∈ →.

An LTS may be viewed as a degenerate pLTS, one in which
only point distributions are used.

We now define the operational semantics of pCSP by
means of a particular pLTS 〈sCSP,Actτ ,→〉, constructed
by taking sCSP to be the set of states and interpreting
pCSP processes P as distributions JP K ∈ D(sCSP) as fol-
lows:

JsK := s for s ∈ sCSP
JP p⊕ QK := JP Kp⊕ JQK.

Here we write ∆1 p⊕ ∆2 for the linear combination of two
distributions: p · ∆1 + (1 − p) · ∆2. Note that for each
P ∈ pCSP the distribution JP K is finite, i.e. it has finite
support. The definition of the relations α−→ is given in Fig-
ure 1. These rules are very similar to the standard ones used
to interpret CSP as an LTS [1], but modified so that the re-
sult of an action is a distribution. The symmetric rules have
all been omitted.

2.2 PAD and NPAD graphs

We graphically depict the operational semantics of a
pCSP expression P by drawing the part of the pLTS de-
fined above that is reachable from JP K as a finite graph,
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Figure 1. Operational semantics of pCSP.

which we call nondeterministic probabilistic acyclic di-
rected (NPAD) graph. Our NPAD graphs involve two sorts
of nodes, states and distributions, denoted by • and ◦ re-
spectively. For any state s and distribution ∆ with s

α−→ ∆
we draw an edge from s to ∆, labeled with α. For any dis-
tribution ∆ and state s in d∆e, the support of ∆, we draw
an edge from ∆ to s, labeled with ∆(s). Therefore, NPAD
graphs are depicted with edges labeled by actions and prob-
abilities alternately. In general, a state may have multiple
outgoing distributions because of nondeterminism.

We now consider execution trees of an NPAD graph un-
der particular adversaries which help resolving nondeter-
minism. The approach we adopt here is similar to the one
proposed in [17] for probabilistic automata. The idea be-
hind is that at most one action is allowed for each state.
More precisely, an adversary for an NPAD graph is a func-
tion that associates to each state a distribution which is
selected. An execution tree, which we call probabilistic
acyclic directed (PAD) graph, is obtained from an NPAD
graph by pruning all the edges corresponding to distribu-
tions which are not selected by the adversary.

Given a pCSP expression P , we use (P ) to denote the
set of PAD graphs obtained from the NPAD graph which
represents P . Consider the process

P = a.0 1/3⊕ ((b.0 u c.0)�a.0).

Its NPAD graph and some PAD graphs are illustrated in Fig-
ure 2 (a) and (b) respectively. Details on how to obtain a set
of PAD graphs from an NPAD graph are discussed in Sec-
tion 6.

(a) An NPAD graph

(b) Some PAD graphs

Figure 2. NPAD/PAD graphs

2.3 Trace equivalence

Given a PAD graph G, we can consider it as a set of
strings ss(G) obtained from each maximal path, that is, a
set of strings of the form of p0, α1, p1, α2..., αn, pn where
αi ∈ Actτ and pi ∈ (0, 1]. We introduce two mappings on
ss(G).

Definition 2. Let Φ : ss(G) → Act∗τ and Ψ : ss(G) →
[0, 1] be the mapings defined as follows. For any x =
p0, α1, p1, α2..., αn, pn ∈ ss(G):

Φ(x) =
{
〈〉 if n = 0
α1α2...αn otherwise.

Ψ(x) =
{

p0 if n = 0
p0 · p1 · · · pn otherwise.



where 〈〉 denotes the empty path.

For any PAD graph G and x ∈ ss(G), the above defini-
tion says that Φ(x) is a path in G and Ψ(x) is the probabil-
ity of performing this path. A path is maximal if there is
no outgoing distributions from the last state of the path. In
this paper, we insist that all the paths appeared are maximal.
The trace of a path is the sequence obtained by restricting
the actions of a path to the set Act. We use Φ′(x) to denote
the trace of the path and ts(G) stands for the set of traces G
can performs.

Let G be the first PAD graph given in Figure 2
(b). We can represent G as the following set of strings:
{1/3, a, 1, 2/3, τ, 1, a, 1}. By the definition of Φ′ we have
Φ′(1/3, a, 1) = Φ′(2/3, τ, 1, a, 1) = a. Thus the probabil-
ity with which the PAD graph performs the trace a will be
Ψ(1/3, a, 1) + Ψ(2/3, τ, 1, a, 1) = 1. More formally, we
have the following definition.

Definition 3. For any PAD graph G and trace u, let ν(G, u)
denote the probability of G performing the trace u, defined
as follows:

ν(G, u) =
{

0 if Φ′(x) 6= u
ΣΦ′(x)=uΨ(x) otherwise.

where x ∈ ss(G)

We introduce the notion of trace distribution, origi-
nally proposed by Segala for probabilistic automata [16]. A
trace distribution over a set ts(G) is a mapping Θ : ts(G)→
[0, 1] such that Σu∈ts(G)ν(G, u) = 1. A trace distribu-
tion corresponds to a discrete probability distribution on the
maximal traces of a PAD graph. Two PAD graphs G,G′ are
trace equivalent if they have the same trace distribution, de-
noted G ≈tr G′. We lift this definition to two sets of PAD
graphs Ω,Ω′ by saying that Ω ≈tr Ω′ if for each PAD graph
in Ω there exists a trace equivalent PAD graph in Ω′, and
vice versa. Since we interpret an NPAD graph as a set of
PAD graphs, it is then natural to say that two NPAD graphs
are trace equivalent if they generate two sets of trace equiv-
alent PAD graphs.

Definition 4. Two pCSP processes P and Q are said to be
trace equivalent, written P ≈tr Q, if (P ) ≈tr (Q).

3 Metrics

We define in this section a metric for pCSP processes,
and we relate it to trace equivalence such that two processes
have distance zero under the metric if and only if they are
trace equivalent.

We first introduce the general notation of
(pseudo)metric. A metric over a set S is a func-
tion that yields a non-negative real number between 0

and 1 for each pair of elements from S and satisfies
the following: m(s, s) = 0, m(s, t) = m(t, s) and
m(s, t) ≤ m(s, u) + m(u, t).

3.1 A Metric for Traces

First we define a metric for traces. This metric balances
the depth of observations which is needed to distinguish the
traces and the degree to which each observation differenti-
ates the traces. The relative weight given to these two fac-
tors is determined by a discount factor c. The smaller the
value of c the greater the discount on observations made at
greater depth. From this intuition, we can now define our
metric for traces, which is a variation on the Baire metric.

Definition 5. Let u, u′ be traces and c be a real number
lying between 0 and 1.

m1(u, u′) =

 ck−1 if u[k] 6= u′[k] and u[i] = u′[i]
for (i < k)

0 otherwise.

where u[i] means the i-th action of the trace u.

The metric for traces discounts the distance at position
i of the trace by multiplying it by ci−1. We consider the
following traces u = abce and u′ = abcd which differ
on their fourth actions. Calculating the distance we have
m1(u, u′) = 1/8 if c is supposed to be 1/2. Now we prove
that the above metric is well defined.

Proposition 1. m1 is a metric for traces.

Proof. We need to verify that m1 satisfies the three proper-
ties stated in the introduction of this section.

1. For all u, u′, m1(u, u′) ≥ 0 and m1(u, u) = 0 follows
from the definition of m1.

2. For all u, u′, m1(u, u′) = m1(u′, u) holds trivially.

3. m1(u, u′′)+m1(u′′, u′) ≥ m1(u, u′) is proved as fol-
low: There exists five cases including u = u′ = u′′,
u = u′ 6= u′′, u 6= u′ = u′′, u′′ = u 6= u′ and
u 6= u′ 6= u′′. The first four ones are straightforward.
Here we only prove the last one. Suppose m1(u, u′′) =
ck1−1 and m1(u′′, u′) = ck2−1, without loss of gen-
erality, k1 ≤ k2. Then m1(u, u′) = ck−1 such that
k = k1. It follows that m1(u, u′′) + m1(u′′, u′) ≥
m1(u, u′).

3.2 A Metric for PAD Graphs

We now define a metric for PAD graphs. Essentially, it
is obtained by lifting the above metric for traces m1 to be
a metric for trace distributions m2 based on Kantorovich
metric [12].



Definition 6. Let G, G′ be PAD graphs, δ represent ts(G)∪
ts(G′). Then m2(G,G′) is defined as follows:

1. if Σui∈δ(ν(G, ui)− ν(G′, ui)) ≥ 0, then m2(G,G′) is
given by the solution to the following linear program:

maximize Σui∈δ(ν(G, ui)− ν(G′, ui))xi

subject to ∀i : xi ≥ 0
∀i, j : xi − xj ≤ m1(ui, uj)

2. otherwise, m2(G,G′) is defined as m2(G′,G).

Let us consider the second and third PAD graphs given
in Figure 2 (b). By the definition of m2 we have that

maximize 0 x1 + 2/3 x2 − 2/3 x3

subject to ∀i : xi ≥ 0
∀i, j : xi − xj ≤ m1(ui, uj) = 1

Using the above definition we have the following propo-
sition connecting trace equivalence and the metric for PAD
graphs.

Proposition 2. For any PAD graphs G and G′,

G ≈tr G′ ⇔ m2(G,G′) = 0.

Proof. (⇒) Suppose G ≈tr G′. By the definition of trace
equivalence we can conclude that ν(G, u) = ν(G′, u) for
any trace u. It follows that every coefficient of the linear
program in Definition 6 is 0 and thus m2(G,G′) = 0 is
proved.

(⇐) Suppose m2(G,G′) = 0. To show G ≈tr G′ we
need to prove ν(G, u) = ν(G′, u) for any trace u. In order
to ensure m2(G,G′) = 0, the following two conditions must
be satisfied. Before proceeding with the proof we use the
abbreviation that ai = ν(G, ui) − ν(G′, ui) for each trace
ui. Then the linear function of m2 can be reformulated to
be Σui∈δ ai · xi.

1. No coefficient is positive. Otherwise, if ai > 0 for a
certain trace ui, the solution of the linear program is a
value ai · xi, which is larger than 0 as long as xi > 0.

2. It is not case that at least one coefficient is negative
and the other coefficients are either negative or 0. Oth-
erwise, by summing all the coefficients, we would get
Σui∈δ ai < 0 which contradicts the definition of m2.

Therefore, every coefficient of the linear program is 0,
which leads to ν(G, u) = ν(G′, u) for any trace u. There-
fore, we have G ≈tr G′.

3.3 A Metric for Probabilistic Processes

We lift the metric for PAD graphs m2 to be a metric for
sets of PAD graphs m3, by means of the Hausdorff distance
discussed in [14].

Definition 7. Let Ω,Ω′ be two sets of PAD graphs.

m3(Ω,Ω′) =
max(sup

G∈Ω
inf

G′∈Ω′
m2(G,G′), sup

G′∈Ω′
inf
G∈Ω

m2(G′,G))

We are now in a position to define a metric for pCSP
processes.

Definition 8. Let P , Q be two pCSP processes,

m(P,Q) = m3((P ), (Q)).

We give a counterpart of Proposition 2 for processes.

Proposition 3. For any two P , Q,

P ≈tr Q⇔ m(P,Q) = 0.

Proof. (⇒) Suppose P ≈tr Q. By the definition of trace
equivalence, we see that (P ) and (Q) have the same collec-
tion of trace distributions. It is easy to indicate that for any
G ∈ (P ) there exists a G′ ∈ (Q) which can meet G ≈tr G′.
This means that m2(G,G′) = 0, and vice versa. It follows
that m3((P ), (Q)) = 0 and therefore m(P,Q) = 0.

(⇐) Suppose m(P,Q) = 0. This means that for any
G ∈ (P ) we can find a G′ ∈ (Q) such that m2(G,G′) = 0,
and vice versa. So P and Q have the same collection of
trace distributions modulo trace equivalence.

4 Non-expansiveness

We show in this section that prefixing and the three
kinds of choice operators of pCSP are non-expansive, which
means that different processes are more similar when they
are put in the same context. However, we require that the
context is constructed from all other operators except for
parallel composition. This is not surprising because trace
equivalence is in general not a congruence relation with re-
spect to parallel composition [11].

Proposition 4. For any process P,Q,R, if m(P,Q) ≤ ε
then

1. m(a.P, a.Q) ≤ ε

2. m(P uR,Q uR) ≤ ε

3. m(P�R,Q�R) ≤ ε

4. m(P p⊕ R,Q p⊕ R) ≤ ε.



Proof. Given a process P , we write P(P ) for any PAD
graph in (P ).

• As we know, m2(P(a.P ),P(a.Q)) is the solution to
the follow linear program:

maximize
Σa.ui∈δ(ν(P(a.P ), a.ui)− ν(P(a.Q), a.ui))xi

subject to ∀i : xi ≥ 0
∀i, j : xi − xj ≤ m1(a.ui, a.uj)

where

ν(P(a.P ), a.ui)− ν(P(a.Q), a.ui)
= ν(G, ui)− ν(G′, ui)

and m1(a.ui, a.uj) ≤ m1(ui, uj). It follows that
m2(P(a.P ),P(a.Q)) ≤ m2(P(P ),P(Q)). By the
definition of m we have that

m(a.P, a.Q) ≤ m(P,Q) ≤ ε.

• Let P + R denote P u Q and P�Q. Before giving
a proof of the properties we use the following notion
that m′

3((P ), (Q)) = supG∈(P ) infG′∈(Q) m2(G,G′).

m′
3((P + R), (Q + R))

= sup
G∈(P )∪(R)

inf
G′∈(Q)∪(R)

m2(G,G′)

= sup
G∈(P )

inf
G′∈(Q)∪(R)

m2(G,G′)

≤ sup
G∈(P )

inf
G′∈(Q)

m2(G,G′)

= m′
3((P ), (Q))

Similarly,

m′
3((Q + R), (P + R)) ≤ m′

3((Q), (P ))

Therefore, we can infer that

m(P + R,Q + R)
≤ max(m′

3((P ), (Q)),m′
3((Q), (P )))

= m(P,Q)
≤ ε

• m2(P(P p⊕ R),P(Q p⊕ R)) is the solution to the
following linear program:

maximize
Σui∈δ(ν(P(P p⊕ R), ui)− ν(P(Qp⊕ R), ui))xi

subject to ∀i : xi ≥ 0
∀i, j : xi − xj ≤ m1(ui, uj)

where

Σui∈δ(ν(P(P p⊕ R), ui)− ν(P(Qp⊕ R), ui))xi

= p(Σui∈δ′(ν(G, ui)− ν(G′, ui))xi)

and δ′ = δ−ts(P(R)). The dual of m2 can be reduced
to a transshipment problem (cf. Section 5).

We can find that these two transshipment problems re-
duced from

m2(P(P p⊕ R),P(Qp⊕ R))

and m2(P(P ),P(Q)) have the same sinks, sources as
well as costs between these nodes. One difference be-
tween the two transshipment problems is that the first
problem has some intermediate nodes while the second
one has no such nodes. This means that it may be more
expensive to send units directly from a given source to
a given sink, rather than indirectly. Another difference
lies in the fact that the demand of the first problem is
that of the second one with a discount factor p. Then
we can conclude

m2(P(P p⊕ R),P(Qp⊕ R))
≤ p ∗m2(P(P ),P(Q))

and thus
m(P p⊕ R,Q p⊕ R)
≤ p ∗m(P,Q)
= p ∗ ε
≤ ε

However, parallel composition is not non-expansive.
Consider the following example: P = a.(b.0 1/2⊕ c.0),
Q = a.b.0 1/3⊕ a.c.0 and R = a.0. It can be checked
that m(P |{a}R,Q|{a}R) = 1/6 while m(P,Q) = 1/12.

5 Linear Programming

In this section, we show that the metric m2 between trace
distributions can be reduced to a transshipment problem.
For more discussions on this problem we refer the reader
to the textbook of Chvatal [2]. The transshipment problem
is to find the cheapest way to ship a prescribed amount of a
commodity from specified origins to specified destinations
through a concrete transportation network. This network is
represented by a directed graph.

The metric in Definition 6 is given in terms of a linear
programming problem and if all xi are 0 this problem has
a feasible origin. According to the fundamental theorem of
linear programming, this problem has an optimal solution
as the dual problem. If N + 1 denotes the number of traces



in δ, then the dual problem of m2 can be formulated in terms
of matrices and vectors as follows.

minimize cost · vectorT

such that

matrix · vectorT = demandT

and
vector ≥ 0

where the (N2 + N)-vector cost is defined by

costl =
{

m1(u(l mod N), u(l div N)) if condition
m1(uN , u(l div N)) othersize.

in which condition stands for the condition

0 ≤ l < N2 + N and l mod N 6= l div N

and the (N + 1)-vector demand is defined by

demandk = ν(G, uk)− ν(G′, uk) 0 ≤ k ≤ N

and the (N + 1)× (N2 + N)-matrix matrix is defined by

matrixk,l =


1 if (k = l mod N ∧ k 6= l div N)

or (k = N ∧ l mod (N + 1) = 0)
−1 if k = l div N
0 othersize.

Consequently, the definition of m2 is an instance of the
transshipment problem.

For the second and third PAD graphs given in Figure 2
(b), calculating their distance amounts to solving the fol-
lowing transshipment problem.

minimize (1, 1, 1, 1, 1, 1) · vectorT

subject to matrix · vectorT = demandT

vector ≥ 0

where matrix and demand looks as follows.

matrix =

 −1 −1 1 0 1 0
0 1 −1 −1 0 1
1 0 0 1 −1 −1


demand = (0, 2/3,−2/3)

6 Algorithm

Given two pCSP processes P and Q, we present an al-
gorithm to calculate the distance m(P,Q). The presentation
is aimed at clarity. For more details we refer the reader to
Appendix A.

Our algorithm implements m2 by the procedure
Distance which returns a real number between [0,1]. Ef-
ficient implementation of Distance is crucial to the over-
all complexity of the algorithm. For two PAD graphs, we
obtain a set A of pairs of traces and probabilities of the
form (u, p) by computing ν(G, u)−ν(G′, u). N +1 denotes
the number of elements in the set A . p(u) denotes the sec-
ond part of the pair (u, p) for any trace u. We have proved
that the dual problem of m2 can be reduced to a transship-
ment problem. Then we can construct the dual problem of
m2 and initiate each parameter of this transshipment prob-
lem step by step according to the proof in Section 5. Finally,
we can solve the transshipment problem using the polyno-
mial dual network simplex algorithm introduced in [15]. It
should be noted that we require the discount factor c when
computing parameter cost.

In order to get PAD graphs, we need to have a proce-
dure split which splits a NPAD graph into a set of PAD
graphs. Given a process P , we writeNP(P ) for any NPAD
graph. In this procedure, we use sets M and N to con-
tain NPAD graphs and PAD graphs, respectively. First,
this procedure depicts NPAD graph from the given process
expression using the pLTS generated by the rules in Sec-
tion 2. Then a sub-procedure Dfsplit , based on the depth-
first search algorithm [3], is called. Dfsplit searches the
nodes of the NPAD graph (which is a finite tree in this case)
for finding those states that have more than one outgoing
distributions. If such nodes exist, the NPAD graph can be
split into a set of several small NPAD graphs, each of which
is constructed by associating a different distribution with
the state which is the first one to be found. Otherwise, the
NPAD graph (which is a PAD graph) itself is returned. Con-
sider the example in Figure 3. After the first time execution
of Dfsplit , we find the left state in the second level of the
tree in (a) has two distributions, and then the NPAD graph
shown in (a) can be split into two NPAD graphs in (b).

In presenting the following procedure, we recall the no-
tion m′

3((P + R), (Q + R)) mentioned in Section 4. The
procedure semiHausd is implemented to calculate m′

3.
Each time the procedure chooses a PAD graph in (P ), it
searches all the PAD graphs existing in (Q) to find such
a PAD graph that makes Distance as small as possible.
The procedure repeatedly chooses each graph in (P ) and
obtain a set which contains all the smallest results. Then
it picks up the largest one in this set. Finally, in order
to get the final result main loop of our algorithm exe-
cutes semiHausd twice.

Correctness of our algorithm lies in the fact that we use
semiHausd to calculate m′

3((P ), (Q)) and m′
3((Q), (P ))

respectively and then return the larger one. Therefore, we
obtain max(m′

3((P ), (Q)),m′
3((Q), (P ))) which is equal

to m((P ), (Q)) when our algorithm terminates.
The complexity of our algorithm is given by the follow-



(a)

(b)

Figure 3. Splitting an NPAD graph

ing proposition.

Proposition 5. Given two NPAD graphs, each of which
has n nodes, the time complexity of our algorithm is
O(n6 log n).

Proof. Consider an NPAD graph which has n nodes, the
procedure split will takes at most O(n2) times to get a
set (P ) which includes at most n PAD graphs. Then the
procedure semiHausd is repeated at most n2 times. Within
one repeat of this procedure, the transshipment problem is
called to calculate m2.

As for the transshipment problem, it will take
time O(n2(m + n log n) log n) to find the result,
where n and m denote the numbers of nodes and arcs re-
spectively in the network [15]. According to our algorithm,
the network is a complete graph and therefore it will take
time O(n4 log n) to return the result.

7 Examples and Related Work

In this section, some examples are constructed only for
the purpose of illustrating our algorithm we just discussed,
and then we compare our metric with others.

Our algorithm calculates the distance between pCSP
processes up to a prescribed discount factor c. Suppose
c = 1/2, we calculate the distance of the following pairs
of processes.

• Let

P1 = (a.0 u a.0) 1/2⊕ (b.0 3/4⊕ b.0)
P2 = a.0 1/3⊕ (b.0�b.0) .

It can be calculated that m(P1, P2) = 1/6.

• Let

P3 = a.0 1/3⊕ ((b.0 u c.0)�(d.0 1/2⊕ a.0))
P4 = (b.0 u c.0)�(d.0 1/2⊕ a.0).

It can be calculated that m(P3, P4) = 1/3.

We compare our metric with the one introduced by van
Breugel in [18]. Our metric is a linear metric while theirs
is a branching metric. Just as bisimulation implies trace
equivalence, so branching metric is greater than or equal to
the corresponding linear one. However, they restrict them-
selves to probabilistic transition systems without labels to
simplify the definition, while our metric calculates the dis-
tance of two process terms directly.

We make a comparison with the metric introduced by
Norman [14]. We argue that our metric is more accurate
than theirs. Consider the following three processes:

P = a.0 1/2⊕ b.0
Q = d.a.0 1/2⊕ b.0
R = d.0 1/3⊕ b.0.

Based on the observations, we can infer that Q behaves
more like R than P . This is captured by our metric, since P
and R are 1/2 apart whereas Q and R are 1/3 apart. How-
ever, in the metric introduced by Norman both P,R and
Q,R are 1/2 apart.

Our metric concentrates on the finite probabilistic pro-
cesses, while Norman’s metric can deal with recursive prob-
abilistic processes by means of approximations via trunca-
tions [13]. However, each approximation deals with finite
trees, just as in our case, and no algorithm is considered in
[13].

8 Conclusion and Future Work

In this paper we have proposed a metric for finite pro-
cesses in a probabilistic extension of CSP. The kernel of our



metric corresponds exactly to trace equivalence. Many pro-
cess constructors has been shown to be nonexpansive with
respect to our metric, except for parallel composition.

Making use of the transshipment problem, we have de-
veloped an algorithm that calculates the distance between
finite probabilistic processes to a prescribed degree of accu-
racy in polynomial time. We have implemented our algo-
rithm in a tool (see http://basics.sjtu.edu.cn/
∼songlin/tool.html). Given a discount factor and
two process terms as input, the tool automatically calculates
the distance between the two processes and produces it as
output. All the examples in Section 7 have been checked by
the tool.

As to the future work, we would like to extend our metric
to capture the distance between probabilistic processes con-
structed with more operators so as to do some case studies.
For example, we could write the specification of a security
system as a perfect but impractical processes and its imple-
mentation as a practical process which is considered safe if
it only differs from the specification with a negligible prob-
ability. We are now considering to integrate the method of
[5] with our tool to measure the degree of anonymity for
some security protocols.

Acknowledgments We thank Franck van Breugel for
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A Pseudo-code

Algorithm 1. split(P )
NP(P )← P
M ← NP(P ), N ← ∅
while M 6= ∅ do
NP(P ′) is a element of M and M = M /NP(P ′)
tempset← Dfsplit(NP(P ′))
if tempset has only one element then

N ← N ∪ tempset
else

M ←M∪ tempset
end if

end while
return N



Algorithm 2. Distance(G,G′, c)
distance← 0
N ← |A | -1
for k← 0 to N do

for l← 0 to N2+N-1 do
matrix[k][l] is initiated

end for
end for
for k←0 to N do

demand[k]← p(uk)
end for
for l←0 to N2+N-1 do

cost[l] is initiated
end for
distance← Transshipment(matrix,cost,demand)
return distance

Algorithm 3. semiHausd((P ), (Q), c)
maxdistance← 0
for all G in (P ) do

shortest← maximum
for all G′ in (Q) do

tempdis← Distance(G,G′, c)
if tempdis < shortest then

shortest← tempdis
end if

end for
if shortest > maxdistance then

maxdistance← shortest
end if

end for
return maxdistance

Algorithm 4. main loop
distance1← 0
distance2← 0
discount factor c is initiated
(P )← split(P)
(Q)← split(Q)
distance1← semiHausd((P ), (Q), c)
distance2← semiHausd((Q), (P ), c)
return max(distance1, distance2)


