
An Algebraic Approach to Automatic Reasoning
for NetKAT Based on its Operational Semantics?

Yuxin Deng, Min Zhang??, and Guoqing Lei??

Shanghai Key Laboratory of Trustworthy Computing, MOE International Joint Lab
of Trustworthy Software, and International Research Center of Trustworthy Software,

East China Normal University

Abstract. NetKAT is a network programming language with a solid
mathematical foundation. In this paper, we present an operational se-
mantics and show that it is sound and complete with respect to its orig-
inal axiomatic semantics. We achieve automatic reasoning for NetKAT
such as reachability analysis and model checking of temporal proper-
ties, by formalizing the operational semantics in an algebraic executable
specification language called Maude. In addition, as NetKAT policies are
normalizable, two policies are operationally equivalent if and only if they
can be converted into the same normal form.We provide a formal way of
reasoning about network properties by turning the equivalence checking
problem of NetKAT policies into the normalization problem that can be
automated in Maude.

Keywords: NetKAT, operational semantics, model checking, LTL, Maude

1 Introduction

In recent years, there has been exciting developent in the area of software-defined
networking (SDN), where physically distributed switches are programmable and
managed in a logically centralized way so as to effectively implement many appli-
cations such as traffic monitoring, access control, and intrusion detection. Several
domain-specific languages for SDN have been proposed, e.g [3,6,9,11,14,15], in
order to have a high-level abstraction of network programs where it is more ef-
fective to specify, program and reason about the behaviour of networks. Among
them, NetKAT [3] is a network programming language based on Kleene algebra
with tests (KAT) [10]. The design of NetKAT was influenced by NetCore [10]
and Pyretic [12], both of which originate from Frenetic [6]. Different from other
languages, NetKAT has a solid mathematical foundation with a denotational
semantics and an axiomatic semantics based on KAT. It has also been extended
to the probabilistic setting [7].

? Partially supported by the National Natural Science Foundation of China (Grant No.
61672229, 61261130589, 61502171), Shanghai Municipal Natural Science Foundation
(16ZR1409100), and ANR 12IS02001 PACE.

?? Corresponding authors. Email addresses: zhangmin@sei.ecnu.edu.cn (Min Zhang),
51151500022@ecnu.cn (Guoqing Lei)

In this paper we present an operational semantics for NetKAT. The basic
idea is to view the (global) state of a network as the set of all packets currently
availabe in the network. Transitions between states are enabled by the execu-
tion of policies: the behaviour of a policy is to transform a given packet into a
(possibly empty) set of packets, which leads to the change of state for the whole
network. The operational semantics induces a natural equivalence on policies.
Intuitively, two policies p and q are equivalent, if starting from any state Π,
both policies can change Π into the same state Π ′. We show that two policies
are operationally equivalent if and only if they are provably equal according to
the equational theory defined in [3]. In other words, our operational semantics is
sound and complete with respect to the original axiomatic semantics of NetKAT.

In order to facilitate the reasoning about NetKAT programs, we formalize the
operational semantics and the normalization theory of NetKAT in an algebraic
formal reasoning system Maude [5]. The operational semantics is executable in
Maude so we can search if a desired state is reachable from a starting state. The
normalization theory of NetKAT tells us that all policies are normalizable, and
two policies are operationally equivalent if and only if they can be converted
into the same normal form. This gives rise to a formal way of reasoning about
network properties by turning the equivalence checking problem of NetKAT poli-
cies into the normalization problem. More specifically, to check if two policies
are equivalent, we first normalize them and check if their normal forms are the
same. Both steps can be automated in Maude. For instance, in order to check
the reachability from one switch to another in a network, we first define a high-
level specification that is independent of the underlying network topology and
a low-level implementation that describes a hop-by-hop routing from the source
to the destination. Both the specification and the implementation are written
as NetKAT policies. We then exploit our rewriting-based reasoning to check the
(in)equivalence of the two policies. If Maude produces a positive answer, meaning
that the two policies are equivalent, we know that the implementation conforms
to the specification, thus the destination switch is indeed reachable from the
source switch. Equivalence checking of policies are also useful for other applica-
tions such as proving compilation correctness and non-interference property of
programs [3]. In addition, we combine the formalized operational semantics with
Maude LTL model checker to verify temporal properties of packets traveling in
a network. This differs from [4], which enriches the original NetKAT language
with temporal predicates to specify properties of a packet’s history. The current
work considers a lightweight NetKAT that does not record any packet history,
but we still achieve automatic reasoning about packet histories by using Maude.

The rest of this paper is structured as follows. In Section 2 we recall the syntax
and the axiomatic semantics of NetKAT as given in [3]. In Section 3 we present
an operational semantics and show that it is sound and complete with respect to
its axiomatic semantics. In Section 4 we formalize the operational and axiomatic
semantics of NetKAT in Maude. In Section 5 we use Maude to do reachability
analysis, model checking of LTL properties, and equivalence checking of policies.
In Section 6 we discuss our experiments. Finally, we conclude in Section 7.

2

Table 1: Syntax of NetKAT

Fields f ::= f1 | · · · | fk
Packets π ::= {f1 = n1, · · · , fk = nk}

Predicates a, b, c ::= 1 Identity Policies

| 0 Drop p, q, r ::= a Filter

| f = n Match | f ← n Modification

| a+ b Disjunction | p+ q Parallel composition

| a · b Conjunction | p · q Sequential composition

| ¬a Negation | p∗ Kleene star

2 NetKAT

We briefly review the syntax and the axiomatic semantics of NetKAT; see [3]
for a more detailed exposition.

NetKAT is based on Kleene algebra with tests (KAT) [10], an algebra for
reasoning about partial correctness of programs. KAT is Kleene algebra (KA),
the algebra of regular expressions, augmented with Boolean tests. Formally, a
KAT is a two-sorted structure (K,B,+, ·, ∗,¬, 0, 1) such that

– (K,+, ·, ∗, 0, 1) is a Kleene algebra
– (B,+, ·,¬, 0, 1) is a Boolean algebra
– (B,+, ·, 0, 1) is a subalgebra of (K,+, ·, 0, 1).

Elements of B and K are called tests and actions respectively; they are called
predicates and policies in NetKAT.

A packet π is a record with fields f1, ..., fk mapping to fixed-width integers
n1, ..., nk, respectively. We assume that every packet contains the same fields,
including two special fields for the switch (sw) and the port (pt) that identify
the position of a packet in a global network. We write π.f for the value in field
f of π, and π[n/f] for the packet obtained by updating field f of π by value n.

The syntax of NetKAT is given in Table 1. There are two categories of ex-
pressions: predicates (a, b, c) and policies (p, q, r). Predicates include true (1)
and false (0), matches (f = n), negation (¬a), disjunction (a+ b), and conjunc-
tion (a · b) operators. Policies include predicates, modifications (f ← n), parallel
(p+ q) and sequential (p · q) composition, and iteration (p∗). By convention, (∗)
binds tighter than (·), which binds tighter than (+). The only and key difference
from the original NetKAT presented in [3] is the absence of the dup operator.
This operator is hardly used in practical network programming and is introduced
mainly to facilitate the completeness proof of an axiomatic semantics with re-
spect to a denotational semantics [3]. For easy formalization and reasoning in
Maude, it seems more reasonable to drop this operator than to keep it.

The axiomatic semantics of NetKAT is displayed in Table 2, where p ≤ q is an
abbreviation for p+ q ≡ q. We write ` p ≡ q if the equality p ≡ q is derivable by

3

Table 2: Axioms of NetKAT

Kleene Algebra Axioms

p+ (q + r) ≡ (p+ q) + r KA-Plus-Assoc (p+ q) · r ≡ p · r + q · r KA-Seq-Dist-R

p+ q ≡ q + p KA-Plus-Comm 0 · p ≡ 0 KA-Zero-Seq

p+ 0 ≡ p KA-Plus-Zero p · 0 ≡ 0 KA-Seq-Zero

p+ p ≡ p KA-Plus-Idem 1 + p · p∗ ≡ p∗ KA-Unroll-L

p · (q · r) ≡ (p · q) · r KA-Seq-Assoc q + p · r ≤ r ⇒ p∗ · q ≤ r KA-Lfp-L

1 · p ≡ p KA-One-Seq 1 + p∗ · p ≡ p∗ KA-Unroll-R

p · 1 ≡ p KA-Seq-One q + r · p ≤ r ⇒ q · p∗ ≤ r KA-Lfp-R

p · (q + r) ≡ p · q + p · r KA-Seq-Dist-L

Additional Boolean Algebra Axioms

a+ (b · c) ≡ (a+ b) · (a+ c) BA-Plus-Dist a · b ≡ b · a BA-Seq-Comm

a+ 1 ≡ 1 BA-Plus-One a · ¬a ≡ 0 BA-Contra

a+ ¬a ≡ 1 BA-Excl-Mid a · a ≡ a BA-Seq-Idem

Packet Algebra Axioms

f ← n · f ′ ← n′ ≡ f ′ ← n′ · f ← n, if f 6= f ′ PA-Mod-Mod-Comm

f ← n · f ′ = n′ ≡ f ′ = n′ · f ← n, if f 6= f ′ PA-Mod-Filter-Comm

f ← n · f = n ≡ f ← n PA-Mod-Filter

f = n · f ← n ≡ f = n PA-Filter-Mod

f ← n · f ← n′ ≡ f ← n′ PA-Mod-Mod

f = n · f = n′ ≡ 0, if n 6= n′ PA-Contra∑
i f = i ≡ 1 PA-Match-All

using the axioms in Table 2. A denotional semantics based on packet histories is
shown to be sound and complete with respect to the axiomatic semantics in [3].

3 Operational Semantics

Below we give an operational semantics for NetKAT. We assume a global network
that consists of a finite number of switches. Each switch has a finite number of
ports. A state of the network is the set of all packets in the network. We denote
by S the set of all possible states in the network, ranged over by Π.

Intuitively, the behaviour of a policy is to transform a given packet into a
(possibly empty) set of packets. This can be described by an evaluation relation
of the form 〈p, π〉 → Π, where p is a policy, π is a packet to be processed and
Π is the set of packets obtained by applying p to π, as defined in Table 3. The
evaluation relation can be lifted to the form 〈p,Π〉 → Π ′, where both Π and Π ′

are sets of packets, according to the last rule in Table 3.

4

Table 3: Operational semantics of NetKAT

[Identity]
〈1, π〉 → {π}

[Drop]
〈0, π〉 → ∅

[Modification]
〈f ← n, π〉 → {π[n/f]}

π.f = n
[Match-I]

〈f = n, π〉 → {π}

π.f 6= n
[Match-II]

〈f = n, π〉 → ∅

〈a, π〉 → Π
[Negation]

〈¬a, π〉 → {π}\Π

〈p, π〉 → Πp 〈q, π〉 → Πq

[Parallel composition]
〈p+ q, π〉 → Πp ∪Πq

∀i ∈ I : 〈p, πi〉 → Πi

[Packet set]
〈p, {πi}i∈I〉 → ∪i∈IΠi

〈p, π〉 → {πi | i ∈ I} ∀i ∈ I : 〈q, πi〉 → Πi

[Sequential composition]
〈p · q, π〉 → ∪i∈IΠi

〈p0, π〉 → Π0 = {π} ∀i ≥ 0 : 〈pi+1, π〉 = 〈p · pi, π〉 → Πi+1

[Kleene star]
〈p∗, π〉 → ∪i≥0Πi

A pair of the form 〈p,Π〉 represents a configuration from which it remains
to execute by applying policy p to state Π. The execution may terminate in a
final state, or may diverge and never yield a final state, because the rule for p∗

potentially requires infinite computations. However, in practical applications, we
often specify p in such a way that after finitely many iterations, the set Πi will
stabilize to be empty, thus we can terminate the computation when a sufficiently
large bound is reached. We will see in Section 6 a concrete example where the
length of the selected path between two nodes in a network actually gives a
bound for the number of iterations.

The operational semantics immediately induces an equivalence on policies.

Definition 1. Two policies are operationally equivalent, written p ∼ q, if

∀Π,Π ′ ∈ S : 〈p,Π〉 → Π ′ ⇔ 〈q,Π〉 → Π ′.

If two policies p and q are provably equal by using the axioms in Table 2,
then they are operationally equivalent.

Theorem 2 (Completeness). If ` p ≡ q then p ∼ q.
Proof. Let us first define a denotational semantics as follows.

[[p]] ∈ Π → P(Π) [[¬a]]π := {π}\([[a]]π)

[[1]]π := {π} [[f ← n]]π := {π[n/f]}
[[0]]π := ∅ [[p+ q]]π := [[p]]π ∪ [[q]]π

[[p · q]]π := ([[p]] • [[q]])π [[p∗]]π :=
⋃
i∈N F

iπ

[[f = n]]π :=

{
{π} if π.f = n

∅ otherwise
,

5

where F 0π := {π} and F i+1π := ([[p]] • F i)π, and • is the Kleisli composition of
functions of type Π → P(Π) defined as:

(f • g)(x) :=
⋃
{g(y) | y ∈ f(x)}.

This is essentially the standard packet-history semantics for NetKAT [3] without
the dup operator. In the absence of this operator, only the current packet is
recorded and all its history is forgotten. By the soundness of the packet-history
semantics, we know that

if ` p ≡ q then [[p]] = [[q]]. (1)

By a simple induction on the structure of policies, it is not difficult to show that
[[p]]π = Π iff 〈p, π〉 → Π. It follows that

[[p]] = [[q]] iff p ∼ q. (2)

Combining (1) and (2), we obtain that ` p ≡ q implies p ∼ q. ut
The inverse of the above theorem also holds, and the rest of this section

is devoted to proving it. Inspired by [3] we first introduce a notion of reduced
NetKAT in order to define normal forms of policies.

Let f1, ..., fk be a list of all fields of a packet in some fixed order. For each
tuple n̄ = n1, ..., nk of values, let f̄ = n̄ and f̄ ← n̄ denote the expressions

f1 = n1 · . . . · fk = nk f1 ← n1 · . . . · fk ← nk,

respectively. The former is a predicate called an atom and the latter a policy
called a complete assignment. The atoms and the complete assignments are in
one-to-one correspondence according to the values n̄. If α is an atom, we denote
by σα the corresponding complete assignment, and if σ is a complete assignment,
we denote by ασ the corresponding atom. We write At and P for the sets of atoms
and complete assignments, respectively. Note that all matches can be replaced
by atoms and all modifications by complete assignments. Hence, any NetKAT
policy may be viewed as a regular expression over the alphabet At ∪ P .

Definition 3. A policy is in normal form if it is in the form
∑
i∈I αi ·σi, where

I is a finite set, αi ∈ At and σi ∈ P . It degenerates into 0 if I is empty. A policy
p is normalizable if ` p ≡ p′ for some p′ in normal form. A normal form p is
uniform if all the summands have the same atom α, that is p =

∑
i∈I α · σi.

Lemma 4. Every policy is normalizable.

Proof. Similar to the normalization proof in [3]. The most difficult case is Kleene
star. In order to obtain the normal form of p∗, we first need to consider the case
that p is a uniform normal form, based on which we consider the general form
and make use of an important KAT theorem called KAT-Denesting in [10]:

(p+ q)∗ ≡ p∗ · (q · p∗)∗ .

ut

6

Theorem 5 (Soundness). If p ∼ q then ` p ≡ q.

Proof. By Lemma 4, we know that there are normal forms p̂ and q̂ such that
` p ≡ p̂ and ` q ≡ q̂. By completeness we have p ∼ p̂ and q ∼ q̂, which implies
p̂ ∼ q̂ by transitivity. Let p̂ =

∑
i∈I αi · σi and q̂ =

∑
j∈J βj · ρj . Note that for

each atom α there is a unique packet that satisfies it (if α is f̄ = n̄, then the
packet has fields fi = ni for each 1 ≤ i ≤ k). Let us denote this packet by πα.
The behaviour of any summand αi · σi is to block all packets that do not satisfy
αi and transform the packet παi into πασi . In view of KA-Plus-Idem, we may
assume that no two summands in p̂ are the same; similarly for q̂.

Below we infer from ∑
i∈I

αi · σi ∼
∑
j∈J

βj · ρj (3)

that I is in one-to-one correspondence with J and

∀i ∈ I, ∃j ∈ J : αi · σi = βj · ρj . (4)

To see this, take any packet π. By the operational semantics of NetKAT, we
know that

〈
∑
i∈I

αi · σi, π〉 →
⋃
i∈I

Πi,

where Πi = {πασi} if π = παi , and ∅ otherwise. Similarly,

〈
∑
j∈J

βj · ρj , π〉 →
⋃
j∈J

Π ′j ,

where Π ′j = {παρj } if π = πβj , and ∅ otherwise. We know from (3) that⋃
i∈I

Πi =
⋃
j∈J

Π ′j . (5)

If indeed π = παk for some k ∈ I, we let [k]1 be the set {i ∈ I | αk = αi} and
[k]2 be the set {j ∈ J | αk = βj}. We have that⋃

i∈I Πi =
⋃
i∈[k]1 Πi =

⋃
i∈[k]1{πασi}⋃

j∈J Π
′
i =

⋃
j∈[k]2 Π

′
i =

⋃
j∈[k]2{παρj }.

Combining them with (5), we obtain that⋃
i∈[k]1

{πασi} =
⋃

j∈[k]2

{παρj }.

Note that the elements in the left union are pair-wise different and similarly for
the elements in the right union. Therefore, [k]1 is in one-to-one correspondence
with [k]2, that is, for each i ∈ [k]1 there is a unique j ∈ [k]2 such that πασi = παρj .

7

Observe that {[k]1 | k ∈ I} is actually a partition of I, and so is {[k]2 | k ∈ I}
for J (there is no j ∈ J with βj 6= αi for all i ∈ I, otherwise the packet
πβj would be blocked by p̂ but not by q̂). This means that I is in one-to-one
correspondence with J and for each i ∈ I there is a corresponding j ∈ J with
αi = βj and πασi = παρj . Note that the only complete assignment (a string in

P) that produces πασi is σi. So we must have σi = ρj and hence αi ·σi = βj · ρj .
Therefore, we have completed the proof of (4).

As a consequence, we can derive ` ∑
i∈I αi · σi ≡

∑
j∈J βj · ρj by using

KA-Plus-Comm, and hence ` p ≡ q by transitivity. ut

The proof of Lemma 4 is largely influenced by [3]. However, due to the absence
of the dup operator, our proof of Theorem 5 is much simpler and more elementary
than its counterpart [3, Theorem 2]; the latter is based on a reduction to the
completeness of Kleene algebra, which is not needed any more in our proof.

4 Formalization of NetKAT in Maude

4.1 Maude in a nutshell

Maude is a state-of-the-art algebraic specification language and an efficient
rewrite engine [5], which can be used to formally define semantics of program-
ming languages. One main feature of Maude is that formal definitions in Maude
are executable [13], which allows us to execute programs with the defined se-
mantics and perform formal analysis for the programs.

Maude specifies both equational theories and rewrite theories. An equational
theory is a pair (Σ,E ∪ A), where Σ is a signature specifying the sorts and
operators, E is a set of equations, and A is a set of equational attributes. An
equation is an unoriented pair of two terms t1, t2 of the same sort. In Maude,
it is defined in the form of (eq t1 = t2.). An equation can be conditional, and
it is defined in the form of (ceq t1 = t2 if c.), where c can be an ordinary
equation t = t′, a matching equation t := t′, or a conjunction of such equations.
A matching equation, e.g., t := t′, is mathematically treated as an ordinary
equation, but operationally t is matched against the canonical form of t′ and
the new variables in t are instantiated by the matching. Although an equation
is unoriented mathematically, they are used only from left to right by Maude
for computation. Equations must be guaranteed terminating and confluent when
they are used as simplification rules. Intuitively, terminating means that there
must not exist an infinite sequence of applying these equations, and confluence
means that the final result after applying these equations must be unique.

A rewrite theory R = (Σ,E ∪ A,R) consists of an underlying equational
theory (Σ,E ∪A) and a set of (possibly conditional) rewrite rules R. A rewrite
rule is an oriented pair (from left to right), which is defined in the form of
(rl t1 => t2.) for the case of unconditional rules or (crl t1 => t2 if c′.) for
the case of conditional rules, where c′ is a more general condition than that
in conditional equations by allowing rewrite condition in the form of t => t′.
A rewrite condition t => t′ holds if and only if there exists a finite rewrite

8

sequence from t to t′ by applying the rewrite rules in R. Computationally, both
equations and rewrite rules are used from left to right to rewrite target terms.
Mathematically, equations are interpreted as the definition of functions, while
rewrite rules are interpreted as transitions or inference rules. Unlike equations,
rewrite rules are not necessarily terminating and confluent.

Rewrite theories can be used to naturally specify transition systems or logi-
cal frameworks. The underlying equational theory is used to specify the statics
of systems such as data types, state structures, and R specifies the dynamics,
i.e., the transitions among states. System states are specified as elements of an
algebraic data type, namely, the initial algebra of the equational theory (Σ,E).
In Σ state constructors are declared to build up distributed states out of sim-
pler state components. The equations in E specify the algebraic identities that
such distributed states enjoy. The rewrite rules in R specify the local concurrent
transitions of transition systems.

4.2 Formalization of the operational semantics of NetKAT

Before formalizing the operational semantics of NetKAT, we need first formalize
the basic concepts such as fields, packets, policies and configuration in NetKAT.
Maude allows for user-defined data types. We explain the definition of some
important data types such as Field, Packet, Policy and Configuration.

1 sorts FieldId , Field , Policy , Predicate , Configuration .

2 subsort Field < Packet .

3 ops src typ dst vlan ip -src ip -dst tcp -src tcp -dst udp -src

udp -dst sw pt : -> FieldId [ctor] .

4 op (_:_) : FieldId Int -> Field [ctor] .

5 op nil : -> Packet [ctor] .

6 op __ : Packet Packet -> Packet [assoc ctor id: nil] .

7 op _←_ : FieldId Int -> Policy [ctor] .

8 op _+_ : Policy Policy -> Policy [ctor assoc comm] .

9 op _·_ : Policy Policy -> Policy [ctor assoc] .

10 op _* : Policy -> Policy [ctor] .

11 ops l o : -> Predicate [ctor] .

12 op _=_ : FieldId Int -> Predicate [ctor] .

13 op _+_ : Predicate Predicate -> Predicate [ctor assoc comm].

14 op _#_ : Predicate Predicate -> Predicate [ctor assoc comm].

15 op ~_ : Predicate -> Predicate [ctor] .

16 op <_,_> : Policy PackSet -> Configuration .

The Maude keyword sorts is used to declare sorts to represent sets of data
elements, and subsort declares a partial order relation of two sorts. By declaring
that Field is a subsort of Packet, it formalizes the fact that a field is also
regarded as a packet, but not vice versa. Keyword op (resp. ops) is used to declare
an operator (resp. multiple operators). Maude allows infix operators, in which the
underbars indicate the place where arguments should be located. Operator (_:_)
is used to construct fields with field identifiers and integer numbers. Operator
nil is called a constant because it does not take any arguments, and it represents

9

an empty packet. The union of two packets constitute a new one, as formalized
by the operator __. The operators declared for policies and predicates have clear
correspondence to the syntax defined in Table 1, and thus we omit more detailed
explanations about them. It is worth mentioning that ctor, assoc and comm are
attributions of operators, declaring that an operator is a constructor, associative
and commutative, respectively. We use o to represent Drop and l for Identity.
We declare a new operator # instead of · to represent conjunction of predicates
because · is used for sequential composition of policies and is not commutative,
while conjunction of predicates is commutative.

We declare a sort Configration to represent the sets of the pairs of the form
〈p,Π〉. An element of sort Configuration is called a configuration, written in
the form of <p,PI> with a policy p and a set PI of packets.

The operational semantics of NetKAT is formalized by the transformation
of a configuration into another. As defined in Table 3, the execution of a policy
p · q can be viewed as a sequential execution of p and q. We define the following
set of rewrite rules with each formalizing one case for the structure of p.

1 rl [o] : < o, PI > => < l, empty > .

2 rl [MAT] : < (F = N) · P, PI > => < P, filter(PI,F,N)> .

3 crl [NEG] : < (~ Q) · P, PI > => < P, PI \ PI’ >

4 if < Q, PI > => < l, PI’ > .

5 rl [ASG] : < (F ← N) · P, PI > => < P, update(PI,F,N)> .

6 crl [COM] : < (P + Q) · R, PI > => < R, (PI1 , PI2) >

7 if < P, PI > => < l, PI1 > /\ < Q, PI > => < l, PI2 > .

8 rl [KLE -0] : < (P *) · R, PI > => < R, PI >

9 rl [KLE -1] : < (P *) · R, PI > => < P · R, PI1 > .

10 rl [KLE -n] : < (P *) · R, PI > => < P · (P *) · R, PI > .

The first rule specifies the semantics of Drop, i.e., 0 in NetKAT. The rule in Line
2 formalizes the operational semantics of match. In the rule, F, N, P and PI are
Maude variables of sort Field, Nat, Policy and PackSet. These variables are
universally quantified. Thus, (F = N) represents an arbitrary match, P an arbi-
trary policy, and PI an arbitrary set of packets. After the execution of (F = N),
those packets whose value of the field F is not N are removed from PI. The rule in
Line 3 formalizes the case of negation. It is worth mentioning that the condition
in the rule is a rewrite condition, meaning that the rule takes place if there is a
transition from < Q, PI > to < l, PI’ >. The transition means that after ex-
ecuting Q on a set PI of packets, we obtain a new set PI’ of packets. According
to the operational semantics of negation, the packets that are in both PI’ and
PI must be removed from PI after ~ Q is executed, as defined by the body of
the rule. The last three rules formalize the operational semantics of Kleene star
for the cases of executing policy P by zero, one or more times, respectively.

5 Automatic Reasoning for NetKAT

By the executable operational semantics we can perform various formal analysis
on NetKAT policies using Maude’s built-in functionalities such as simulation,
state space exploration and LTL model checking.

10

5.1 Reachability analysis by state exploration

Given a policy p and a set PI of packets, one fundamental analysis is to ver-
ify if the packets in PI will eventually reach their destination. Because all the
rules except for those about Kleene star are deterministic, there is one and only
one result if in p there is no Kleene star. We can check the reachability prob-
lem by calculating the execution result using Maude’s rewrite command, i.e.,
rew <p, PI>, which simulates the execution of the policy on PI using the rewrite
rules defined for the operational semantics of NetKAT.

If there are Kleene stars in p, the results after applying p on PI may be
multiple. If that is the case, it is important to verify if some desired result can
be obtained by applying p to PI. It is equivalent to checking the reachability from
the initial configuration < p, PI > to some desired destination < p’, PI’ >,
where p’ is the remaining policy to execute when PI’ is reached after applying p

to PI. The reachability verification can be achieved by Maude’s state exploration
function using search command as follows:

1 search [m,n] < p, PI > =>* < p’, PI ’ > [such that condition] .

In the square brackets are optional arguments of the command, where m and n
are natural numbers specifying the expected number of solutions and the max-
imal rewriting steps, and condition is a Boolean term specifying the condition
that target configurations must satisfy.

5.2 Model checking of LTL properties of NetKAT

Using Maude LTL model checker, we can verify not only the reachability of
packets with respect to a policy, but also some temporal properties that the
policy needs to satisfy. Temporal properties of a policy are used to describe
the behavior that the policy should have when packets are transmitted in the
network. By model checking the temporal properties, we study the process of
packet transmission as well as the transmission result.

The usage of Maude LTL model checker follows the conventional methodology
for model checking, i.e., we need first define state propositions, then define LTL
formulas with the state propositions and logical as well as temporal connectors,
and finally do model checking with a fixed initial state and an LTL formula.

1 mod NETKAT -LTL -MODELCHECKING is

2 including OPERATIONAL -SEMANTICS + MODEL -CHECKER .

3 subsort Configuration < State .

4 ops hasPS hasDS : Int Int -> Prop . vars SW PR DS : Int .

5 var P : Policy . var PS : PackSet . var PK : Packet .

6 eq < P , PS > |= hasDS(SW,PR) = checkHasDS(PS,DS,PR) .

7 eq < P , PS > |= hasPS(SW,PR) = checkHasPS(PS,SW,PR) .

8 eq C:Configuration |= PP:Prop = false [owise] .

9 endm

As an example, we show model checking of forwarding traces of packets in Maude.
In the above Maude module two state propositions hasDS and hasPS are defined.

11

Given a packet PR, a switch DS and a configuration <p,PS>, hasDS returns true
if there is a packet PR in PS whose destination is DS. The other one i.e., hasPS,
returns true if there is a packet PR at SW in PS. They are defined by two equations
at Lines 6 and 7, where two auxiliary predicates are needed. We omit the detailed
definition of the two predicates due to space limitation.

With predefined state propositions we can define and model check LTL prop-
erties that are composed by the propositions and LTL operators. For instance,
the first command below is used to model check whether a packet X whose des-
tination is switch Y eventually reaches the switch Y with respect to policy p.

1 red modelCheck(< p, PI >, [](hasDS(X,Y) -> <> hasPS(X,Y))) .

2 red modelCheck(< p, PI >, [](hasPS(X,Y1)/\ hasDS(X,Y2) -> <>

hasPS(X,Y2))) .

The second command above is used to verify the property that wherever a packet
X is, e.g., Y1, it must be eventually delivered to switch Y2 if its destination is
Y2. This verification is more general than the first one in that we can verify the
reachability of two arbitrary switches in a topology w.r.t. to a forwarding policy.

5.3 Equivalence proving by normalization

By Theorem 5 we can verify the equivalence of two policies p, q by reducing them
to their normal forms and checking if they are syntactically equal. To automate
the process, we formalize the normalization of policies based on the proof of
Lemma 4 in Maude.

We declare a function norm which takes two arguments, i.e., a policy in
NetKAT and a set of field information, and returns the normal form of the
policy. Part of the declaration and the definition of norm is listed as follows:

1 op norm : Policy FieldRangeSet -> NormalForm .

2 ceq norm(F = N, FS) = (if PS =/= empty then normPred(F = N

· PS) else normPred(F = N) fi) if PS := com(rm(FS,F)) .

3 eq norm (~(F = N), FS) = normPred ((~(F = N)) · com(FS)) .

4 eq norm(F ← N, FS) = normPoli(com(FS) ,(F ← N)) .

5 eq norm(PL1 + PL2 , FS) = norm(PL1 , FS) + norm(PL2 , FS) .

6 eq norm(PD · PD1 , FS) = product(norm(PD, FS),norm(PD1 ,FS)).

7 ...

8 ceq norm((PL) *, FS) = normPred(com(FS)) + NF

9 if NF := norm(PL,FS) /\ uniform(NF) .

10 ceq norm((PL) *, FS) = product(NF2 , normPred(com(FS)) + NF3)

11 if NF := norm(PL,FS) /\ not uniform(NF) /\

12 (AT,PL1)+NF1 := NF /\ NF2 := norm(nf2pol(NF1)*,FS) /\

13 NF3 := product ((AT ,PL1),NF2).

We take the formalization of the normalization of match and Kleene star for
examples. The equation in Line 2 formalizes the normalization of match F = N

with respect to a set FS of field information. In the equation, com is a function
which takes a set of field information such as {(f1,m1), (f2,m2), . . . , (fk,mk)}

12

(a) The graphical network topology

p , (dst = 0) · (pt← 1) + (dst = 5) · (pt← 2)

t , ((sw = 0) · (sw← 1) · (pt← 1))+
((sw = 1) · (pt = 1) · (sw← 0))+
((sw = 1) · (pt = 2) · (sw← 2) · (pt← 1))+
((sw = 2) · (pt = 1) · (sw← 1) · (pt← 2))+
((sw = 2) · (pt = 2) · (sw← 3) · (pt← 1))+
((sw = 3) · (pt = 1) · (sw← 2) · (pt← 2))+
((sw = 3) · (pt = 2) · (sw← 4) · (pt← 1))+
((sw = 4) · (pt = 1) · (sw← 3) · (pt← 2))+
((sw = 4) · (pt = 2) · (sw← 5))+
((sw = 5) · (sw← 4) · (pt← 2))

(b) Forwading policy and topology in NetKAT

Fig. 1: An example of Australia Network named Aarnet

with each mi ∈ N (1 ≤ i ≤ k), and returns a predicate∑
x1≤m1,x2≤m2,...,xn≤mn

(f1 = x1) · (f2 = x2) · . . . · (fk = xk). (6)

Each summand of the predicate and the match forms an atom α. The customized
function normPred returns a parallel composition of all α · σα.

The last two equations define the normalization of the Kleene star of a policy,
e.g., PL *, where PL is a policy. The equation in Line 9 defines the case where
the normal form of PL is uniform. The last equation recursively defines the
non-uniform case. If the normal form NF of the policy PL is not uniform, it
can be rewritten in the form of (AT, PL1) + NF1 where AT is an atom, PL1

is the complete assignment of AT, and (AT, PL1) is a Maude representation of
AT · PL1. We then compute the normal form of NF1 and denote it by NF2. Using
KAT-Denesting we obtain the normal form of PL, as defined by the right-hand
term in the body of the equation. The equation formalizes the normalization of
Kleene star when the summands in PL are not uniform, as described in the proof
of Lemma 4.

6 Experiments and Evaluation

In this section, we evaluate the proposed approach by formally verifying the
reachability of nodes in the network topologies defined in the website named
Internet Topology Zoo [1].

As a concrete example, we consider the network topology highlighting the
connection between Sydney and Darwin which is depicted in Figure 1(a). There
is a path between Sydney1 and Darwin. It is marked by yellow nodes in the
network. The path can be formalized as t that specifies all the bi-directional
links along the path. We declare a forwarding policy p for the switches in that
path, which are defined in NetKAT as shown in Figure 1(b).

13

The following search command verifies the reachability between Sydney1
and Darwin:

1 search [1] < (p · t)∗, | (dst : 5) (sw : 0) (pt : X:Nat) > =>!

2 < l | (dst : 5) (sw : 5) (pt : Y:Nat) > .

Maude returns one solution with Y being instantiated to be 2. It means that
there indeed exists a path, along which packets can reach node 5 from port 2 of
node 0 after applying the policy (p · t)∗.

Searching only shows the reachability of two nodes but cannot guarantee a
packet sent from node 0 must eventually reach node 5 based on the result. Such
property can be verified by Maude LTL model checking as explained in Section
5.2. The following command is used to verify the property.

1 red modelCheck(< (p · t)∗, (dst : 5)(sw : 0)(pk : 1) >,

2 [](hasPS (1,0) /\ hasDS (1,5) -> <> hasPS (1,5))) .

Maude returns true with the above command, which means that if there is a
packet in Host 0 (Syndey1) with destination being Host 5 (Darwin), the packet
must eventually reach Darwin.

Another alternative of verifying the reachability between two nodes in a net-
work is to prove the equivalence of a specification and an implementation by nor-
malization, as explained in Section 5.3. In this example, we define a specification
policy s which only specifies the effect, but ignores the concrete implementation.
For instance, the first summand specifies that all the packets sent from node
0 to node 5 must arrive node 5. The policy i formalizes the implementation of
sending/receiving packets along the path described by t between nodes 0 and 5.

s ,((sw = 0) · (dst = 5) · (sw← 5) · (pt← 2))+

((sw = 5) · (dst = 0) · (sw← 0) · (pt← 1)) (Specification)

i ,((sw = 0) · (dst = 5)) · ((p · t)∗) · ((sw = 5) · (pt = 2))+

((sw = 5) · (dst = 0)) · ((p · t)∗) · ((sw = 0) · (pt = 1)) (Implementation)

We prove that the specification and the implementation are equal by checking
their normal forms are the same with the following command:

1 red norm(i,(sw ,5)(pt ,2)(dst ,5))==norm(s,(sw ,5)(pt ,2)(dst ,5)).

Maude returns true, meaning that the specification and the implementation are
operationally equivalent. Therefore, packets can be routed from node 0 to node
5, and vice versa.

We verify the reachability property of eight network topologies in Internet
Topology Zoo. For each we use three different approaches i.e., searching, model
checking, and normalization, as we explained above. Table 4 shows the verifica-
tion results. All the experiments are conducted on a desktop running Ubuntu
15.10 with an Intel(R) Core(TM) i5-4590 @ 3.30GHz CPU and 2.00GB memory.
The data shows that as far as reachability properties are concerned, it is faster to
search a desired path by executing the operational semantics than to check the
equivalence of two policies by normalization. The inefficiency of normalization

14

Table 4: Reachability verification of the network topologies in Internet Topology
Zoo using searching, model checking and normalization

Network
name

Nodes
By searching By model checking By normalization

Result Time Result Time Result Time

Aarnet 3 X 1ms X 0ms X 2.12m
Bellsouth 4 X 0ms X 1ms X 9.53m
Bellsouth 5 X 0ms X 1ms X 38.47m
Aarnet 6 X 4ms X 2ms X 1.92h
Aarnet 7 X 6ms X 3ms X 5.84h
Aarnet 8 X 5ms X 3ms X 10.52h
Aarnet 9 X 8ms X 3ms X 21.89h
Aarnet 10 X 8ms X 3ms X 23.13h

can be explained as follows. As we can see from (6), to obtain the normal form of
a policy we need to do the Cartesian product of terms. When the number of nodes
in a network increases, the size of the normal form of the term that describes
the network topology will grow exponentially. Maude expands terms according
to our definition of normal form without any optimization, which makes normal-
ization a very time-consuming process. However, equivalence checking can be
used for verifying other network properties such as loop-freedom and translation
validation [8]. It also shows that model checking has a better performance than
searching with the increment of node numbers.

7 Concluding Remarks

We have proposed an operational semantics for NetKAT and shown that it is
sound and complete with respect to the axiomatic semantics given by Anderson
et al. in their seminal paper. We have also formalized the operational semantics
and the equational theory of NetKAT in Maude, which allows us to normalize
NetKAT expressions and to check if two expressions are equivalent. In addition,
we have investigated other verification techniques including searching and model
checking. They constitute a formal approach of reasoning about NetKAT expres-
sions with applications such as checking reachability properties in networks. The
full Maude code is available online [2]. To our knowledge, the current work is
the first to employ a rewrite engine for manipulating NetKAT expressions so as
to verify network properties.

As mentioned in Section 1, NetKAT is proprosed in [3], with its axiomatic
and denotational semantics carefully defined by building upon previous work on
Kleene algebra and earlier network programming languages; see the references
in the aforementioned work. In order to verify network properties, it is crucial
to develop highly efficient algorithms for checking the equivalence of NetKAT
expressions. An attempt in this direction is the coalgebraic decision procedure
proposed in [8]. It first converts two NetKAT expressions into two automata by

15

Brzozowski derivatives, and then tests if the auttomata are bisimilar. On the
other hand, our approach heavily relies on the rewriting of NetKAT expressions
into normal forms. In terms of time efficiency, unfortunately, both the coalgebraic
decision procedure in [8] and our rewriting-based approach are not satisfactory
when handling large networks. Therefore, an interesting future work is to pursue
faster algorithms for checking the equivalence of NetKAT expressions.

References

1. The Internet Topology Zoo Website. http://www.topology-zoo.org.
2. The Maude Code. https://github.com/zhmtechie/NetKAT-Maude.
3. C. J. Anderson, N. Foster, A. Guha, J. Jeannin, D. Kozen, C. Schlesinger, and

D. Walker. NetKAT: Semantic foundations for networks. In Proc. POPL 2014,
pages 113–126. ACM, 2014.

4. R. Beckett, M. Greenberg, and D. Walker. Temporal NetKAT. In Proc. PLDI
2016, pages 386–401. ACM, 2016.

5. M. Clavel, F. Durán, S. Eker, et al., editors. All About Maude - A High-Performance
Logical Framework, How to Specify, Program and Verify Systems in Rewriting
Logic, volume 4350 of LNCS. Springer, 2007.

6. N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and
D. Walker. Frenetic: a network programming language. In Proc. ICFP 2011, pages
279–291. ACM, 2011.

7. N. Foster, D. Kozen, K. Mamouras, M. Reitblatt, and A. Silva. Probabilistic
NetKAT. In Proc. ESOP 2016, volume 9632 of LNCS, pages 282–309. Springer,
2016.

8. N. Foster, D. Kozen, M. Milano, A. Silva, and L. Thompson. A coalgebraic decision
procedure for NetKAT. In Proc. POPL 2015, pages 343–355. ACM, 2015.

9. A. Guha, M. Reitblatt, and N. Foster. Machine-verified network controllers. In
Proc. PLDI 2013, pages 483–494. ACM, 2013.

10. D. Kozen. Kleene algebra with tests. ACM Transactions on Programming Lan-
guages and Systems, 19(3):427–443, 1997.

11. C. Monsanto, N. Foster, R. Harrison, and D. Walker. A compiler and run-time
system for network programming languages. In Proc. POPL 2012, pages 217–230.
ACM, 2012.

12. C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker. Composing software
defined networks. In Proc. NSDI 2013, pages 1–13. USENIX Association, 2013.

13. A. Verdejo and N. Mart́ı-Oliet. Executable structural operational semantics in
Maude. J. Log. Algebr. Program., 67(1-2):226–293, 2006.

14. A. Voellmy and P. Hudak. Nettle: Taking the sting out of programming network
routers. In Proc. PADL 2011, volume 6539 of LNCS, pages 235–249. Springer,
2011.

15. A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak. Maple: simplifying SDN
programming using algorithmic policies. In Proc. SIGCOMM 2013, pages 87–98.
ACM, 2013.

16

